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Abstract

We design a universal automatic elbow detector (UAED) for deciding effective number
of components in model selection problems. The relationship with the information criteria
widely employed in the literature is also discussed. The proposed UAED does not require
the knowledge of a likelihood function and can be easily applied in diverse applications, such
as regression and classification, feature and/or order selection, clustering, and dimension
reduction. Several experiments involving synthetic and real data show the advantages of the
proposed scheme with benchmark techniques in the literature.
Keywords: model selection, order selection, automatic elbow detection, variable selection,
clustering.

1 Introduction

Model selection is vast and one of the most relevant tasks in signal processing, statistics and
machine learning [1, 2, 3]. It is the process of selecting a statistical model from a set of candidate
ones. Model selection includes as special cases very famous sub-tasks: order selection (e.g., in
polynomial functions or ARMA models [4]), variable selection [5], dimension reduction [6], and
clustering [7], to name a few.
More specifically, in a large amount of research works from the most diverse fields, researchers and
practitioners face a trade-off between the number of components/variables to consider in their
analyses and the performance of the obtained results. Note that we use the term “variables”
as a general concept that can equivalently represent variables, features, or number of clusters,
depending on the nature of the considered problem. This trade-off occurs because increasing
the number of variables taken into account in the analysis allows for better results, at the
expense of obtaining a more complex model. In other words, the model performance and the
model complexity generate the so-called bias-variance trade-off. Therefore, in many applications,
researchers must obtain the optimal number of components/variables to take into account the
aforementioned trade-off [1].
The solution in the literature belongs to different families and approaches. A first class of methods
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is formed by the resampling techniques, such as cross-validation (CV) or bootstrap, where the
dataset is split into training and test sets [8, 9, 10]. However, the proportion of data to include
in the training and test sets is a crucial parameter that affects critically the results. Another
important family is the class of the information criteria [11], such as the Bayesian information
criterion (BIC) [12], the Akaike information criterion (AIC) [13], or the Hannan-Quinn information
criterion (HQIC) [14], to name a few [2, 15]. The information criteria consider a linear penalization
of the model complexity, and they differ for the choice of the slope of this penalization. These
choices are motivated by theoretical probabilistic derivations which involve several assumptions
and approximations. Hence, the good performance of an information criterion is often restricted
to very specific scenarios. Moreover, the computation of the information criteria often requires
the knowledge of the maximum of a likelihood function. Other probabilistic strategies related
to the information criteria are the so-called minimum description length principle, Mallows’s Cp
coefficient and the structural risk minimization [16, 17]. In the Bayesian framework, the use
of marginal likelihood and posterior predictive approaches are usually employed [2, 18, 19]. The
connection between the marginal likelihood and information criteria is discussed in the appendices
of [15]. The posterior predictive approach is related to the CV idea. Furthermore, standard
frequentist approaches based on p-values have a vast use in some specific applications and deserve
to be cited [20, 21]. Finally, specially in the clustering literature, some authors apply a visual
inspection of an error curve looking for an “elbow”.
In this work, we design an universal automatic elbow detector (UAED) based on a geometric
approach. The proposed scheme is inspired by the concept of the maximum “area under the
curve” (AUC) in receiver operator characteristic (ROC) curves [1, 22], which is well-known and
vastly employed in signal processing and machine learning. The resulting UAED technique also
induces a linear penalization of the model complexity. We discuss the connections, differences
and the advantages of UAED with respect to the information criteria already presented in the
literature. It is important to remark that the range of applicability of UAED is much wider
than other techniques in the literature, since no likelihood function is required. The application
of UAED only requires the knowledge of an error curve, that can be defined in different ways
according to the user’s needs. Moreover, we describe several appealing behaviours of the UAED
and test it in different numerical examples, two of them involving a real dataset. The results show
the benefits of UAED with respect to other benchmark techniques in the literature.
The remainder of the article is organised as follows: Section 2 describes the framework and the
notation employed in the development of the UAED, Section 3 presents and discusses the UAED
in detail, and Section 4 shows some UAED tests in practical applications. Finally, in Section 5
conclusions are given.

2 Framework and main notation

In many applications, we desire to infer a vector of parameters θk = [θ1, ..., θk]
⊤ of dimension

k given a data vector y = [y1, ..., yN ]
⊤. A likelihood function p(y|θk) is usually available, often

induced by a related physical model. Furthermore, in different types of real world application
problems (clustering, variable selection, or dimension reduction) and specially in model selection
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problems, an error function (i.e., a fitting measure) is obtained, that we denote as

V (k) : N → R, k = 0, 1, 2, ..., K,

where k denotes the number of components (e.g., variables, clusters, or order of the polynomial
function), i.e., k defines the complexity of the model. In the literature, we often have

V (k) = −2 log(ℓmax), where ℓmax = max
θ

p(y|θk),

as in [11]. However, in this work, V (k) could- be directly the mean square error (MSE), or the
mean absolute error (MAE). For instance, V (k) can represent the prediction error in regression
problems with a polynomial function, where k is the order of the polynomial, or the sum of the
inner variances within clusters where k is the number of clusters. We assume that k starts in 0
and grows with step 1 for simplicity, but more general cases can easily be addressed.
Generally, V (k) is a non-increasing error curve, i.e., for any pair of non-negative integers n1, n2

such that n2 > n1, then we have V (n2) ≤ V (n1).
1 Indeed, V (k) is a fitting term that decreases as

the complexity of the model (given by the number k of parameters) grows. Therefore, we have

V (0) ≥ V (k), ∀k.

Observe that V (0) represents the value of the error function corresponding, for instance, to a
constant model in a regression problem, or a single cluster (for all the data) in a clustering
problem. See Figure 1(a) for a graphical example of the curve V (k). In some applications, the
score function V (k) should be also convex, i.e., the differences V (n + 1) − V (n) will decrease as
n increases. This is the case of a variable selection problem, if the variables have been ranked
correctly. However, this work does not require conditions regarding the concavity of V (k).

Additional assumptions. Just for the sake of simplicity and without loss of generality, we
assume that minV (k) = V (K) = 0. Note that this condition can be always obtained with a
simple subtraction, defining a new curve V ′(k) = V (k) − minV (k) = V (k) − V (K). Moreover,
above we have assumed k = 0, 1, ..., K but, if there exists a value kmax ≤ K such that V (k) has
not an additional drop for k ≥ kmax, i.e.,

V (kmax) = V (kmax + 1) = V (kmax + 2) = ... = V (K), (1)

in this scenario, we can consider k = 0, 1, ..., kmax, since the rest of the components must be
discarded because they do not cause a drop in the error function. See Figures 1(a)-1(b) for two
graphical examples. Clearly, if the minimum value of k is different from 0, let us say kmin, we can
always set k′ = k − kmin. Finally, a different value of the incremental step can be also considered.
So far, we have assumed an incremental step of 1, without loss of generality.

1This condition could be also relaxed. We keep it, for the sake of simplicity.
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(a) (b)

(c)

Figure 1: (a)-(b) Example of error curve V (k) where (a) kmax = K = 6, (b) kmax = 4 and K = 6.
(c) Construction with two straight lines and the areas A1, A2 and A3.

3 The Universal Automatic Elbow Detector (UAED)

In this section, we provide two equivalent geometric derivations of the proposed method, and
discuss the similarities, differences, and connections with other methods in the literature. The
behaviour of the proposed technique is described and some interesting considerations are also
highlighted.
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3.1 First derivation

Considering the decay V (k) described in the previous section, the underlying idea is “inspired” by
the concept of the maximum AUC in ROC curves [1, 22]. Namely, we desire to extract geometric
information from the curve V (k) looking for an “elbow” in order to determine the optimal number
of components, denoted k∗ ∈ {0, 1..., kmax}, to consider in our model (i.e., in the vector θk∗).
We consider the construction of two straight lines passing through the points (0, V (0)), (k, V (k))
and (k, V (k)), (kmax, 0) as shown in Figure 1(c) (where k ∈ {0, 1, ..., kmax}). These two straight
lines form a piece-wise linear approximation of the curve V (k). The goal is to minimize the area
under this approximation. More specifically, as we can see in Figure 1(c), the area to minimize
consist of three sub-areas: two areas of two triangles (A1 and A3) and the area of a rectangle in
the middle (A2). Namely, we have

A1 =
k · (V (0)− V (k))

2
,

A2 = k · V (k), (2)

A3 =
(kmax − k) · V (k)

2
,

hence the definition of k∗ is

k∗ = argmin
k

{A1 + A2 + A3},

= argmin
k

{
V (k)

V (0)
+

k

kmax

}
, for k = 1, ..., kmax. (3)

Multiplying by the constant value V (0), we can equivalently write

k∗ = argmin
k

{
V (k) +

V (0)

kmax
k

}
, for k = 1, ..., kmax. (4)

It is important to remark that, since k belongs to a discrete and finite set, solving the optimization
above is straightforward (if K, or kmax, is not a huge value). In the case of multiple minima, e.g.,
having M different minima, k∗

1, k
∗
2, ..., k

∗
M , the user can choose the best solution (within the M

possible one) according to some specific requirement depending on the specific application. Here,
we suggest the most conservative choice, i.e.,

k∗ = max k∗
j . (5)

3.2 Second equivalent derivation

The solution offered by the expressions (3)-(4) is equivalent to finding the k∗ such that the
difference between V (k∗) and the value of the straight line (evaluated at k∗, as well) connecting
the extreme points (0, V (0)) and (kmax, 0) is maximized, as depicted in Figure 2. More specifically,
this straight line has an equation

v(k) = −V (0)

kmax
· k + V (0),
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hence, the difference that we maximize is the following:

d(k) = v(k)− V (k), (6)

= −V (0)

kmax
· k + V (0)− V (k), (7)

= V (0)−
(
V (0)

kmax
· k + V (k)

)
. (8)

Since V (0) does not depend on k (i.e., it is a constant value), we can write

k∗ = argmax
k

d(k) = argmax
k

[
V (0)−

(
V (0)

kmax
· k + V (k)

)]
, (9)

= argmax
k

[
−
(
V (0)

kmax
· k + V (k)

)]
, (10)

= argmin
k

[
V (0)

kmax
· k + V (k)

]
, (11)

which is exactly the expression in Eq. (4). Two additional and equivalent derivations are given
in Appendix A and Appendix B. They are also represented graphically in Figures 5(a) and 5(b),
respectively.

Figure 2: Graphical representation of alternative derivation in Section 3.2.

3.3 Relation with the information criteria

Recalling the expression in (4), i.e.,

k∗ = argmin

{
V (k) +

V (0)

kmax
k

}
.
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here we show that this cost function can be interpreted in the same form of other information
criteria, i.e., with a linear penalization of the model complexity,

C(k) = V (k) +
V (0)

kmax
k, (12)

= V (k) + λk, (13)

where we set λ = V (0)
kmax

. Note that Eq. (13) has exactly the same form of the cost function used in
the information criteria like BIC and AIC, for instance, when V (k) is defined as

V (k) = −2 log ℓmax, with ℓmax = max
θ

p(y|θk).

BIC corresponds to the choice λ = log(N) where N is the number of data in y, and AIC
corresponds to the choice λ = 2. Therefore, when V (k) = −2 log ℓmax, UAED can be interpreted

as an information criterion with the particular choice of λ = V (0)
kmax

. Table 1 summarizes this
information.

Table 1: Different information criteria and the proposed UAED.

Criterion Choice of λ

Bayesian-Schwarz information criterion (BIC) [12] logN

Akaike information criterion (AIC) [13] 2

Hannan-Quinn information criterion (HQIC) [14] log(log(N))

Universal Automatic Elbow Detector (UAED) V (0)
kmax

3.4 Behaviour of the proposed solution

Analyzing the involved parameters in the expression (4) or (12), we can highlight the following
considerations about the behaviour of the UAED method. We list some important points below:

• Observing Eq. (12), the penalization of the complexity of the model depends on V (0) and kmax:

since λ = V (0)
kmax

increasing V (0) or decreasing kmax, intensifies the penalty. This is a reasonable and
desirable behaviour. Indeed, increasing the value of V (0) also increases the differences V (0)−V (k),
which means that the first components/variables have more impact in the fitting - the decay of
V (k) - so that fewer components/variables can form a reasonable model. Otherwise, decreasing
the value of V (0) means more variables have a similar impact in the decay of V (k). Therefore,

7



we should consider more components, in fact the slope of the penalization, λ = V (0)
kmax

, decreases in
this case.
• Regarding kmax, we can notice that a decrease of kmax means that fewer components/variables
produces a drop in the curve V (k). On the other hand, an increase in kmax means that the use of
more variables causes a drop V (k), so we should consider more components, indeed, the slope of

the penalization, λ = V (0)
kmax

, decreases.
• Looking the expression (4) or (12), it is possible to show that the solution does not depend
on different possible re-normalization of the axes, i.e., scaling of the axes the solution remains
invariant (one of them, or both, even with different scales). Indeed, considering a scaling on the
vertical axis, i.e., assuming V (k)′ = aV (k) with a > 0, we have

k∗ = argmin

[
aV (k) +

aV (0)

kmax
k

]
= argmin

[
a

(
V (k) +

V (0)

kmax
k

)]
,

= argmin

[
V (k) +

V (0)

kmax
k

]
.

Let now consider the case of scaling the horizontal axis, for instance, instead of having k =
0, 1, 2..., kmax, we have k

′ = 0, b, 2b, ..., bkmax (i.e., k
′ = bk), and another error curve Ṽ (k′) = V (k′/b),

where b is a positive integer. Hence we can write

(k′)∗ = argmin
k′

[
Ṽ (k′) +

V (0)

k′
max

· k′
]
= argmin

k′

[
V (k′/b) +

V (0)

k′
max

· k′
]
=

= b argmin
k

[
V (bk/b) +

V (0)

bkmax
· bk

]
= b argmin

k

[
V (k) +

V (0)

kmax
· k

]
= bk∗.

Namely, the new solution (k′)∗ = bk∗ is just a scaled version of the previous one, taking into
account the factor b. Furthermore, given the considerations in Appendices A and B, we can see
that the solution is invariant even if the axes are exchanged.
• Here, we describe two ideal scenarios and discuss the behaviour of UAED. For clarity in the
exposition, let us consider as an example a variable selection problem. First of all, we consider the
case that all the input variables are equally important for predicting the output variable. Then,
we have kmax = K, and the error curve V (k) is a straight line connecting the points (0, V (0)) and
(kmax, V (kmax)) (i.e., each variable has the same impact to the error decay). In this scenario, we have
kmax = K, and UAED provides M = kmax+1 different minima k∗

1 = 0, k∗
2 = 1, k∗

3 = 2, ..., k∗
M = kmax.

Thus, the UAED solution is given by Eq. (5), i.e., k∗ = max k∗
j = kmax. Namely, UAED suggests

to select all the variables, that is the correct solution.
On the other hand, let us consider now a scenario where all the input variables are independent
from the output variable. In this case, V (k) is a constant function, i.e., V (k) = V (0) for all k
and, as a a consequence, kmax = 0. Hence, since kmax = 0, UAED gives k∗ = 0, which is the
correct solution (i.e., no variables should be selected). Thus, in both scenarios, UAED provides
the correct results.
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4 Experiments with synthetic and real data

In this section, we test the UAED in four real-world applications. In each experiment, we consider
a different function V (k), in order to show the vast range of applicability of UAED. Sections 4.1-
4.2 deal with synthetic data in clustering and order selection problems, respectively. In Sections
4.3-4.4, the experiments involve the analysis of real data: the first one is a variable selection
in a regression problem with soundscape emotion data and, the second one is a classification
problem with biomedical data. We compare the performance of UAED with BIC, AIC, and other
information criteria described in the literature, in the examples where these schemes can be also
applied.

4.1 Clustering

We consider 2500 simulated data from a mixture of 5 bidimensional Gaussian distributions,
N (µi,Σi), where µ1 = [3, 0], Σ1 = [0.3, 0; 0, 2], µ2 = [14, 5], Σ2 = [1.5, 0.7; 0.7, 1.5];, µ3 =
[−5,−10], Σ3 = [1.5, 0.7; 0.7, 1.5], µ4 = [10,−10], Σ4 = [1.5, 0; 0, 1.5];, and µ5 = [−5, 5],
Σ5 = [1,−0.8;−0.8, 1]. Figure 3(a) shows these data points.

We assume V (k) = log
[∑k+1

j=1 var(j)
]
, where var(j) represents the inner variance of the j-th

cluster, as shown in Figure 3(b). Each value of var(j) has been computed and averaged over 200
runs, applying a k-means algorithm. In this setting, the total number of clusters is given by k+1
(i.e., k = 0 corresponds to a unique, single cluster). We assume K = 50 as the maximum number
of possible clusters.
It is important to remark that, with this choice of V (k), the other information criteria cannot be
directly applied2. We apply UAED and obtain k∗+1 = 5 as the chosen number of clusters, which
is the correct solution.

4.2 Order selection of a polynomial function in a regression problem

We generate a dataset of N = 100 pairs {xn, yn}Nn=1, where both inputs xn’s and outputs yn’s are
scalar values, considering the following observation model,

yn = θ0 + θ1xn + θ2x
2
n + ...θkx

k
n + ϵn, (14)

where θk = [θ0, θ1, ..., θk]
⊤, ϵn is Gaussian noise with zero mean and variance σ2

ϵ = 1. The dataset
has been generated with a polynomial function of order k = 4, and with the coefficients

θ0 = 4.05, θ1 = −2.025, θ2 = −2.225, θ3 = 0.1, θ4 = 0.1.

In this experiment, we consider V (k) = −2 log(ℓmax) with ℓmax = maxθ p(y|θk) with k ≤ K, where
p(y|θk) is induced by Eq. (14), in order to allow the comparison with other schemes in the
literature, as shown in Table 1. The corresponding function V (k) is shown in Figure 4(a).

2The information criteria require the choice of the error curve of type V (k) = −2 log ℓmax where ℓmax =
maxθ p(y|θk) and, as a consequence, a definition of a likelihood function p(y|θ).

9



-10 -5 0 5 10 15 20
-15

-10

-5

0

5

10

(a)

0 10 20 30 40 50
k

0

1

2

3

(b)

Figure 3: (a) Artificial Data of the clustering experiment. (b) The function V (k) = log
[∑k+1

j=1 var(j)
]
where

var(j) represents the inner variance in the j-th cluster. Note that k = 0 corresponds to a unique, single cluster.

Applying BIC, AIC and Hannan-Quinn IC we obtain the suggested order of polynomial is 4,
6, and 10, respectively. With the proposed UAED method, we obtain the suggested order is 4,
which is the correct order of the underlying polynomial function. Therefore, in this experiment,
BIC and UAED provide the correct answer.

4.3 Variable selection in a regression problem with real data

In this section, we present a feature selection problem for regression. Moreover, we consider
real data. More specifically, a dataset of N pairs {xn, yn}Nn=1 is given, where each input vector
xn = [xn,1, ..., xn,K ] is formed by K variables, and the outputs yn’s are scalar values. We assume
K ≤ N and a linear observation model,

yn = θ0 + θ1xn,1 + θ2xn,2 + ...θKxn,K + ϵn, (15)

where ϵn is Gaussian noise with zero mean and variance σ2
ϵ , i.e., ϵn ∼ N (ϵ|0, σ2

ϵ ). In the real
dataset studied in [23], there are K = 122 features and N = 1214 number of data points. The
output represents the variable defined as “arousal” in [23].
In order to allow the comparison with other schemes in the literature, here we can set V (k) =
−2 log(ℓmax) where ℓmax = maxθ p(y|θk) with k ≤ K, after ranking the 122 variables as in [23].
Clearly, The likelihood function p(y|θk) is induced by Eq. (15). Therefore, in this experiment,
we can compare UAED again with other information criterion measures in the literature, some
of them are given in Table 1. BIC suggests a model with 17 variables, AIC chooses 44 variables,
the Hannan-Quinn IC selects 41 variables. The proposed UAED suggests considering only 11
variables, Therefore, the UAED suggestions is closer to the results given in other previous studies
and to experts’ recommendations in the literature, e.g., [23].
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4.4 Variable selection in a classification problem with real data

The authors in [24] analyze the most important features for predicting patients at risk of developing
nonalcoholic fatty liver disease. The authors collected data from 1525 patients who attended the
Cardiovascular Risk Unit of Mostoles University Hospital (Madrid, Spain) from 2005 to 2021, and
use a random forest (RF) algorithm to classify patients and rank the input features, in order to
select the most important one. They found that 4 features were the most relevant according to the
ranking and the experts’ opinions: (a) insulin resistance, (b) ferritin, (c) serum levels of insulin,
and (d) triglycerides.
In this experiment, we set V (k) = 1− accuracy(k) that is given in Figure 4(b), after ranking the
35 features [24]. Note that V (0) = 0.5 representing a completely random binary classification. It
is important to remark that, with this choice of V (k), the other information criteria cannot be
employed.2 The application of UAED suggests to select 4 variables which is exactly the result of
the paper [24], obtained using a Cross-Validation (CV) approach, and supported by the experts’
opinions.
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Figure 4: (a) The corresponding curve V (k) = −2 log ℓmax (with ℓmax = maxθ p(y|θk)) in Section
4.2; (b) The curve V (k) = 1− accuracy(k) of the experiment in Section 4.4.

5 Conclusions

A novel universal automatic elbow detector (UAED) has been introduced. Four different
geometrical derivations have been provided. Moreover, we have analyzed its behavior and
properties, as the invariance on scaling the axes and the behavior in ideal scenarios. The
relationships and differences with other information criteria (already given in the literature)
have been described and highlighted. Furthermore, the proposed procedure has a much wider
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range of application with respect to the other schemes in the literature. Several experiments and
comparisons show the benefits of the proposed UAED scheme.
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A Third alternative derivation

Let us consider Figure 5(a). First of all, we must find the value k′ such that the straight line,
connecting the points (0, V (0)) and (kmax, 0), reaches the value V (k) (where k ̸= k′, and more
precisely k ≤ k′). Namely, we desire to obtain k′ such that

V (k) = −V (0)

kmax
· k′ + V (0),

hence

k′ = − kmax
V (0)

[V (k)− V (0)] .

Now, we could also consider to maximize the following difference

r(k) = k′ − k, (16)

= − kmax
V (0)

[V (k)− V (0)]− k, (17)

and the elbow is defined as

k∗ = argmax r(k) = argmax

[
− kmax
V (0)

V (k)− k

]
, (18)

= argmin

[
kmax
V (0)

V (k) + k

]
, (19)

= argmin

[
V (k) +

V (0)

kmax
k

]
, (20)

where in the last we have multiplied by the constant V (0). Note that Eq. (20) is exactly the same
optimization problem (i.e., with the same cost function) in Sections 3.1-3.2.

B Fourth alternative derivation

One could also consider the Euclidean distance e(k) between the points in the curve V (k) and the
straight line connecting the points (0, V (0)) and (kmax, 0), as depicted in Figure 5(b). Observing
this figure, we can notice that

e(k) = d(k) sin(π/2− α) = d(k) cosα (21)

e(k) = r(k) sinα, (22)

where α is the angle shown in Figure 5(b). Since the angle α is constant, then we can write

k∗ = argmax
k

e(k) = argmax
k

d(k) cosα = argmax
k

d(k) (23)

= argmax
k

r(k) sinα = argmax
k

r(k). (24)

Therefore, maximizing e(k) is equivalent to maximize d(k) or r(k).
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(a) (b)

Figure 5: (a) Graphical representation of the other alternative derivation in Appendix A. (b)
Graphical representation of derivation based on the Euclidean distance e(k).

C Possible extension

We have already shown that the resulting expression in Eq. (3) provides good performance and
is endowed with valuable behaviours.
However, we can add more flexibility that can be useful in the scenarios in which the researchers
and/or practitioners determine that the benefit of reducing the error is greater than the benefit
of reducing the number of considered variables or vice versa. We define an additional parameter
α ∈ [0, 1], and consider the modified definition of the optimal k as

k∗ = argmin
k

[
α · V (k)

V (0)
+ (1− α) · k

kmax

]
. (25)

Note that α = 0 implies that all priority is to reduce the number of considered variables (k∗ = 0),
that α = 1 implies that all priority is to reduce the resulting error (so that k∗ = kmax). For α = 0.5,
we come back to the definition in Eq. (4). As we have previously done in Section 3, can rewrite
Eq. (25) as

k∗ = argmin
k

V (k) +

(
1− α

α

V (0)

kmax

)
︸ ︷︷ ︸

λ

·k

 , (26)

k∗ = argmin
k

[V (k) + λk] ,

having the form of an information criterion with a different choice of λ which involves now the
parameter α, as well.
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