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Based on the real-space Mott insulator model, we have found a unified pairing, coherent and conden-
sate mechanism of superconductivity for all materials. Partly motivated by Dirac’s magnetic monopole and
Maxwell’s displacement current hypothesis, we demonstrate that electric and magnetic fields are intrinsically
relevant. An isolated proton or electron creates an electric field, whereas a real-space quantized proton-electron
pair creates a magnetic field. These findings offer new insights into the nature of electron spin, magnetic
monopoles, and the symmetry of Maxwell’s equations. We argue that the electric dipole vector of the proton-
electron pair plays the role of the Ginzburg-Landau order parameter in the superconducting phase transition. It
appears that the Peierls transition of the electron-proton electric dipole lattice leads to the symmetry breaking
of the Mott insulating state and the emergence of superconducting and magnetic states. With this theoretical
framework, the Meissner effect, London penetration depth, magic doping, flux neutralization, vortex lattice, and
vortex dynamics, among other superconducting phenomena, can be comprehensively explained.

PACS numbers: 71.10. w, 74.20. z, 74.25.Ha, 75.10.−b

I. INTRODUCTION

Since Kamerlingh Onnes discovered superconductivity in
mercury [1], thousands of superconducting elements and com-
pounds have been found [2–11]. From a fundamental physics
point of view, these superconducting materials can be clas-
sified into two categories: conventional and unconventional.
It is widely accepted that BCS electron-phonon theory [12]
can well describe conventional superconductors, while uncon-
ventional superconductors cannot be successfully explained
by BCS theory. The research explosion in superconductiv-
ity began with Bednorz-Muller’s groundbreaking discovery
[4]. Following Cooper’s pairing model, physicists have spent
37 years investigating the mechanism of high-temperature su-
perconductivity (pairing glue). Despite publishing more than
200,000 studies, proposing hundreds of microscopic theories
to unravel the mystery based on the rich phase diagram (see
Fig. 1) [13–22], none have been deemed valid [23]. In re-
sponse to this, Anderson publically challenged the existence
of pairing glue responsible for pairing electrons in cuprate su-
perconductors [24].

It is unconventional that despite extensive and intensive re-
search efforts, superconductivity remains poorly understood.
The physics community must now seriously question whether
some fundamental blunders have led us astray. Perhaps some
commonly accepted theories or models fail to capture the
essence of the superconducting phenomenon [25, 26]. In my
opinion, the problem of understanding high-temperature su-
perconductivity is a new dark cloud looming over the field
of physics. To solve this puzzle, we must break free from
our old theoretical framework which has confined our think-
ing until now. Undeniably, high-temperature superconduc-
tivity is achieved through doping, which means that high-
temperature superconductors are highly disordered materials.
Consequently, the electronic energy-band theory based on per-
fect crystals is unsuitable for studying strongly correlated su-
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Figure 1: A illustration of hole doped cuprates phase diagram

perconducting systems. Furthermore, researchers should no
longer waste time and effort getting entangled in the so-called
pairing glue, as suggested by Anderson. Instead, they must
focus their efforts on considering the following crucial ques-
tions.

Question One: With over 32 different classes and thou-
sands of superconductors discovered [27], it is possible for
almost all materials, including some insulators, to exhibit su-
perconductivity under the right conditions, like an appropriate
temperature and external pressure. In light of this, is it still
reasonable to categorize superconducting materials into con-
ventional and unconventional and to assume, subjectively, that
they have distinct superconducting origins?

Question Two: The two vital experimental phenomena ob-
served in all superconducting materials are zero resistance in
an electric field [1] and the Meissner effect in a magnetic field
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[28]. These experimental facts suggest that all superconduc-
tors, whether conventional or unconventional, must share the
exact underlying mechanism of superconductivity. Moreover,
opposite electric charges attracting each other is a universal
law of nature, so isn’t electromagnetic attraction the strongest
and most suitable “glue” for pairings? Thus, the problem of
superconductivity can be stated as a dynamic problem: how
does the external electromagnetic field interact with the charge
carriers inside the superconductor to induce the superconduct-
ing phase transition?

Question Three: Viewed through the Landau-Ginzburg
phase transition theory [29], the order parameter characteriz-
ing the superconducting phase transition undergoes symmetry
breaking. Therefore, it is clear that the transition is not spon-
taneous but instead is driven by an external field, resulting in
a transition from high symmetry in the absence of an external
field to a lower symmetry in its presence. The critical question
when studying the mechanism of superconductivity is which
electromagnetic variable qualifies as the order parameter in
Landau-Ginzburg’s theory.

Question Four: High-temperature superconductivity in
copper-oxides is thought to originate from an antiferromag-
netic parent Mott insulator, with electron localization span-
ning the entire range and a long-range order [30, 31]. On the
one hand, strong magnetic excitations are generally believed
to play a vital role in the superconducting mechanism [32–34].
On the other hand, the origin and nature of the magnetism un-
derlying this phenomenon remain a mystery. To ultimately
solve the high-temperature superconductivity mechanism, we
must first successfully explain the reason for magnetism at the
microscopic level. Therefore, a pivotal step toward explain-
ing superconductivity is unraveling the nature of magnetism
and elucidating the antiferromagnetic order within a localized
electronic framework.

Question Five: It is widely acknowledged that existing
superconducting theories and models are built on a dynamic
view, where the movement of electrons drives current, super-
current, and magnetic field phenomena. However, how can
negatively charged electrons in a dense positive ion supercon-
ductor move freely without colliding? This decades-old un-
resolved issue leads us to propose that the picture of electron
motion is at the root of the problem. To circumvent these dif-
ficulties, we suggest studying superconductivity using a static
picture where all valence electrons are localized, which begs
the question: is that even possible? We contend that the an-
swer is yes, and it hinges on Maxwell’s displacement current
[35] and Dirac’s magnetic monopole hypothesis [36]. Since
the relationship between current and magnetic fields is mu-
tual, these two theories are interchangeable - two different
paths that lead to the same destination. Their common theoret-
ical framework is static and does not depend on the motion of
electrons to generate current or magnetic fields. Our primary
task is to demonstrate that the two magnetic poles correspond
precisely to electron and proton.

This paper presents a unified theory of superconductiv-
ity in real space, proposing an electron-proton electromag-

netic interaction pairing mechanism that combines insights
from the Mott insulator, Maxwell displacement current, and
Dirac magnetic monopole theory. The theory elucidates the
intrinsic relationships among superconductivity, magnetism,
order parameters, and symmetry breaking without any extra
glue. According to our proposal, the origin of natural mag-
netic phenomena can be traced back to the simplest possi-
ble electron-proton pair - a quantized vector capacitor - rather
than the commonly assumed idea of electron motion. Fur-
thermore, these electron-proton (ion) pairs can self-assemble
into antiferromagnetic Mott insulators through direct electro-
magnetic interaction that results from attraction between op-
positely charged particles. We demonstrate that the proton-
electron electric dipole vector is precisely the order parame-
ter for the Ginzburg-Landau theory of superconducting phase
transition. The new mechanism can qualitatively and self-
consistently explain many crucial superconducting phenom-
ena, such as the Meissner effect [28, 37], London penetra-
tion depth [38], magic doping [39–41], vortex lattice [42–47],
and vortex dynamics [48–54]. Additionally, our hypothesis
perfectly encompasses the symmetry of Maxwell’s equations
[35], reveals the physical nature of electron spin [55], and of-
fers insight into Dirac’s magnetic monopoles [36].

II. ARE FREE ELECTRONS FREE?

In 1900, Drude proposed a theory to explain the transport
properties of electrons in metals [56, 57]. Sommerfeld later
refined the theory in 1927 by incorporating quantum mecha-
nisms [58]. Despite the mathematical differences, the funda-
mental physical concepts have remained mostly unchanged.
As depicted in Figure 2, these theories rely on the simpli-
fied model of a lattice of positive immobile ions (protons, for
convenience) and valence electrons that are free to move. As
illustrated in Figure 2, electrons (represented as the i -th elec-
tron in the figure) will continuously collide with ions and other
electrons in random thermal movement inside the metal with-
out an external electric field. However, under an applied elec-
tric field E along the −x direction, as shown in Figure 2(b),
the free electrons will exhibit a random directional motion,
resulting in a drift velocity vd in the opposite direction to con-
duct an electric current I. The collisions between electrons
and the lattice or other electrons induce resistance, thereby
limiting the flow of electrons.

Intuitively, Drude’s theoretical model contains several con-
tradictions. First, the idea of electrons having a “tortoise-
like” speed contrasts with the notion of current traveling at
the speed of light, creating an inherent inconsistency. More
fundamentally, the Drude model faces a serious challenge:
how can positively charged ions that repel each other form
a stable and symmetrical crystal structure in the presence of
entirely disordered electrons? We will scrutinize the Drude
model’s rationality and reliability with current and energy as
we delve further. As illustrated in Figure 2(b), the current
flowing through a conductor follows the equation:
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Figure 2: Drude free electron model and conductivity. (a) In the case
of temperature T> 0 and no external electric field, the kinetic energy
and potential energy of any valence electron in the conductor are not
zero; (b) when applied an external electric field E on the metal, all
electrons move directionally with a drift velocity vd to generate an
electric current I.

I = neSv̄d, (1)

where n is the charge carrier (electrons) density, e is the elec-
tronic charge, S is the cross-sectional area of the conductor,
and v̄d is the average drift velocity.

In the case of direct current (DC ), as shown in Eq. (1) and
Fig. 3(a), the magnitude of the current I and the average drift
velocity v̄d of electrons remain constant in a uniform wire.
This means the conductor has a continuous charge flow from
one point to another and any given electron repeats the circuit
cycle.

Regarding the alternating current illustrated in Figure 3(b),
the current I oscillates periodically, and thus, so does the di-
rection of the electron flow. This periodic inversion is phys-
ically impossible under Drude’s free electron model. For in-
stance, a 100 kHz AC current would necessitate that all the
electrons inside the wire stop moving (vd = 0) and reverse
direction simultaneously every 0.01ms . However, electrons
possess inertia, and their velocities are diverse in magnitude
and direction, as Drude suggested. Consequently, Drude’s
free electrons cannot immediately react to changes in the ex-
ternal electric field. High-frequency AC thus implies that elec-
trons in an AC circuit do not move along with the current flow.
As shown in Fig. 3(b), each electron acts like a harmonic os-
cillator, moving back and forth around its respective equilib-
rium position “0” with amplitude δ. This raises two critical
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Figure 3: Drude’s free electrons are not free. (a) In the case of DC ,
all Drude’s electrons flow along the circuit, where electrons are in
an extended state. (b) In the case of AC , electrons are confined to
vibrate back and forth in a small space on the order of angstroms,
where the electrons are in a bound state.

questions: (1) What is the order of magnitude of the ampli-
tude δ? (2) Where are the equilibrium positions of the free
electrons in the wire?

For the first question, we know that for copper n = 8.5 ×
1028/m3, let us assume a current of 3A that is flowing in a
copper conductor with the wire diameter is 5 mm , by equa-
tion (1) we obtain v̄d ∼ 10−5m/s . When f = 100 kHz, the
amplitude can be estimated as δ < v̄d/(2

√
2f) ∼ 1Å. This

result indicates that the alternating current electrons must be
localized within a lattice constant. This result is very impor-
tant since the transmission of alternating current can be real-
ized only by micro displacement of electrons, so should direct
current. Then the task is to find the respective equilibrium
position for each electron in the metal.

The position of equilibrium is typically determined by min-
imizing the potential energy. In the case of Drude’s free elec-
tron model, this potential energy is largely ignored due to
the model’s reliance on mean-field approximation and the re-
moval of dominant electron-lattice interactions. To answer the
second question, we need to consider the minimum free en-
ergy principle. As illustrated in Fig. 2(a), the energy of a free
electron in a metal can be broken down into two components:
kinetic energy resulting from free motion vi(x, y, z) and po-
tential energy derived from the positive ion lattice Ui(x, y, z).
Therefore, we can define the overall free energy of electrons
as:

Efree =
∑
i

[
mev

2
i (x, y, z)

2
+ |Ui(x, y, z)|

]
, (2)

where me is the mass of the electron.
It is not hard to see from Eq. (2) that when vi(x, y, z) = 0,

and Ui(x, y, z) = 0, we immediately have the minimum total
free energy Efree = 0. Fig. 4 shows the candidate zero po-
tential energy structure, known as Mott insulators. The yellow
electron-proton (ion) electric dipole constitutes the most cru-
cial repeating unit in the Mott-insulator-based electron-crystal
model, containing hidden mysteries of nature. In Mott’s
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Figure 4: A Mott-insulator-based new electron-crystal model. There
are no free electrons inside the material, and the electrons are trapped
by the electric field of the surrounding ions (protons) and do thermal
vibration in the equilibrium position. When T = 0, the crystal can
be simplified to a symmetric proton-electron pair lattice, exactly the
Mott insulator.

model, positively charged ions and negatively charged elec-
trons form the same sublattice, representing a perfect unity
of China’s ancient philosophy of complementary “yin and
yang” and modern Western science’s minimum energy princi-
ple. The basis of “yin and yang” complementarity lies in equal
rights, necessitating the formation of stable crystals compris-
ing positive and negative charges that maintain mutual equal-
ity. The Drude model, by contrast, violates this principle by
featuring unequal positive and negative charges, ultimately vi-
olating the minimum energy principle.

Although the Drude model of free electrons is widely used
in condensed matter physics teaching and research, it presents
significant challenges when extended to describe supercon-
ductivity. In the BCS framework, electrons in superconduc-
tors are assumed to flow without resistance at low tempera-
tures, paired with opposite spins and momentum. However,
this explanation raises concerns as it implies that these paired
electrons, despite their random motions, can avoid electron-
lattice and electron-electron collisions - a notion that seems
unscientific. While some may ignore the physical mecha-
nisms that guarantee the Cooper pairs maintain their spin and
momentum opposites, it is impossible to overlook the contin-
ued existence of electron-ion attractive and electron-electron
repulsive interactions. In particular, the coherence radius of
Cooper pairs is much larger than that of a single electron, sig-
nificantly increasing the collision probability between pair-
pair and pair-lattice. Thus, BCS electron-pairing based on
Drude’s free electron postulates fails to eliminate the resis-
tance of superconductors, in stark contrast, it dramatically in-
creases resistance.

Figure 2(a) indicates that the Drude model suggests that the
more impurities present in a conductor, the greater its resis-

tance value. Consequently, impurities and defects do not de-
crease resistance or promote superconductivity, a notion that
sharply contrasts with the phase diagram outlined in Fig. 1.
Rather than increasing resistance, doping somehow causes the
resistance to mysteriously vanish, particularly in the under-
doped region, where increased impurities raise the supercon-
ducting transition temperature. Thus, a single, reasonable in-
terpretation can account for this abnormal behavior: the cur-
rent in metal wires and the supercurrents in superconductors
do not rely on the directional motion of electrons. This con-
clusion is highly consistent with the previous discussion.

Free electrons are not free, and this is undoubtedly a rev-
olutionary idea that will change many essential concepts in
physics. It may seem common sense that electricity (or elec-
tric current) is an electromagnetic wave that travels at the
speed of light and has almost nothing to do with the move-
ment of electrons. Contrary to the description in the Drude
model, the electrons in a wire do not have to travel long dis-
tances to carry electrical energy from one point to another.
They only need to make a minor directed displacement from
their initial equilibrium position to propagate an electric or
supercurrent effectively. In the following sections, we will
show in detail how our immobile-electric-charges hypothe-
sis self-consistently explains the phase transition behavior be-
tween insulators, metals, semiconductors, superconductors,
and magnets.
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Figure 5: The traditional picture of magnetic fields induced by elec-
tron movement. (a) The orbital motion of electrons creates mag-
netic moments, (b) the electron spin hypothesis, (c) the electrons’
upward and downward directed motion produces counterclockwise
and clockwise magnetic fields, respectively.

III. THE MICROSCOPIC ORIGIN OF MAGNETISM

The history of magnetism dates back over 2,000 years to
the Chinese invention of the compass. Today, modern physics
posits that the essence of magnetism is rooted in the move-
ment of electrons. As illustrated in Fig. 5, theoretical physi-
cists suggest that electrons generate magnetic fields through
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three distinct types of motion: (a) orbital circulation, (b) rota-
tion, and (c) directional drift. Over time, numerous hypothe-
ses and concepts have arisen to explain how electron motion
generates magnetism, including the orbital magnetic moment,
molecular current, spin, and current element.

Basic principles of electrodynamics suggest that electro-
magnetic wave emissions and energy loss typically accom-
pany the movement of electrons. Therefore, sustaining the
magnetic field depicted in Fig. 5 necessitates a constant in-
flux of external energy to maintain electron motion. However,
the existence of permanent magnetic materials in the universe
contradicts this theoretical hypothesis, as their magnetic field
intensity does not significantly decay over time. This objec-
tive fact refutes the notion of electron motion-induced mag-
netic fields, as depicted in Fig. 5. In addition, the duality
between electric and magnetic fields implies that generating a
magnetic field requires static magnetic charges, as Dirac rec-
ognized when he proposed the theory of magnetic monopoles
[36].

A. What are magnetic monopoles?

Is there a presence of static magnetic monopoles in nature?
This question not only concerns the symmetry of Maxwell’s
equations but also has the potential to significantly disrupt the
foundational principles of physics that are built on magnetic
fields created by moving charges. If magnetic monopoles
were to exist, it could indicate that our understanding of mag-
netism, which has been developed over millennia - including
Figure 5 - is fundamentally flawed. Moreover, it would re-
quire the revision of scientific theories and theoretical expla-
nations of superconductivity, such as the BCS theory that sci-
entists have developed over the past century.

Since Dirac formulated his theory, many attempts have
been made to discover the mysterious new particles he pre-
dicted - magnetic monopoles. However, researchers have yet
to find conclusive evidence of their existence even after al-
most a century of searching. In ancient Chinese poetry, a
verse roughly translates to “In a crowd, I search for her in
vain, but when I turn my head, I find her where the lantern
light is dimly shed.” This begs the question: Could it be pos-
sible that the magnetic monopoles we are trying to find are
simply another manifestation of the well-known elementary
particles? In the following discussion, we will put forth a
possible answer to this question. Dirac proposed that electric
and magnetic charges could coexist and satisfy the following
quantization condition:

eg =
hc

4π
n =

~c
2
n, (3)

where e and g are the electric and magnetic charges, respec-
tively, h is the Plank’s constant [59], and n being the integers.

What is incredible is that the seemingly simple formula (3)
hides the secret of the origin of the magnetism of materials.

Using the fine structure constant α = e2/4πε0~c, the Dirac’s
formula of Eq. (3) can be re-expressed as:

g = (
n

8πε0α
)e = Πne, (4)

where Πn is an adjustable constant.
The relation presented in Eq. (4) above provides us with

a clear understanding that the supposed magnetic monopoles
are, in fact, just dressed electrons or protons. This implies
that the superimposed electric field created by the electron-
proton pair is, in reality, the magnetic field. It is intriguing
to note that electrons and protons can simultaneously serve as
electric and magnetic charges. In the following sections, we
shall employ Maxwell’s theory to verify that the positive and
negative magnetic poles correspond to protons and electrons.

B. Vector capacitor, displacement current and magnetic field

As shown in Figs. 6(a) and (b), for an isolated electron or
proton, they will generate electric fields E− and E+ respec-
tively. Assuming that the electron and proton coincide with
each other with the spacing r = 0, as illustrated in Fig. 6(c),
due to their perfect symmetry, there is no electromagnetic field
in the space around them. When r 6= 0, the electron and pro-
ton will form an electric dipole through symmetry breaking. It
is well known that a proton-electron pair is not just an electric
dipole, it can also be a hydrogen atom or a neutron. More-
over, as shown in Fig. 6(d), in metal wires, proton-electron
pairs are the smallest capacitance in nature, they are quantized
vector capacitors with directional characteristics, and their ca-
pacitance can be determined by Cr = 2πε0r (where r the

(c)

(a)

(b)                                                      (d)

E- 

E+ 

H 

rJD

Figure 6: A new magnetic mechanism based on Dirac’s theory of
magnetic monopoles. (a) and (b) The electric field of an isolated
electron and proton, respectively, (c) when the coordinates of the
electron and proton coincide, their associated electric fields (or mag-
netic field) are hidden, (d) an electron-proton pair (a quantized vector
capacitance) creates a displacement current density and an associated
magnetic field.
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distance of the electric dipole). According to Maxwell’s the-
ory, a displacement current density JD = ε0∂E/∂t exists in
the capacitor, which will create an associated magnetic field
in the surrounding space. In other words, the electron-proton
pair produces the excited magnetic field, and this conclusion
is entirely consistent with Eq. (4). Then, the magnetic field
strength H of the electron-proton pair can be defined and de-
termined by Maxwell’s statement: a changing electric field
produces a magnetic field.

When the electric field E+ of a positive proton and the elec-
tric field E− of a negative electron simultaneously appear in
the surrounding space, since the two electric fields are of op-
posite signs, their superposition represents the changing elec-
tric field. Hence, according to Maxwell’s hypothesis, the vec-
tor superposition of electric fields E+ and E− is precisely the
magnetic field B, which is given by

B = µ0H =
E+ + E−

c
, (5)

where c is the speed of light and µ0 is the vacuum permeabil-
ity.

Based on the discussion presented above, it is apparent that
in the previous framework depicted in Fig. 5(b), the electron
spin was considered an intrinsic form of angular momentum
[55], which was perceived to be a purely quantum mechani-
cal concept. However, experimental evidence has yet to prove
that free electrons have spin. This is highlighted by experi-
ments such as the atomic fine spectral structure experiments
[60] and the Stern-Gerlach silver atom beam experiment [61],
which demonstrate the spin magnetic moments of atoms such
as silver or hydrogen, rather than free electrons. In the new
framework of symmetry breaking, it is intriguing to discover
that the concept that free electrons possess no spin is hidden
in Eq. (5). This formula suggests that an isolated electron can
only create an electric field and that there is no inherent no-
tion of a spin moment. Within atoms, electrons couple with
protons to generate an electric dipole as depicted in Fig. 6(d),
which possesses magnetic moment properties and is now en-
visioned as electron spin within modern physics. Spin can be
visualized as a coat that surrounds electrons, with naked elec-
trons lacking any spin properties. The phenomenal occurrence
of charge-spin separation can be observed in some supercon-
ductors.

C. Magnetic field of electrified wire

Accordingly, the question that arises is how the new theory
explains the magnetic field generated by the current-carrying
wire in the surrounding space as shown in Fig. 5(c)? To see
why, let us look at Fig. 7, a schematic representation of the
generation of magnetic fields solely through the spatial sym-
metry breaking of electron-proton pairs. As shown in Fig.
7(a), in the absence of an external field, the positively charged

projection
external electric field  E=0

c

c

(a)                   (b)

ID

ID

E

H

H

(c)                           (d)

C+

C-

C+

C-
C+>C-

C+<C-

E

Figure 7: The illustration of how the wire’s static electric dipoles
generate the magnetic fields. (a) and (b) In the absence of an exter-
nal electric field and regardless of the influence of temperature, the
electromagnetic fields of positive and negative charges are hidden
due to the symmetry of the internal structure, so there is no external
electric field or magnetic field outside the conductor. (c) and (d) The
applied electric field causes the electrons to deviate from the equilib-
rium position and the symmetry-breaking phase transition, and the
upward and downward electric fields will induce counterclockwise
and clockwise magnetic fields, respectively.

ions (protons) and electrons inside the wire form a Mott insu-
lating lattice, which can be projected as a simple quasi-one-
dimensional structure of Fig. 7(b), and there is no magnetic
field around the wire due to the high symmetry of the electron-
proton pairs. As shown in Figs. 7(c) and (d), when an external
electric field is applied upwards or downwards along the wire,
the electrons in the wire will deviate from the equilibrium po-
sition downwards or upwards, respectively, under the action of
the electric field. Such Peierls-like symmetry-breaking tran-
sition results in a net capacitance Cnet = C+ − C−. When
the electric field is upward, then Cnet > 0, while the electric
field is downward, then Cnet < 0. As illustrated in the fig-
ure, this transition leads to the induction of magnetic fields H
in counterclockwise and clockwise directions around the con-
ductor and displacement current ID up and down along the
conductor.

In light of the preceding discussions, we can recognize
two distinct sources of magnetism, with the old explana-
tion entirely dependent on time-dependent continuous elec-
tron movement, while the new explanation relies upon the
time-independent electric dipole or capacitor formed from
electron-proton pairs. Based on the principle of minimum en-
ergy and the earlier analysis, the concept of perpetual electron
movement generating a magnetic field lacks scientific founda-
tions. It follows that the proton-electron pair magnetism pro-
posed in this paper, which originates from Dirac’s magnetic
monopole and Maxwell’s displacement current hypotheses, is
much more reasonable and plausible as a natural choice.
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IV. SYMMETRY OF MAXWELL’S EQUATIONS

The differential form of the Maxwell’s equations can be
written as:

∇ ·E =
ρe
ε0
,

∇ ·B = 0,

∇×E = −∂B
∂t
,

∇×B = µ0(JD + Je), (6)

where E is the electric field, B is the magnetic field, ρe is the
electric charge density, Je is the electric current density, and
JD = ε0∂E/∂t is the displacement current.

Maxwell’s equations of Eq. (6) is considered the most
beautiful and elegant formula in physics. Because it is not
mathematically perfect symmetry, significant efforts have still
been made to achieve the exact symmetry of the equations, in-
cluding Dirac’s magnetic monopole hypothesis [36]. It should
be pointed out that it is not the right way to realize the sym-
metry of the equation through mathematical skills or artificial
hypotheses of new particles. In the previous section, we have
obtained three significant findings: (I) the conduction current
that relies on the movement of electrons does not exist, (II)
the magnetic field is produced by the proton-electron electric
dipole of Eq. (5), (III) the magnetic monopoles of Eq. (4) are
the isolated electrons and protons.

With the above new findings, we can now reconsider the
symmetry of Maxwell’s Equations. Maxwell’s first equation
of Eq. (6) is based on Gauss’ law, which describes the elec-
trostatic field. The second equation of Eq. (6) is based on
Gauss’s law on magnetostatics. Here, we will show that these
two equations are intrinsically related, and the second equa-
tion can be derived from the first equation. For a proton-
electron pair with the electric dipole vector P, according to
the first equation of Eq. (6), the electric field generated by the
pair satisfies:

∇ · (E+ + E−) =
[ρe(rp) + ρ−e(rp + P/e)]

ε0
, (7)

where e is the electron charge, rp is the coordinate position of
the proton, (E+, ρe) and (E−, ρ−e) are the electric fields and
the electric charge densities of proton and electron, respec-
tively.

Substituting Eq. (5) into Eq. (7) , we have

∇ ·B =
[ρe(rp) + ρ−e(rp + P/e)]

cε0
. (8)

Usually, P/e is an infinitesimal length (far less than an
Ångström), under a far-field approximation rp + P/e ' rp,
it is reasonable to assume that proton and electron nearby of
each other, or ρe(rp) + ρ−e(rp +P/e) ' 0, then Eq. (8) will
approximately become the second Maxwell’s equation. This
result means that Maxwell’s second equation is not strictly
true, or the right-hand side of the equation is not exactly zero.

Furthermore, our conjecture has ruled out the existence of
conduction currents, this means that Je in the fourth Maxwell
equation must be equal to zero. So far, we have developed
all the tools necessary to rewrite the Maxwell equations. The
new equations can be given immediately as:

∇ ·E =
ρe
ε0
,

∇ ·B ' 0,

∇×E = −∂B
∂t
,

∇×B = µ0ε0
∂E

∂t
. (9)

Compared to Maxwell’s equations in Eq. (6), the new equa-
tion in Eq. (9) has made two important breakthroughs. Firstly,
it can be observed that the original first and second equations
in Eq. (6) are entirely independent and uncoupled, which
means that Maxwell’s equations have not fully achieved the
unification of electrical and magnetic phenomena. However,
the new first and second equations in Eq. (9) are intrinsically
interrelated; the first equation depicts the electric field gener-
ated by unpaired charges (protons or electrons), while the sec-
ond equation describes the magnetic field generated by paired
charges. Secondly, the presence of excess conduction current
Je renders the original third and fourth equations of Eq. (6)
unsymmetrical. The absence of conduction current results in
the natural realization of the symmetry of the new third and
fourth equations.

V. ANTIFERROMAGNETISM, ORDER PARAMETERS
AND MAGIC DOPING

The antiferromagnetic Mott insulator has garnered signifi-
cant attention for its potential to unravel the mysteries of high-
temperature superconductivity. However, the dominant theo-
retical explanation of high-temperature superconductivity in
the past few decades utilized the Hubbard and extended Hub-
bard models [21, 22, 62]. We want to point out that these mod-
els were based on a misunderstanding of the nature of mag-
netism and antiferromagnetism. Therefore, why Mott insula-
tors possess strong antiferromagnetic correlations still neces-
sitates an explanation. In light of this, our paper proposes the
proton-electron paired magnetic dipole hypothesis. Our hy-
pothesis establishes a novel understanding of the phenomenon
in question, and this question is no longer a mystery.

A. Excited state and magnetic moment of electrons

The electrons in a Mott insulator can be considered iden-
tical particles in the ground state. As shown in Fig. 8, we
present a two-dimensional Mott insulator phase with square
symmetry. In Fig. 8(a), we use four degenerate electric dipole
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Figure 8: The electric dipole vector represents two electronic states
in a two-dimensional square lattice. (a) Mott insulating ground state;
(b) excited state.

vectors to describe it. These four electric dipoles can be inte-
grated into a total vector as:

PG = PMott

= Pxy(0) + P−xy(0) + Px−y(0) + P−x−y(0)

= 0.

(10)

Under the influence of external factors such as tempera-
ture, pressure, and electromagnetic fields, the ground state
electrons in Fig. 8(a) will deviate from the equilibrium posi-
tion and enter the excited state. Correspondingly, the Mott-
insulating state will transition into a metallic, magnetic or
superconducting state according to external conditions. As
shown in Fig. 8(b), when the electron occurs transition from
ground state O(0, 0) to excited state A(r , θ) with a vector
P(r) = er marked by the red arrow, the corresponding elec-
tric dipole vector PE can be expressed as the superposition of
four new electric dipole vectors . Using formula (10), we can
get the following relationship:

PE = Pxy(r) + P−xy(r) + P−x−y(r) + Px−y(r),

= PG − 4P(r), (11)
= −4P(r).

Assuming that the positive ion lattice has not changed be-
fore and after the phase transition, the physical quantity PE

of Eq. (11) is only related to the displacement vector r of the
electron. In this case, the physical system of Fig. 9(a) can
be simplified as Fig. 9(b), where the PE can be completely
endow to the electrons with the intrinsic quantized magnetic
vector:

Pm = Γ(c,h)PE = pm(r) exp(iθ), (12)

where Γ(c,h) is the proportional constant related to the speed
of light c and Planck constant h.

The emergence of the magnetic vector Pm indicates the
excitation of the hidden magnetic state of the superconduct-
ing parent, equivalent to inducing a magnetic moment in the
opposite direction to P(r). This elementary excitation pro-
cess leads to the destruction of the Mott long-range antiferro-
magnetic phase. The magnetic vector can function as the spin

b

x

y

a

a

q
r pm(r)e

iq

Figure 9: The excited electron state in Fig 8(b) can be simplified as
a magnetic vector pm(r)eiθ .

and magnetic moment of the excited electrons and serves as
the order parameter of the Ginzburg-Landau phase transition
theory. Notably, an electron’s magnetic properties are not in-
herent but stem from the interaction with positively charged
lattices. Once electrons depart from the material and become
free, their magnetism, or spin, vanishes instantaneously. As
such, it is now evident that electrons do not inherently possess
the so-called intrinsic spin, which explains the phenomenon
of charge-spin separation observed in experimentss [63].

B. Order parameters and symmetry breaking

Undoubtedly, the Ginzburg-Landau phase transition theory
is currently the most successful theory of superconductivity
[29]. As a phenomenological theory, it captures the two pri-
mary elements of superconducting phase transition: the order
parameter and symmetry breaking. However, Landau’s the-
ory requires further development as it cannot address the fun-
damental question on the microscopic level: What constitutes
the order parameter with electromagnetic properties? It is ev-
ident that the proton-electron electric dipole moment under-
pins the order parameter in Ginzburg-Landau’s theory. Thus,
our proposed theory specifies and completes Landau’s theory
by identifying the essential nature of the order parameter.

In condensed matter physics, phase transitions in materials
are accountable for the modifications in their physical proper-
ties. The evolution of a symmetry-breaking order parameter
delineates these transitions. As the proton-electron electric
dipole can play an integral role in the order parameter, it is
essential to provide a unified microscopic explanation of the



9

(c) Metallic state

(a) Insulating state  electron  proton (ion)

j

rj=0

(b) Normal state

external electric field E

(T < Tc)(T >Tc)

external electric field E

rj

j

(e) Unsaturated magnetic state           (f) Saturation magnetic state      

rj qj

qj>p/2

(d) Superconducting state

j

j

rj qj=p

x

pairing

x

Figure 10: Five typical condensation states based on symmetry and
symmetry-breaking. (a) The insulating state with the highest symme-
try of perfect crystal; (b) the normal state with a complete disorder
of magnetic vector orientation; (c) the external field-induced metal-
lic state associated with quasi-parallel magnetic vectors at T > Tc;
(d) the quantum superconducting state that occurs at T < Tc when
all magnetic vectors become coherent and align strictly along the di-
rection of the electric field; (e) and (f) the unsaturated and saturated
magnetic states, respectively, which may occur spontaneously or be
induced by external magnetic fields. Note that in the insulating state
(a), the electrical and magnetic properties of materials are locked
(hidden) due to symmetry. When symmetry is broken, the electro-
magnetic properties become unlocked and excited.

phase transitions observed in various materials, such as super-
conductivity, insulators, magnetic and metallic materials. For
a conductor containing N valence electrons, from Eq. (12),
we can define the order parameter of the conductor as follow:

Porder =

N∑
j=1

pm(rj) exp(iθj) (13)

By using Eq. (13), it is possible to distinguish among five
typical condensed states and display their essential differences
at the microscopic scale. First, as shown in the Fig. 10(a),
when rj = 0, then pm(rj) = 0 and the order parameter
Porder = 0, this is the insulating state in which no symme-
try breaking occurs, and the symmetry of the electrons exactly
matches the symmetry of the lattice. In the second case of Fig.
10(b), rj is a small random displacement of the j-th electron
from its equilibrium as a result of random thermal fluctua-
tions. Since the orientation order parameter θj is isotropic,

from Eq. (13) we immediately have Porder = 0. It must be
pointed out that although the order parameter Porder in Figs.
10(a) and (b) are both equal to zero, their corresponding phys-
ical systems are entirely different, the former is an insulating
state and the latter is a normal state (or disordered state).

Fig. 10(c) shows the third case of the metallic state. Sup-
pose the external electric field is applied alone x axis, all elec-
trons will collectively shift from around the equilibrium po-
sitions to the left. Due to the influence of random thermal
motion, the system is non-completely broken symmetry. In
this case, the dominated component of the order parameter
appears in the x-direction of the electric field. As a result,
in addition to the main electromagnetic energy flow in the x-
direction characterized by an electric current. There is energy
loss in the direction perpendicular to the electric field, which
contributes to the resistance.

Figure 10(d) depicts the fourth case of the superconducting
state when T < Tc, the thermal disturbance is almost com-
pletely suppressed, and the order parameter is strictly along
the direction of the electric field. In this case, the orientation
angle in Eq. (13) is the same as θj = π, the system has per-
fect symmetry breaking, and all electrons condense coherently
into a single quantum state with a zero resistance. It should be
noted that there is no distinction between conventional and
unconventional superconductors under our theoretical frame-
work. The stability of the order parameter Porder mainly de-
termines the superconducting transition temperature. Because
the lattice constant of elementary superconductors is relatively
small, the strong repulsive interaction between electrons leads
to the instability of the order parameter Porder, which in turn
makes Tc lower. In contrast, the lattice constant of high-
temperature superconducting materials is generally large and
Porder is much more stable than that of low-temperature su-
perconductors. Furthermore, high pressure can influence the
superconducting transition temperature, and the pressure ef-
fect on the Tc can be positive or negative. These experimen-
tal results can also be qualitatively explained in Fig. 10(d).
On the one hand, pressing reduces the lattice constant, which
leads to a decrease in Tc, on the other hand, it increases the
stability of the whole lattice and improves Tc. Hence, the pres-
sure effect on superconducting properties involves the compe-
tition of two distinct structural phase transitions.

Apart from the four states mentioned above, the magnetic
state is another essential natural phenomenon closely related
to the metallic and superconducting states. Figures 10(e)
and (f) display unsaturated and saturated magnetic states, re-
spectively. Their microstructures are entirely consistent with
those of metallic and superconducting states displayed in Figs.
10(c) and (d), correspondingly. Their differences stem from
external factors such as temperature, electric, and magnetic
fields that induce the phenomenon. Our theory suggests that
three primary types of related complete symmetry-breaking
phenomena of electronic states in nature exist. The first type
is the superconducting state of Fig. 10(d) induced by the elec-
tric field and temperature combination. The second type is the
magnetic state of Fig. 10(f) induced only needs to be low-
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ered to a proper temperature (the Curie temperature), and the
third type is the superconducting Meissner effect induced by
the combination of magnetic field and temperature. It must
be emphasized that the micro-physical mechanisms of these
three seemingly completely different phenomena are precisely
the same, all due to the symmetry breaking of electronic struc-
ture related to Peierls phase transition. Permanent magnet ma-
terials are spontaneous symmetry-breaking phase transitions,
while superconductivity is a symmetry-breaking phase transi-
tion driven by an external field.

It is worth noting that our theory is also based on pairing,
as shown in Figure 10(d). However, it significantly differs
from the phonon-mediated pairing process of identical non-
local charges (i.e., electrons and electrons) described in the
BCS theory. Instead, our theory relies on the electromagnetic
interaction between two different localized charges (i.e., elec-
trons and protons) in real space, leading to a non-quasiparticle
attractive pairing mechanism.

Referring to Fig. 1, the typical phase diagram of copper ox-
ide high-temperature superconductor is complex, encompass-
ing most of the primary phenomena investigated in solid-state
physics. Based on our discussion in this section, a significant
conclusion can be drawn: the Mott insulator forms the basis of
superconductors, metals, magnets, and semiconductors. From
a microscopic perspective, the primary disparity among dif-
ferent physical phases portrayed in Fig. 1 lies in the distinct
orientation order of the electric dipole composed of electrons
and protons (ions).

C. Magic doping and chessboard structure

Most known cuprate superconductors are composed of
three stable phases: the insulating antiferromagnetic phase,
the superconducting phase, and the metallic phase, de-
pending on the concentration of doped carriers. In cer-
tain cuprate compounds, such as La2−xSrxCuO4 (LSCO),
Ca2−xNaxCuO2Cl2 (NCCOC), and Bi2Sr2CaCu2O8+δ

(BSCCO), there exist some charge-ordered states that have
been observed to compete with superconductivity. Theoretical
studies predict that 2D chessboard charge ordering patterns
can be observed at the magic doping fraction x = x(m,n) =
(2m+ 1)/2n, where m and n are integers [41].

The existence of localized electron competition phases be-
low the superconducting transition temperature is an exper-
imental fact sufficient to challenge traditional superconduct-
ing theories’ fundamentals. In the following section, we will
use the magical doping results directly to scrutinize the ra-
tionality of electron Cooper pairing and resistive supercon-
ducting current, as recognized by superconducting scholars.
To achieve this, we can acquire three LSCO superconduct-
ing samples with doping concentrations of x = 0.124, 0.125,
and 0.126, respectively. All three samples are placed under
cooling to Tc, and the results show that the first and third sam-
ples exhibit superconductivity while the second sample does
not. This prompts us to question why superconductivity is
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Figure 11: Comparison between cuprate high-temperature supercon-
ducting state and magic doping insulating state. (a) Shows the parent
Mott insulator with antiferromagnetic order; (b) depicts the doped
superconducting state, where the long-range antiferromagnetic order
is destroyed.; (c) illustrates the insulating chessboard structure at the
magic doping level, where the antiferromagnetic order remains after
renormalization.

so profoundly affected by alterations in doping concentration.
Clearly, the old superconducting pairing mechanism is unable
to offer any explanation for this phenomenon. As a newly es-
tablished superconducting theory presented in this paper, it is
imperative first to explain these unique cases of magical dop-
ing occurrence.

Both the antiferromagnetic Mott insulating phase and the
magic doping insulating phase suggest that the superconduct-
ing mechanism must be established on a localized electronic
picture, as discussed in the previous sections. As illustrated
in Figure 11, our theory presents the microscopic electronic
states evolution process of cuprate superconductors, from the
parent insulating state to the doped superconducting state and
then to the magic doping insulating state. In the undoped Mott
parent compound in Fig. 11, strong electron-ion coupling
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prevents the displacement of electrons by an external electric
field, and the symmetry breaking of the order parameters re-
sults in a long-range antiferromagnetic insulating state. When
ions are partially replaced and carriers are randomly doped
in Fig. 11, the pairing of some local electrons and ions be-
comes significantly weakened. Consequently, these electrons
can be displaced under an external field, resulting in symme-
try breaking and the emergence of superconductivity. In the
case of magic doping in Fig. 11, some ions are regularly re-
placed with a chessboard structure, forming locally symmet-
ric electronic states around the ions. After renormalization,
the system retains long-range antiferromagnetic order. There-
fore, the external electric field cannot realize superconduct-
ing phase transition by destroying the symmetry of electronic
states.

It is crucial to note that the diagrams displayed in Figs.11
depict a simplified two-dimensional model. In reality, for
three-dimensional copper-based high-temperature supercon-
ductors, the changes in electron states observed in the copper-
oxygen layers can be attributed to doping ions originating
from adjacent layers.

D. One-dimensional superconductivity

Many superconductors possess quasi-two-dimensional
crystal structures but exhibit one-dimensional characteristics,
such as spin-charge separation [63], stripe phases [64, 65], and
spin and charge fluctuations [66]. Because of the simplicity of
one-dimensional systems, investigating the superconducting
properties of quasi-one-dimensional electron correlation sys-
tems is expected to aid in uncovering the mechanism of high-
temperature superconductivity. The most significant aspect
of discovering one-dimensional superconductivity is its com-
plete rejection of the hypothesis of free electrons as a bedrock
of traditional superconductivity theories. Inversely charged
electrons cannot move (or hop) within a positive charge chain
without loss. The most probable outcome is that they are
confined within potential energy traps and become localized
electrons. Therefore, two meaningful questions arise: (1) do
quasi-one-dimensional superconductors exist? (2) How is su-
perconductivity achieved in them?

We can answer these two questions through Figure 11(b).
It can be seen from the figure that after the Mott insula-
tor is doped in disorder, those electrons affected by doping
will transition from the ground state to the excited state un-
der the action of an external field and cause local and global
symmetry breaking. The excited electrons in the figure can
be re-represented by capacitance as the parallel quasi-one-
dimensional vector capacitance array in Fig. 12. The super-
conducting displacement current ID propagating at the speed
of light can propagate lossless in a quasi-one-dimensional ca-
pacitor chain. Because an electron’s position (that is, the
charge) moves at a much slower speed than the change speed
of the magnetic moment (or spin) it excites, there will be an
observed phenomenon of charge-spin separation.
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Figure 12: Figure 11(b) is re-represented using vector capacitance,
and the quasi-one-dimensional vector capacitor chains supports the
existence of one-dimensional superconductivity [67].

The Fig. 12 clearly shows that the stability of the orienta-
tion of the quasi-one-dimensional vector capacitor chain di-
rectly impacts the superconducting transition temperature. A
larger chain spacing (d) leads to a more stable capacitor chain,
producing a higher superconducting transition temperature. It
is important to note that even traditional elemental supercon-
ductors also rely on the displacement current of vector ca-
pacitors for electricity conduction. However, their relatively
small chain spacing generally results in a lower superconduct-
ing transition temperature.

VI. MEISSNER EFFECT PUZZLE

Besides exhibiting zero resistivity, superconductors are also
characterized by impeccable diamagnetism, referred to as the

H H

(a)  T > Tc                      (b)  T < Tc

Figure 13: The mainstream explanation of the Meissner effect: (a)
above the critical temperature, the magnetic field is able to penetrate
the superconductor, (b) below the critical temperature, the magnetic
field is excluded from the interior of the superconductor.
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Figure 14: The Messner effect experiment video of Ref. [37] in-
cludes two screenshots: (a) depicting a strong repulsion between the
superconductor and magnet, causing the magnet to levitate, and (b)
depicting a strong attraction between the superconductor and mag-
net, resulting in the levitation of the superconductor.

Meissner effect [28]. It is conventionally believed that super-
conductors placed in a weak external magnetic field H will
expel the magnetic field from their interior upon cooling to
below their transition temperature. Notably, the schematic di-
agram and explanation commonly used in textbooks and pa-
pers may not offer a comprehensive understanding of the ex-
perimental facts, leading to potential misunderstandings.

The magnetic field expelled picture of Fig. 13 shows that
the Meissner effect is a time-dependent dynamic process.
Hence, any valuable theory of superconductivity must be able
to explain how the superconductor goes from the normal to the
superconducting state by expelling the magnetic field against
Faraday’s law. Almost ninety years have passed since the first
experiment conducted by Meissner and Ochsenfeld [28], and
many theories and mechanisms have been proposed to explain
the Meissner effect. However, as argued by Hirsch [25], these
mechanisms fail to consistently describe the Meissner exper-
iment. In this study, we aim to solve this puzzle by only em-
ploying the microscopic mechanism of proton-electron elec-
tric dipole pairing.

Before beginning the investigation, it is essential to exam-
ine the Meissner effect experiment [37]. Figure 14 includes
two experiment screenshots that clearly demonstrate both re-
pulsion and attraction between the superconductor and the
magnet, as shown in Fig. 14 (a) and (b), respectively. Fur-
thermore, repulsion or attraction can switch rapidly, indicating
that the widely accepted mechanism of magnetic field expul-
sion shown in Fig. 13 (b) cannot explain why the supercon-
ductor and magnet of Fig. 14(b) attract each other. To better
explain the Meissner effect, we conducted a force analysis on
the magnetic suspension in Fig. 14 (a) and the superconductor
suspension in Fig. 14 (b). Assuming the masses of the magnet
and the superconductor are m and M , respectively, the repul-
sive force FR and the attractive force FA can be expressed as
follows:

FR = mg; FA = Mg, (14)

where g is the acceleration of gravity.
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Figure 15: Schematic explanation of Meissner effect experiment of
Fig. 14. (a) The magnet’s presence causes a collective displacement
of electrons in the −y direction, resulting in a surface charge on the
upper side of the superconductor having the same sign as that of the
lower side of the magnet, leading to a repulsive interaction between
them. (b) The breaking of symmetry occurs owing to the collective
displacement of electrons in the y direction. As a result, the surface
charge on the upper side of the superconductor is of the opposite
sign compared to that of the lower side of the magnet, leading to an
attractive interaction between them.

The force balancing condition mentioned in Eq. (14) above
may seem simple, but it contains important information about
the Meissner effect. First, the Meissner effect is directional,
and the direction of the force is automatically adjusted based
on the movement trend, enabling the magnet and the super-
conductor to either attract or repel each other. Second, as
suggested by Eq. (14), the Meissner effect can automatically
adjust its strength to balance gravity according to the mass
of the magnet or superconductor. This experimental result
poses a major challenge for theoretical superconductivity re-
searchers as stable levitation requires a steady external energy
input from the point of view of energy conservation. In the
Meissner effect experiment depicted in Fig. 14, the magnetic
field is the only external factor present outside the supercon-
ductor, meaning it is also the sole source of the force respon-
sible for the levitation phenomenon.

In order to test the reliability and consistency of our theory
as a new mechanism of superconductivity, we must subject it
to strict experimentation using the results from Fig. 14. As il-
lustrated in Figure 15, when there is no external magnetic field
and the temperature is below the critical temperature for su-
perconductivity, the superconductor enters a Mott insulating
state, and all the valence electrons will occupy the position
of zero potential energy, indicated by the white circle in the
figure. When a magnet (Hext) is placed above a superconduc-
tor, as shown in Fig. 15 (a), the magnet tends to fall due to
the gravitational field, increasing the strength of the magnetic
field within the superconductor. This causes the electrons to
move from their equilibrium positions, generating an induced
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magnetic field (Hind) in the opposite direction and a repul-
sive interaction between the magnet and the superconductor.
Therefore, in the experiment depicted in Fig. 14(a), we can
observe the magnet levitating after being repelled by the su-
perconductor. As illustrated in Fig. 15(b), when the magnet
is lifted away from the vicinity of the superconducting sur-
face, gravity tries to separate the magnet and the supercon-
ductor, causing a decrease in magnetic field strength within
the superconductor. To resist this, the electrons within the su-
perconductor move upwards from their original positions, si-
multaneously exciting an induced magnetic field (Hind) in the
same direction as Hext. Since the net charges on the nearest
neighboring surfaces of the magnet and superconductor are
of different signs, mutual attraction naturally occurs between
them.

From our explanation above, the nature of the Meissner
effect is not mysterious. It is merely a simple magnetic in-
teraction between a magnetized superconductor and a mag-
net. They follow the fundamental principle of "two identi-
cal poles repel and two opposite poles attract." Is there re-
pulsion or attraction between magnet and superconductor? It
depends entirely on whether the electrons in the equilibrium
position are downward or upward. Furthermore, according to
Eq. (14), why is the levitation force (FR or FA) automatically
adjustable? This question is related to the London penetration
depth and will discuss in the next section.

Before concluding this section, we would like to discuss
persistent current in superconducting rings briefly. The sci-
entific community generally agrees that experiments have re-
peatedly confirmed the existence of a current that persists
indefinitely in a superconducting circular loop. Some re-
searchers have even estimated that the current in the ring could
take up to 100 billion years to dissipate completely. How-
ever, this is purely a work of science fiction. Basic electro-
magnetic knowledge tells us that even in a vacuum and at
absolute zero temperature, electrons moving in a circle will
eventually lose their energy. The new theory presented in this
paper challenges the notion of a superconducting current in a
superconducting ring. According to this theory, the magnetic
field measured in the experiment results from the magnetic
field generated by the electron-proton electric dipoles present
in the superconducting ring. In other words, the superconduct-
ing ring can be seen as a low-temperature magnet induced by
the Meissner magnetization effect.

VII. LONDON PENETRATION DEPTH AND LEVITATION

The strength of the Meissner effect is usually described in
terms of λL, which is according to the following formula [38]:

H(x ) = H0e
−x/λL , (15)

where H0 is a weak external magnetic field, H(x ) is the de-
caying magnetic field inside the superconductor. The London
penetration depth is given by

λL =

√
mc2ε0
nse2

, (16)

where ns is the density of superconducting electrons.
It is important to note that the theoretical values predicted

by Eq. (16) do not align with experimental results. Numer-
ous experiments have demonstrated that the penetration depth
is closely linked to external magnetic field strength [68] and
temperature [69, 70] and the shape, size, and orientation of
superconducting samples. However, Eq. (16) fails to pro-
vide an internal correlation between penetration depth, tem-
perature, and magnetic field. Essentially, London’s theory is
merely phenomenological and does not provide a dynamic
explanation of how magnetic fields enter and expel the su-
perconductor, let alone clarify the competition mechanisms
among temperature, magnetic field, and penetration depth. As
our present proton-electron electric dipole superconductivity
theory is microscopic, it may enable us to study the dynamic
processes of London’s penetration depth.

A. Effective penetration depth

As our theory is based on the Mott insulator model rather
than the Drude model, the density of superconducting elec-
trons (ns ) does not exist within our framework. However,
under our theoretical framework, one can define the elec-
tron density (n) as 1/Ω, where Ω represents the volume of
a primitive unit cell of the studied superconductor. Moving
forward, we will provide a qualitative explanation of the for-
mation mechanism of penetration depth and identify the phys-
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Figure 16: Microscopic explanation of London penetration depth:
When a magnetic field H0 enters a superconductor along the x di-
rection, the electromagnetic force causes the electrons near the sur-
face of the superconductor to move from their ground state positions
of zero potential (indicated by the white hollow circles on the left
side of the figure) to higher potential excited states (represented by
the solid red circles on the left side of the figure). As the distance x
from the surface increases, the magnetic field energy absorbed by the
electrons decays rapidly, and the displacement parameter ∆(xi) de-
creases accordingly. When x > Λ(n, T,H0), then ∆(xi) = 0, and
all the absorbed magnetic field energy disappears completely. As a
result, the superconductor on the right side remains in the Mott insu-
lating state.
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ical quantities related to it from the energy conservation and
transformation perspective.

For ease of discussion, we will continue to adopt the two-
dimensional model illustrated in Fig. 16. When an external
magnetic field is applied along the x -axis and enters the super-
conductor, it will interact with the electrons initially trapped
at zero potential energy positions (indicated by the white hol-
low circles in the figure). These electrons become excited
and gain magnetic field energy, causing them to deviate from
their equilibrium positions along the direction of the magnetic
field. The i -th array of electrons’ displacement ∆(xi) is di-
rectly proportional to the magnetic field energy acquired by
the electrons. Notably, the magnetic field energy is converted
into the potential energy of the electrons rather than being ex-
pelled from the superconductor through the development of a
so-called Meissner surface current, as more commonly imag-
ined. Additionally, it is evident from this figure that the Lon-
don penetration depth λL(ns) falls short of reality. To better
and comprehensively characterize the interaction process be-
tween the magnetic field and superconductor, this paper intro-
duces the effective penetration depth (EPD) Λ(n, T,H0).

B. Quantized steps

Within our theory, the electrons inside a superconductor are
localized and form crystal structures. Therefore, the magnetic
field entering the superconductor is not continuously absorbed
but instead absorbed periodically. As depicted in Fig.17, the
magnetic field inside the superconductor does not decay con-
tinuously, as described by Eq. (15). Instead, it reveals a ladder
structure (quantized steps) with increasing x . The step width
in the figure represents the distance between electron columns
(or, for 3D superconductors, the distance between electron
layers). The step height represents the attenuation of mag-
netic field intensity resulting from the absorption of electrons,
which is proportional to the number of electrons contained in
the corresponding column or layer. Figs. 17(a) and (b) illus-
trate the relationship between the effective penetration depth
and electron density. Suppose a2 < a1, in which case the
corresponding electron density n2 > n1; the magnetic field
energy will be absorbed faster in the latter case. Accordingly,
Λ(n2, T,H0) < Λ(n1, T,H0). For three-dimensional super-
conducting bulk materials, various external factors, such as
magnetic field strength, temperature, material size and shape,
crystal defects, crystal orientation, and so on, can influence
the width and height of the steps in the figure, thereby poten-
tially affecting the EPD.

We propose that the characteristics of a ladder-like struc-
ture in physical phenomena stem from the localization of elec-
trons and that the structure’s steps reflect the electrons’ peri-
odicity. In certain materials, particularly those that are two-
dimensional or quasi-two-dimensional and subjected to ex-
tremely low temperatures and weak external fields, quantized
steps are observable - examples include the quantum Hall ef-
fect [71, 72].
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Figure 17: The new theory predicts a quantization step for penetra-
tion depth. (a) For low electron densities, larger penetration depths
are observed. (b) As the electron density increases, the penetration
depth decreases.

C. Superconducting magnetic levitation

As illustrated in Fig. 14, the EPD primarily regulates the
net charge density near the superconductor’s surface where
the magnetic field enters. The surface layer of the supercon-
ductor exhibits a higher net charge density as the penetration
depth increases. The net charge is zero without a penetration
depth due to the balanced presence of positive and negative
charges. In the magnetic levitation experiment depicted in
Fig. 14, the magnet generates a non-uniform magnetic field
whose strength varies with the distance and direction between
the magnet and the superconductor. Consequently, the micro-
scopic penetration depth can be controlled by manipulating
the relative position between the macroscopic magnet and the
superconductor. This, in turn, alters the net charge density on
the superconductor’s surface, ultimately resulting in the auto-
matic dynamic balancing of the interaction between the mag-
net and the superconductor.

To explain the suspension experiment in Fig. 14(a) more
intuitively, we will use the classical spring model to analyze
how the superconductor automatically balances the force ac-
cording to the weight of the magnet. Figure 18(a) shows a
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Figure 18: An analogy of superconducting levitation to a classical
spring system. (a) A free spring system (assuming the mass of the
spring is negligible); (b) an object m attains force balance by com-
pressing the spring; (c) an insulating superconductor represented by
“spring oscillators”; and (d) similar to the classical spring system
in figure (b), the magnet is suspended by compressing the “springs”
with the aid of the magnetic field.

set of springs in a free state. As shown in Fig. 18(b), when
an object of mass m is placed on the springs, a reaction force
N is caused by the compression spring (a proper deformation
∆) to achieve force balance N = k∆ = mg (where k is the
spring coefficient).

Without an external magnetic field, a superconductor in an
insulating state can be modeled as a spring oscillator, as shown
in Fig. 18(c). Note that the lateral spring oscillators have
been omitted from the figure. When a magnet with mass m is
placed on top of the superconductor, the magnetic field causes
the “spring oscillators” to compress and generate a combined
reaction force FR, as depicted in Fig. 18(d). The repulsive
force FR is proportional to the effective penetration depth
Λ(H0), where H0 denotes the magnetic field intensity of the
magnet before entering the superconductor. Additionally, H0

is a function of the distance h between the superconductor and
the magnet, with smaller values of h leading to more signifi-
cant values of H0. Thus, the force balance FR = mg in Fig.
18(d) can be achieved by automatically adjusting the distance
h based on the mass of the magnet. However, suppose the
mass of the magnet is too heavy, and the electrostatic poten-
tial difference (EPD) exceeds its limit. In that case, the su-
perconductor undergoes a phase transition from the magnetic
state to the normal state, and the levitation effect is no longer
sustainable.

Strictly speaking, the Meissner effect and the London pen-

etration depth are not superconducting phenomena. They are
just the low-temperature magnetization effects. By increasing
the strength of the external magnetic field, which is equiv-
alent to increasing the temperature, the electrons will gain
more magnetic field energy and generate a more significant
displacement. When the applied magnetic field is greater than
the critical magnetic field Hc which functions as the Curie
temperature of the superconductor, the magnetic state of the
Meissner effect will be entirely or partially destroyed to the
normal state of Fig. 10(b) for the type-I and type-II supercon-
ductors, respectively. In the next section, we will focus on the
vortex state of the type-II superconductor.

VIII. PHYSICAL ORIGIN OF VORTEX LATTICES

Abrikosov proposed the concept of the vortex lattice in
type-II superconductors in his pioneering work [42]. Since
then, considerable theoretical and experimental efforts have
been devoted to understanding its behavior [44–50]. How-
ever, to date, the mechanism behind it remains to be seen at
the macroscopic level. The most fundamental question of how
the magnetic field leads to the formation of vortex lattices is
still challenging. What is the physical origin of the vortex
state? Our theory provides new insights into the mechanisms
behind vortex formation and why it disappears, which is no
longer a puzzle.

A. Vortex state with coexistence of three phases

As depicted and explained in Fig. 19, when a supercon-
ductor is cooled below its critical temperature while an ex-
ternal magnetic field H is applied, it undergoes a series of
phase transitions. Depending on the strength of the applied
magnetic field, the superconductor can transition from an in-
sulating state to a magnetic state, from a magnetic state to a
normal state, or directly from an insulating state to a normal
state. When the magnetic field satisfies Hc1 < H < Hc2, a
vortex state with a mixture of insulating, magnetic, and nor-
mal regions is formed.

When the applied magnetic field strength H is zero, the su-
perconductor is in the Mott insulating state depicted in Fig.
10(a). As the magnetic field strength increases, the super-
conductor undergoes a three-step phase transition. In the first
step, which is also known as the Meissner transition and oc-
curs when H < Hc1, the magnetic field energy absorbed
by the electrons breaks the symmetry of the proton-electron
electric dipole vector. This results in a phase transition from
the insulating state of Fig. 10(a) to the magnetic state of Fig.
10(e) or (f) near the superconductor’s surface within the EPD
Λ. In the second step, which occurs when Hc1 < H < Hc2,
the magnetic field strength continues to increase, leading to
more tremendous energy and positional perturbations of the
electrons. This disrupts the proton-electron electric dipole ori-
entation order in some tubes, causing the magnetic state to
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Figure 19: The microstructure of the vortex state in type-II super-
conductors exhibits the coexistence of three states. In the light gray
region, electrons do not absorb the energy of the magnetic field and
maintain the ground state of the Mott insulator. In the gray region,
electrons absorb a small amount of energy and then undergo a Peierls
phase transition to the Meissner magnetic state. Finally, in the orange
region of normal state, the orientation order is completely disrupted
as the electrons absorb enough energy.

normal state and insulating state to normal state phase tran-
sitions to occur within the EPD region and inside the super-
conductor, respectively. It is important to note that the ex-
ternal magnetic field itself is not quantized inside the tubes.
Instead, the quantized proton-electron electric dipole absorbs
the magnetic field energy and emits a magnetic flux quan-
tum Φ0 = h/2e. Finally, in the third step, when H > Hc2,
all electrons have gained enough magnetic field energy to de-
stroy the orientation order of the electric dipole (or magnetic
vector), and the superconductor becomes a normal metal.

According to our theory, the phase transitions observed
in the superconductor are fundamentally driven by the en-
ergy exchange between the magnetic field and the electrons
of proton-electron electric dipoles. The occurrence of these
phase transitions requires a contribution of magnetic field en-
ergy, and the maintenance of the new phase transition state
requires a continuous energy supply from the magnetic field.
Our research indicates that the proton-electron electric dipole
inside the superconductor absorbs the external magnetic field.
This explanation differs from the conventional picture, in
which the magnetic field is either expelled or penetrates the
superconductor in the form of vortices. Furthermore, as
shown in the tubes depicted in Fig. 19, the experimentally
observed quantized flux does not originate from the exter-
nal magnetic field but rather from the local quantized proton-

(a)
(b)  [001]

(c)  [111]                              (d) [110]

electron

proton
(ion)

Figure 20: The 3D Mott insulator can be seen as the DNA of the
vortex lattice. (a) A duplex lattice of proton(ion)-electron pairs with
space-group Fm3m; (b) the 2 × 2 super-cells of the crystal along
the fourfold [001] direction; (c) the threefold [111] direction; and (d)
the twofold [110] direction, respectively. For case (d), the rectangle
lattice (the thin yellow bonds) can be rearranged as a distorted hexag-
onal lattice (the thick light gray bonds).

electron pair in the tube.

B. The DNA of vortex lattice

Numerous experimental results have been reported on the
vortex lattice structures s [44–46], leading to two important
conclusions. First, despite the wide range of classes and struc-
tures of superconductors, their vortex lattice structures exhibit
very similar symmetries. Second, the vortex symmetry is
closely related to the orientation of the applied magnetic field.
Specifically, square, triangular, or distorted hexagonal vortex
lattices can be observed when the field is applied along the
fourfold (the [001] direction), threefold (the [111] direction),
or twofold (the [110] direction) symmetric axis of the super-
conductor, respectively. To the best of our knowledge, such
lattice symmetry precisely matches that of a NaCl -type lat-
tice, as shown in Fig. 20 of a proton (ion)-electron lattice and
its symmetry. This figure can be regarded as the “DNA” of
the superconducting material, which determines the structure
and symmetry of the vortex lattice.

It is clear that the perfect macroscopic symmetry observed
in the vortex lattice originates from the intrinsic microscopic
perfect symmetry of the proton (ion)-electron lattice, which
can be considered the lattice’s DNA, as illustrated in Fig. 21.
The formation of the vortex structure still follows the princi-
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(a) [001]                            (b) [111]                          (c) [110]

Figure 21: Matching relationship between three typical Abrikosov
vortex lattices and the corresponding proton-electron electric dipole
lattices. (a) A square vortex lattice in [001] direction; (b) a triangular
vortex lattice in [111] direction; and (c) a distorted hexagonal vortex
lattice in [110] direction.

ple of minimum free energy. When the symmetry of the vor-
tex lattice matches that of the parent lattice of proton-electron
pairs, the system’s minimum free energy and the stability
of the vortex lattice can be ensured. As the magnetic field
strength increases, electrons absorb more magnetic field en-
ergy and move further away from their equilibrium positions,
leading to a stronger interaction between proton-electron elec-
tric dipoles. This interaction disrupts the orientation order
of more electric dipoles, which is manifested by an increase
in the diameter and number of flux vortices observed experi-
mentally. The orientation order of the electric dipoles is com-
pletely destroyed when the upper critical field is reached and
the superconductor enters the normal state.

C. Vortex dynamics

Vortex dynamics is one of the most challenging problems
in understanding type-II superconductors [50]. The magnetic
flux vortex can form various states inside the superconduc-
tor [52], such as solid, liquid, and glass [73]. Experiments
show that the magnetic flux vortex can have various forms of
movement, such as hopping, creeping, and flowing. In the
traditional theoretical framework, studying the movement of
a vortex line requires knowledge of the external forces acting
on the vortex line, such as driving force, friction force, colli-
sion force, pinning force, and Magnus force. This is a highly
complex problem; no analytical or numerical solution is avail-
able. We wish to point out that the difficulty of this research
also arises from the limitations of Drude’s model. The con-
ventional theory of vortex motion is based on the model of
the random motion of carriers (electrons) in superconductors,
which may not be accurate.

The formation of vortex lattices in superconductors requires
two critical external conditions: first, sufficiently low temper-
ature, and second, appropriate magnetic field strength. When
the temperature and external magnetic field are low, mag-
netic flux lines distribute uniformly inside the superconduc-
tor and freeze to form an ordered lattice, as depicted in Fig.
21. In a type-II superconductor in the vortex state, the vortex
and the surrounding non-vortex regions are distinct. What is
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expansioncontraction

Figure 22: Top view of vortex hopping and creeping, a simple graph-
ical explanation of vortex motion in type-II superconductors. (a) A
vortex is formed in the region A due to the existence of the temper-
ature field peak A′ around the region, see the dot-dash line in the
figure below; (b) thermal fluctuations lead to the annihilation of the
temperature peak A′ and corresponding vortex in region A, and at
the same time generate new temperature peak B′ and corresponding
vortex in region B, as shown the dashed line in the figure. This pro-
cess is misinterpreted as the movement (hopping) of the same vortex
from A to B; (c) and (d) the vortex A can contract to C or expand to
D in situ based on thermal fluctuations (A′ to C′, or A′ to D′), often
interpreted as creeping vortex dynamics.

the fundamental physical difference between the vortex and
non-vortex regions? The proton-electron pairing mechanism
proposed in this paper suggests that the electrons of proton-
electron electric dipoles inside the vortex region absorb more
magnetic field energy and gain higher free energy, leading to
a higher temperature in the inner vortex than the outer vortex.
This conclusion implies that magnetic field or temperature in-
stability can trigger a change in the vortex region, which is the
fundamental physical reason for the instability and motion of
the vortex lattice in the superconductor.

In the following, we will explain the phenomena of vortex
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hopping, flowing, and creeping using Fig. 22. Fig. 22(a)
shows an initial vortex element of area A. Consequently,
there is a temperature field peak A’ around the vortex’s core,
as shown by the dot-dash line in the figure. As the temper-
ature or magnetic field increases, the uniformity of the tem-
perature and magnetic field inside the superconductor will de-
crease, resulting in large random fluctuations in temperature
and magnetic field. Due to random fluctuations in temper-
ature, the peak A’ of the temperature field around vortex A
may suddenly disappear. All the electrons inside the vortex
return to equilibrium, causing the vortex to disappear as well.
As shown in Fig. 22(b), almost simultaneously with the dis-
appearance of peak A’, a temperature peak B’ may suddenly
appear in the nearby region B (the dashed line in the figure).
The higher temperature intensifies the thermal vibrations of
the electrons in the region, causing them to leave their original
equilibrium positions and exciting a new vortex B as shown
on the right of Fig. 22(b). During this process, the vortex
seems to move (or jump) from A to B. Temperature fluctua-
tions may also occur in situ, as illustrated by the dot lines C’
in Fig. 22(c) and D’ in Fig. 22(d) below. In this case, the
vortex A may sometimes shrink into a thin vortex C of Fig.
22(c) or expand into a fat vortex D of Fig. 22(d), which is
experimentally observed as vortex creeping.

According to our theoretical framework, the movement (or
change) occurs in the temperature and magnetic fields rather
than in the carriers (electrons) within the vortex core, as previ-
ously thought. Vortices are generated and annihilated through
a fundamental physical process by changing the external mag-
netic field and temperature. Microscopically, this process
changes the orientation of the proton-electron electric dipole
(magnetic vector) due to temperature and magnetic field in-
stability. Notably, our new theory eliminates the need for the
so-called flux pinning mechanism, previously used to prevent
“flux creep” in superconductors. With the proton-electron
pairing mechanism, the flux vortices are naturally confined
and localized within the superconductor.

IX. CONCLUDING REMARKS

This paper has achieved two fundamental unification by uti-
lizing three well-known scientific hypotheses: the Mott in-
sulator, Maxwell’s displacement current, and the Dirac mag-
netic monopole. Firstly, the unification of particles, where
the hydrogen atom, neutron, electric dipole, capacitor, and
magnetic monopole are all electron-proton pairs. Secondly,
the unification of fields and concepts, where the magnetic
field, magnetic moment, spin, magnetic dipole field, displace-
ment current, and order parameter are all electric fields gen-
erated by electron-proton pairs. We establish a unified the-
ory of electron-proton local pairing in real space, which is
different from the BCS theory of electron-electron non-local
pairing in k-space. The pairing mechanism in the new the-
ory is based on the principle of ?opposites attract,? elimi-
nating the need to introduce any quasi-particle pairing glue.

The superconducting phenomenon in this theory arises from
the most direct Ginzburg-Landau symmetry-breaking phase
transition caused by Peierls transitions, which can be reached
through a small collective displacement of valence electrons
from their equilibrium positions when an appropriate tem-
perature and external field are applied. Surprisingly, while
combining Maxwell’s theory with Dirac’s magnetic monopole
theory, we have successfully realized a perfect mathematical
symmetry in Maxwell’s equations and unified electromagnetic
properties.

To test the proton-electron pairing mechanism, we have
proposed that the proton-electron electric dipole vector serves
as the order parameter of the Ginzburg-Landau theory of su-
perconducting phase transitions. In this theoretical frame-
work, the dynamic interaction between the proton-electron
electric dipole and the external magnetic field has well ex-
plained several crucial superconducting phenomena, includ-
ing the Meissner effect, the London penetration depth, the
vortex lattices, and the vortex dynamics. Notably, even be-
low the superconducting transition temperature, a supercon-
ductor may exist in one of five distinct states: insulating, nor-
mal, metallic, magnetic, or superconductive. The Meissner
effect, which denotes the coexistence of insulating and mag-
netic states, and the vortex state, denoting the coexistence of
insulating, magnetic, and normal states, further highlight the
importance of understanding these states. Additionally, the
proton-electron electric dipoles can self-organize into electric
dipole crystals (3D Mott insulator) with space-group Fm3m
through electromagnetic interaction, which serves as the mi-
croscopic foundation of the vortex lattices of type-II super-
conductors.

We recognize that the field of theoretical physics has been
stagnant for decades. To make progress, physics requires in-
novative and unconventional ideas that challenge established
theories and models which are no longer adequate due to mod-
ern experiments. We propose that the proton-electron pair-
ing mechanism may provide new insights into all physical
problems. In cuprate superconductors with high-temperature,
there is controversy regarding the origin of phenomena such
as the pseudogap [74, 75], charge stripes [64, 65], checker-
board phases [39], electron nematic phase [76], magic doping
[40, 41], charge density waves (CDW) [77], etc. These dis-
putes are still hotly debated in the condensed matter commu-
nity. Our theoretical framework can definitely resolve these
debates. Studies show that they are related to the symme-
try of the proton-electron electric dipole. In addition, the
proton-electron pair is responsible for the quantum Hall effect
[71, 72] and the Hall anomaly [78, 79] in superconductors.
More detailed explanations of these findings will be presented
in another article.

Before concluding this article, it is essential to raise a crit-
ical question: why do identical proton-electron pairs, such as
neutrons and hydrogen atoms, display notably different phys-
ical properties? This query represents a fundamental yet un-
resolved enigma in physics because it deals with the nature
of the vacuum. As a reasonable assumption, there must be a
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fitting external binding energy to link protons and electrons,
forming a stable composite particle. We believe this contribu-
tion originates solely from the vacuum. These binding ener-
gies can be entirely or partially released depending on specific
circumstances, leading to characteristic spectra for hydrogen
atoms and neutrinos for neutrons. We consider photons and
neutrinos to be quasiparticle modes of vacuum energy. The
community of physicists should agree that the vacuum is not
empty, as it holds infinite energy.
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