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Abstract

In my previous preprint about SRWS-ζ theory[Y.Ueoka,viXra:2205.014,2022],
I proposed an approximation of rough averaged summation of typical critical Green
function for the Anderson transition in the Orthogonal class. In this paper, I re-
move a rough approximate summation for the series of the typical critical Green
function by replacing summation with integral. Padé approximant is used to take
a summation. The perturbation series of the critical exponent ν of localization
length from upper critical dimension is obtained. The dimensional dependence of
the critical exponent is again directly related with Riemann ζ function. Degree of
freedom about lower critical exponent improve estimate compared with previous
studies. When I fix lower critical dimension equal to two, I obtained similar es-
timate of the critical exponent compared with fitting curve estimate of the critical
exponent[E.Tarquini et al.,PhysRevB.95(2017)094204].
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1 Introduction
The Anderson transition is a disorder driven quantum phase transition exhibiting criti-
cal phenomena. The critical exponent is thought to depend only on fundamental proper-
ties of the system such as dimensionality and symmetry. In my previous preprints[1, 2],
I propose the new theoretical framework(SRWS or SRWS-ζ) to understand the Ander-
son transition in the Orthogonal class. The key points is power series expansion of the
typical critical Green function and its approximate summation method. In this paper, I
use better approximation for power series than my previous paper and take a summa-
tion by lowest order. Then, typical critical Green function is obtained closed form. We
can extract the critical exponent ν. The explicit expression of the dimensional depen-
dence of ν tells us the number theory is deeply related with the critical phenomena. A
degree of freedom about lower critical dimension appears in high dimensional approx-
imation. By using high dimensional approximation, I get better estimate of the critical
exponent compared with already known numerical estimate.

2 Anderson transition and SRWS Green function
In this section, I review starting equation used later in this paper. The relevant dimen-
sionality is explicitly given by a spectral dimension of a lattice in SRWS.

The typical critical Green function of SRWS theory is given by,

Gtypical(|x − y|, z) ≃ z|x−y|+1
∞∑

n=0

cnzn (1)

cn =

|x−y|+n∑
t=|x−y|

Axy(t)
(

2
W

)t+1 (
n + |x − y|

t

)
(2)

Axy(t) =

 kt
(

t2

l

)−dt/2l
(t < l)

ktt−d/2 (t ≥ l)
(3)

l =
|x − y|2

4D
(4)

3 the critical exponent obtained from SRWS with ap-
proximations

The treatment of binomial coefficient is a little bit difficult. Here, I approximate by
using only t ≥ l terms.First, I prepare a approximate formula used later,

|x−y|+n∑
t=|x−y|

(2k/W)t
(
n + |x − y|

t

)
≃
|x−y|+n∑

t=0

(2k/W)t
(
n + |x − y|

t

)
= (2k/W)n+|x−y| (5)

By approximating summation by integration,we get following approximate formula∫
t = |x − y||x−y|+n(2k/W)t

(
n + |x − y|

t

)
≃ (2k/W)n+|x−y| (6)
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Therefore, I approximate cn as

cn ≃ 1
W

∫ |x−y|+n

t=|x−y|
t−d/2

(
2k
W

)t (n + |x − y|
t

)
=

[
t−d/2(2k/W)t

]t=n+|x−y|
t=|x−y|

+ (d/2)
∫ |x−y|+n

t=|x−y|
t−d/2

(
2k
W

)t

≃
[
t−d/2(2k/W)t

]t=n+|x−y|
t=|x−y|

+ (d/2)
|x−y|+n∑
t=|x−y|

t−d/2
(

2k
W

)t

(7)

By remaining n-dependent terms only,

cn ≃
1
W

((n + |x − y|)−d/2an+|x−y|) + (d/2)Φ(a, d/2 + 1, n + |x − y| + 1) (8)

Here,

a =
2k
W

(9)

Considering summation over n,first term of cn becomes function of za. Therefore,
contribution from the first term gives the term which a-dependence is proportional to
a. So, We can ignore first term of cn and remain second term of cn. Then, we get,

Gtypical(|x − y|, z) ≃ (z|x−y|+1d)/ka
∞∑

n=0

Φ(a, d/2 + 1, n + |x − y| + 1)zn (10)

Here,

Φ(a, d/2 + 1, n + |x − y| + 1) = (1 + n + z)−d/2−1 +

∞∑
k=0

(−1)k (1 + n + |x − y|)k

k!

(1 + d/2)kLid/2+k+1(a) (11)

I ignore first term which does not depend on a, and take lowest order cut-off by degree
of k = 1,

Φ(a, d/2 + 1, n + |x − y| + 1) ≃
1∑

k=0

(−1)k (1 + n + |x − y|)k

k!
(1 + d/2)kLid/2+k+1(a) (12)

Then, I take Padè approximant of order [0/1], [0/2], · · · about variable n and take
limit|x − y| → ∞.From observation of behavior of Padè approximant and again take
limit of z→ ∞. For k ≥ 1

∞∑
n=0

(1 + n + |x − y|)kzn ≃ 1
k
|x − y|kz−|x−y| (13)

At high dimensional limit a→ 0,for positive c and real number cl,

Lid/2+k+1(a) ≃ Licd+cl+1(a) ≃ a (14)
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By summarizing calculation above, we get with constant c as a degree of freedom.

Gtypical(|x − y|, z) ∝ 1 + |x − y|k(d/2 + 1)
Licd+cl+1(a)

a
(15)

By taking logarithm, we can extract localization length by,

ξ ≃ −
4D ln Gtypical(|x − y|, z)/z

|x − y|2 (16)

I take Padé approximant about variable |x − y| of order [2/0]or[3/1], [4/2](all approxi-
mation gives same final result), and remove |x− y|2 dependence. Then series expansion
at a = 1 up to 1st degree, we obtain

ξ = ξ0(d) + ξ1(d)(a − 1) = ξ0(d)
(
1 +
ξ1(d)
ξ0(d)

(a − 1)
)

(17)

Then dimensional dependent term of the critical exponent is given by ξ1(d)
ξ0(d) . By choosing

asymptotic form of D at the critical point such that ν ∼ 1/2(d → ∞),we obtained

ν =
−3
2
+

2ζ(cd + cl)
ζ(cd + cl + 1)

(18)

Natural choice of c = 1/2 gives no degree of freedom except for cl. To get formula
such that lower critical dimension equal to two, we need to set cl = 0.

ν =
−3
2
+

2ζ(d/2)
ζ(d/2 + 1)

(19)

If we don’t care about the value of the critical exponent at infinite dimension, we can
fit the following equation.

ν = C∞ +
2ζ(cd + cl)
ζ(cd + cl + 1)

(20)

Weighted fitting with monotonically decreasing numerical data[3, 4, 5, 6, 7, 8] with
d = 2.22, 2.33, 2.41, 2.54, 3, 4, 5, 6 gives,

ν = −1.108 +
2ζ(0.922d − 0.711)
ζ(0.922d + 0.289)

(21)

This formula does not become 1/2 at d → ∞,and lower critical dimension is dl = 1.856
which is slightly smaller than two. To keep correct lower critical dimension, and ν ∼
1/2(d → ∞),natural choice of functional form is perturbation series about d in high
dimension,

ν = −3
2
+

2ζ(cd + f /d + g/d2 + cl)
ζ(d/2 + f /d + g/d2 + cl + 1)

(22)

Correct lower critical exponentdl = 2 requires

g = 4 − 8c − 2 f − 4cl (23)

Weighted fitting gives

ν = −3
2
+

2ζ(0.563d + 13.68/d − 17.93/d2 − 2.4835)
ζ(0.563d + 13.68/d − 17.93/d2 − 1.4835)

(24)
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4 The estimated value of the critical exponent ν and
comparison with previous studies

Expansion series from lower critical dimension is obtained by S.Hikami[9],

ν ∼ 1
d − 2

− 9ζ(3)
4

(d − 2)2 +
27
16
ζ(4)(d − 2)3 (25)

Fitting curve from high dimension was given by [10]

ν =
1

2 − 4.75/d
(26)

Semi classical theory of the Anderson transition[11] gives

ν =
1
2
+

1
d − 2

(27)

For integer dimensions, the estimated value of the critical exponents are listed in
Table.1

d Eq.(19) Eq.(21) Eq.(24) numerical estimate
3 2.395 1.572 1.570 1.571 ± .004[3]
4 1.237 1.119 1.169 1.156 ± .014[4]
5 0.881 0.988 0.958 0.969 ± .015[4]
6 0.721 0.937 0.813 0.78 ± .06[5]

Table 1: Estimated critical exponents for the orthogonal symmetry class for d = 3, 4, 5
and 6 obtained from Eqns.(19), (21) and (24).

For non-integer dimensions, the estimated value of the critical exponents are listed
in Table.2

d Eq.(19) Eq.(21) Eq.(24) Refs.[6, 7, 8]
2.22 10.96 3.958 4.127 4.402 ± .18
2.226 10.67 3.900 4.038 2.82 ± .05
2.32 7.517 3.189 3.086 2.59 ± .19
2.33 7.287 3.130 3.017 2.92 ± .14
2.365 6.583 2.943 2.806 2.27 ± .06
2.41 5.855 2.734 2.590 2.50 ± .21
2.54 4.436 2.300 2.170 2.24 ± .31

Table 2: Same as for Table 1 but for fractals with spectral dimension 2 < d < 3. Values
of critical exponents in Ref. [6] were provided by M. Schreiber.

Within perturbation method, these estimated values are best values without sum-
mation method[9].
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Figure 1: Comparison between approximation formulas of the critical exponent and
numerical estimates in integer dimension. Red curve is Eq.(24).Blue curve is semi
classical theory of the Anderson transition[11].Green curve is Eq.(19),Purple curve is
Eq.(25), Black solid curve is Eq.(26).Pink curve is my previous study[4].Dash dotted
curve is Eq.(21).

In figure 2 and figure 1,numerical estimates and theoretical estimates without sum-
mation method are plotted.

Eq.(19) gives almost same estimate with fitting formula from high dimension.[10].
Fitting formula does not give correct lower critical dimension but Eq.(19) gives correct
lower critical dimension dl = 2. Eq.(21) gives good estimate over wide range of dimen-
sionality although lower critical dimension is slightly smaller than two. Eq.(24) gives
best estimate over wide range of dimensionality and gives correct asymptotic behavior
at d = 2 and ν ∼ 1/2(d → ∞). Eq.(25) gives good estimate only near d = 2.

5 Conclusion
Using integral,I take an approximate summation of typical critical Green function in
SRWS theory for the Anderson transition in the orthogonal symmetry class. From
obtained perturbation series by lowest degree, we get estimates for the simplest case
which are approximations from upper critical dimension. They are better than other
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Figure 2: Comparison between approximation formulas of the critical exponent and
numerical estimates in spectral dimension. Red curve is Eq.(24). Blue curve is semi
classical theory of the Anderson transition[11].Green curve is Eq.(19),Purple curve is
Eq.(25), Black solid curve is Eq.(26).Pink curve is my previous study[4].Dash dotted
curve is Eq.(21).

previous theoretical studies without summation method about dimensionality or fitting
formula. I confirmed that even lowest order estimate gives good estimate of the critical
exponent to some extent. However, I also noticed Padé approximant with higher order
terms does not work due to existence of pole. Therefore, suitable summation method
which is unknown now is necessary to improve estimate. This is necessary to improve
estimate of the critical exponent without introducing additional degree of freedom by
high dimensional approximation. Thus, problem of estimate of the critical exponent
seems to be replaced by finding suitable summation method.
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