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ABSTRACT

In this paper the Dirac equation for a neutron  in an external magnetic field is studied.

The use of Dirac's equation for a neutron is somewhat controversial as far as the author 

is aware of. Nevertheless, the present study could be an interesting theoretical excercise 

in metric signature invariance. More in particular it is argued  that in a specific external 

magnetic field and with non-vanishing time dependence of the 4 1 wave function vector, 

parity transformation invariance and time reversal invariance is not possible. This implies 

signature non-invariance.
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is the triplet [2] of Pauli matrices and  is associated to the anomalous magnetic moment 

of the neutron. 
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In the present paper we will call the metric  West coast when signature is (+,-,-,-). The 
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the signature is (-,+,+,+). Viz. [3]. No other conventions are implied.
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PRELIMIARIES & DERIVATION 

Let us start with the following Dirac equation, inspired by [1, eq 1.4], with .
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Use is made of 2 2 matrices i.e. the Pauli matrices  [2]
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Here, the  is a 4 1 complex vector. The ,  ( 1, 2,3) together with, , are [4]
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th signature (+,-,-,-). This is a West coast theory.

With the use of the operators 1  and 1  via  and  

and ,  together with, = ,  the following relations  are obtai
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Here, = ,  and - , , .  Equation (4) is the ,  representation [2]

of equation (1). Note  and ,  while , 
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ˆFurther, a helicity operator  is defined by /  and , the euclidean norm. 

With, ,  and = .  Hence, adding (4a) and (4b),
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nd both  and  are 2 1, from (5) and (3) we see that 
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And so summing equation (7a) and (7b) gives 
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If we recall that  for 1, 2,3, then an interesting new form of Dirac equation

is found by multiplying left and right hand of  equation (15) with 
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Going from the ( , ) representation back to the ( , ),  the following differential equation is 

found
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, from the Dirac equation in (1). Let us write  and assume that  is symmetric  

in time reversal, and parity i.e. (-t,-x)= (t,x). In effect this means  is ( ,

u

d

t x

t






 

 
   
 

   

0 5 0 5

5

5 5 5 5

x) ( , x). 

If we multiply =( )  with ( ),  the result is 2 . The factor 2 drops off 

from equation (16). Multiplication left and right hand (16) with  gives
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RESULT & DISCUSSION

The interesting result is that when equation (1) and (19) are summed, the following

expression for  derivation arises
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Let us  assume for simplicity that 
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The PT transformations are interpreted as a (+,-,-,-) (-,+,+,+) change.
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This entails that (1) and (19) both look as though the change  (+,-,-,-) (-,+,+,+)  would not 

matter in the parlour game of  [3]. However, it is demonstrated here that it does
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..I  assert that this difference is incompatible with ...  is 1-1 correlated with physical reality..

(Letter from Einstein to Schroedinger, 19 June 1935).



The found non-invariance is interpreted as: two different neutrons that are not interchangeable 

under  (+,-,-,-) (-,+,+,+)   and (23),  despite the fact that 0 gives a free particle Dirac 

equation s

H
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uch as in [3, eq 3 and comment]. If one claims that  is just a different representation

of  the same neutron we are back at Einstein's criticism [5, page 179-180] which claims that there is 

a 1-1 

East


relation between particle (state) and wave function.Therefore, there could be more associated 

to the metric signature than meets the eye.
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