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Abstract

We propose a new mechanism for inducing low energy nuclear reactions (LENRs). The
process is initiated by a perturbation which we assume is caused by an external photon.
The initial two body nuclear state absorbs the photon and forms an intermediate state
which makes a transition into the final nuclear state with emission of a light particle which
in the present paper is taken to be a photon. We need to sum over all energies of the
intermediate state. Since the energy of this state is unconstrained we get contributions from
very high energies for which the barrier penetration factor is not too small. The contribution
from such high energy states is typically suppressed due to the large energy denominators
and its matrix element with the initial state. Furthermore the process is higher order in
perturbation theory in comparison to the standard fusion process. However these factors are
relatively mild compared to the strong suppression due to the barrier penetration factor at
low energies. By considering a specific reaction we find that its cross section is higher than
the cross section of the standard process by a factor of 1041 or more. This enhancement
makes LENRs observable in laboratory even for relatively low energies. Hence we argue
that LENRs are possible and we provide a theoretical set up which may explain some of the
experimental claims in this field.

1 Introduction

The phenomenon of low energy nuclear reactions (LENRs) has now been studied for many
decades. A useful summary is provided in the papers [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] and
in the collection of articles in [14]. Theoretically it has been a challenge to understand how such
reactions can occur due to the large Coulomb barrier [15, 16]. Several theoretical proposals exist
that try to invoke screening effects in medium [17, 18, 19, 20], formation of correlated states
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in a nonstationary potential [21, 22], clusterization effects [23], time independent perturbation
[24], deuterium evolution reaction model [25], electroweak interactions [26, 27] etc. A detailed
study of screening has been performed in [18] with the conclusion that by itself it is unable
to explain the enhanced cross sections even in the energy range of 1 KeV [17]. In [22] it has
been suggested that the incident particle may be in a superposition of several states and due to
destructive interference the reflection coefficient becomes significantly smaller than unity leading
to considerable enhancement in transmission. It has also been proposed that the nuclear particles
may form clusters due to enhanced electron screening which may lead to smaller Coulomb barrier
[23]. However the LENR phenomena are still not understood theoretically.

Experimentally it is quite clear that there is indeed an enhancement of cross sections at low
energies [17, 18, 28, 29, 30, 31, 32, 33, 34]. It has been argued [35] that the experimental data is
better characterized in terms of production of nuclear particles rather than excess heat [36, 37].
While the experimental results at very low energies require careful further analysis, the results
in the energy range of order of a few keV have consistently shown enhanced cross sections
in condensed medium. Some of these experiments involve a beam of high energy deuterons
impinging on a solid medium [33]. The lower energy experiments use electrolysis, heating,
diffusion, electric discharge etc. [14]. The community has slowly come to an agreement that the
nuclear fusion cross sections in this energy regime are much higher than expected theoretically
and the ratio of experimental to theoretically predicted cross sections increases rapidly with
decrease in energy. There have been many attempts to explain this behaviour by a suitable
generalization of the theoretical analysis.

We point out that there exist well known situations in which a particle is able to tunnel
through a high potential barrier with a rather high probability. We consider a text book example
of a double hump potential (see page 129 of [38], third edition). Here we assume that the
potential barrier is much larger than the energy of the incident particle. Using the WKB
approximation, one finds that although the transmission for such a potential is generally small,
there exist some special values of energy for which the transmission can be very large. Whether
such a mechanism is really realized in nuclear fusion reactions in condensed matter is not clear.
Here we use it only to illustrate that high potential does not always mean low transmission.
It is also well known that the nuclear fusion rates are rather large if the reaction proceeds by
resonance. This arises when the energy of the incident particle is equal or close to one of the
nuclear states. In the present paper, however, we shall not consider resonant reactions.

We are interested in explaining the phenomena of LENRs, the energies being of order eV. We
point out that LENRs have also been seen experimentally at energies as low as 30-40 meV [39].
In this paper we propose a new process which has so far not been considered in the literature and
may be relevant for LENRs. In this case the reaction proceeds by a perturbation in the initial
state. This perturbation may be in the form of a real photon or a virtual photon. The virtual
photon may be exchanged by an incident flux of electrons, or other charged particles, with the
nucleus under consideration. The perturbation leads to formation of a mixed state which can be
expressed as a superposition of all the eigenstates of the unperturbed Hamiltonian. Each of these
eigenstates then contribute to the fusion process. As prescribed by the uncertainty principle,
each of these states can exist for a short time interval during which they can undergo fusion. Due
to the fact that there is no restriction on the energy of these states it is possible that the barrier
penetration factor may not lead to a strong suppression. Here we develop the formalism for such
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reactions and provide estimates for some simple cases. Similar ideas have been proposed earlier
[21, 22, 24], however the precise process we consider has not been discussed in the literature
in this context. As we shall see the process under consideration is rather simple and has close
similarity to standard processes discussed in graduate level Physics textbooks [38, 40].

Let us now briefly review the standard fusion rate calculations [41, 42, 43, 44, 45]. Consider
the nuclear fusion reaction in which a light nucleus a is incident on target nucleus B,

a+B → C + d (1)

Here C is the final nucleus and d is another particle, which may be a photon, neutron or a pair of
particles, such as a neutrino and a positron. We use the center of mass and relative coordinates
and convert the initial two body system into an effective one body problem by introducing the
concept of reduced mass. The particle a may be a proton or a deuteron or some other light
nuclei. We assume that the kinetic energy of the initial state is E when the two particles are
at large distances from one another. Let Z1 and Z2 be the atomic numbers of the two initial
state nuclei and A1 and A2 be their atomic mass numbers. The potential energy diagram may
be schematically represented as in Fig. 1. We consider the non-resonant case in which there is
no nuclear bound state with energy equal to the incident two particle energy. The important
factors which contribute to the reaction rate are the tunneling probability and rate of decay of
this state into a nuclear state by emission of particle d. The cross section for this process may
be expressed as [41, 42]

σ(E) =
S(E)

E
B(E) (2)

where
B(E) = exp(−b/

√
E) (3)

and b is a constant. If we ignore screening the factor b is given by [41]

b = 31.28Z1Z2

√
A keV1/2 (4)

where A = A1A2/(A1 +A2) is the reduced atomic weight. Here the exponential factor represents
the probability for barrier penetration and the remaining factors depend on the amplitude for
production of particle d. Hence for the case of photon production the factor S(E) will depend on
the electromagnetic coupling. For the case of non-resonant scattering, S(E) is a slowly varying
function of E. For the case of no screening, i.e. just Coulomb repulsion between two nuclei,
the barrier penetration can be shown to take the form given in the exponent in Eq. 3 to a
very good approximation. In general when screening due to electrons is taken into account, the
form may be somewhat more complicated. The screening effects can, however, be incorporated
approximately by adding a screening energy Es to the energy factor E in the exponent in Eq.
3.

2 Standard Fusion Process

The fusion reaction typically involves emission of some particle, such as a photon, a light nuclei
or a pair of particles such as, a positron and a neutrino. Hence besides involving strong inter-
actions, it may also involve electromagnetic and/or weak interactions. Here we briefly review
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Figure 1: A schematic representation of the nuclear potential experienced by a particle at energy
E incident from infinity. The rise in potential at short distances represents the Coulomb barrier.

the calculation of a fusion reaction rate. To be specific we will focus on an electromagnetic
transition and consider the reaction

1H + 2H→ 3He + γ(ωf ) (5)

i.e. fusion of a proton and a deuteron to form a He-3 with emission of a photon. However
our analysis will be applicable to all two body reactions which involve emission of a photon.
For other final states the same analysis will work but with a suitable choice of perturbation
Hamiltonian. In this work we shall mostly use atomic units.

Let the initial state two body wave function be denoted by |i〉. We assume that the two
particles are free initially. The reaction rate will involve the overlap of this wave function with
the He-3 wave function which will depend on the quantum tunneling amplitude. The two nuclei
in the initial state are treated as an equivalent one particle by introducing the concept of reduced
mass. The electrons surrounding the nuclei, which may be either bound or free play the role of
modifying the effective potential experienced by the two nuclei, i.e. they lead to screening of
the Coulomb potential. The Hamiltonian of the system can be written as

H = H0 +HI (6)

where H0 is the unperturbed Hamiltonian and HI is a time dependent perturbation. The
unperturbed Hamiltonian is given by

H0 = K1 +K2 + V(r) (7)

where K1 and K2 are the kinetic energies of the two nuclei and V(r) is the effective potential.
We express H0 in terms of center of mass and relative coordinates and ignore center of mass
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motion. The effective potential V(r) is obtained after integrating over the contributions from
electrons and hence contains screening potential as well as terms arising from orbital angular
momentum.

The reaction proceeds by emission of a photon. The electromagnetic field can be written as,

~A(~r, t) =
1√
V

∑
~k

∑
β

c

√
~

2ω

[
a~k,β(t)~εβe

i~k·~r + a†~k,β
(t)~εβe

−i~k·~r
]

(8)

At leading order the reaction rate can be computed by considering the following time dependent
perturbation (see, for example [38, 40])

HI(t) =
ξe

µc
~A(~r, t) · ~p (9)

where µ is the reduced mass of the two particle system, ~A is the vector potential, ~p the momentum
operator and ξ is given by,

ξ =
m2 −m1

m2 +m1
(10)

This factor is derived by using relative and center of mass coordinates and is applicable for the
process under consideration for which Z1 = Z2 = 1. Here the center of mass motion is not
relevant and we focus on the relative coordinates. Furthermore, for simplicity, we have made

the standard approximation of ignoring the ~r dependence of electromagetic field, i.e. e−i
~k·~r ≈ 1

and ei
~k·~r ≈ 1 where ~k is the wave vector of the photon. This is valid in the present case since

we will only be interested in electric dipole transitions. For the process under consideration,
the final state wave function gets dominant contribution only over nuclear length scales and the
wave length of the emitted photon is expected to be much larger than this scale. For our system
m2 and m1 are the masses of deuteron and Hydrogen respectively and hence ξ = 1/3. We need
to compute the transition amplitude, given by,

〈f |T (t0, t)|i〉 =

(
− i
~

)∫ t

t0

dt′〈f |HI(t
′)|i〉ei(Ef−Ei)t

′/~ (11)

Here T (t0, t) is the time translation operator. It is implicitly assumed that there also exists a
photon of frequency ωf and wave vector ~kf in the final state. We have not explicitly shown this
in the equation above. Inserting the vector potential and acting with the creation operator, we
obtain

〈f |T (t0, t)|i〉 = − ieξ
~µ

√
~

2ωfV

∫ t

t0

dt′〈f |~εβ · ~p |i〉ei(Ef−Ei+~ωf )t′/~ (12)

where V = L3 is the quantization volume, ~εβ is the photon polarization vector and Ei and Ef
are the energies of the initial and final states respectively.

We next perform the time integral and take the limit t0 → −∞ and t→∞ to obtain

|〈f |T (t0, t)|i〉|2 =
e2ξ2π∆T

µ2ωfV
δ(Ef − Ei + ~ωf )|〈f |~εβ · ~p |i〉|2 (13)
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where ∆T = t − t0 is the total time. Let ργ be the density of photon states for emission into
solid angle dΩ, given by,

ργ =
V ω2

f

(2π)3

dΩ

~c3
(14)

Using this and integrating over Eγf = ~ωf , we obtain the transition probability per unit time
dPdΩ/dt for solid angle dΩ. It is given by,

dPdΩ

dt
=

∫
dEγfργ

|〈f |T (t0, t)|i〉|2

∆T
(15)

Here we have ignored the small nuclear recoil. The transition probability dP/dt integrated over
solid angle can then be expressed as

dP

dt
=

e2ξ2ωf
8π2~c3µ2

∫
dΩ
∑
β

|〈f |~εβ · ~p |i〉|2 (16)

where we have summed over the final state polarizations. It is convenient to replace the operator
~p by using

~p = iµ[H0, ~r ]/~ (17)

The matrix element can then be expressed as

〈f |~εβ · ~p |i〉 =
iµ

~
(Ef − Ei)〈f |~εβ · ~r |i〉 (18)

We next perform the angular integration in Eq. 16. We point out that we are considering a
dipole transition from the initial state l = 0 to the final state l′ = 1. The initial state has m = 0
and the final state can have m′ = 0,±1 and we need to sum over m′. The result for this is
already given in standard texts (see, for example, [38, 40]). The sum over photon polarizations
and the angular integral in Eq. 16 gives an overall factor of 8π/3. The final result after summing
over m′ is

dP

dt
=
e2ξ2ωf
3π~3c3

(Ef − Ei)2 |Ifi|2 (19)

where Ifi is the integral over the radial wave functions, Rf (r) and Ri(r)

Ifi =

∫ ∞
0

drr3R∗f (r)Ri(r) (20)

In order to obtain the cross section for the process we divide dP/dt by the number N2 of
target particles in the volume V and the incident flux F (E) = n1v, where v is the relative
velocity and n1 is the number density of incident particles. Here we assume that the incident
wave corresponding to the initial state nuclei is a plane wave propagating in the z direction,
normalized over a volume V = L3. The cross section can be expressed as,

σ =
1

N2F (E)

dP

dt
(21)

The factors involving the length parameter L would cancel the normalization of the wave function
to give the final observable cross section σ. We have chosen a normalization such that N2 = 1
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and F (Ei) = v/V , where v =
√

2Ei/µ is the relative velocity between the two particles. We
may express the cross section in terms of the standard expression σ = S(Ei)B(Ei)/Ei (see Eq.
2). Here S(Ei) is assumed to be a slowly varying function of Ei. Its value at Ei = 0 for the
process in Eq. 5 is given by S(0) = 2.5× 10−4 keV barn [41]. We should point out that this is
valid for low energies where the barrier penetration factor dominates. However once the energies
become higher than the Coulomb barrier, i.e. of order MeV, it may no longer be reasonable to
drop the energy dependence of S(Ei).

In order to proceed further we need the amplitude Ifi in Eq. 19. This involves the unknown
nuclear wave function Rf (r) and one may compute it using a model nuclear potential. Since
we know the cross section for this process we may also extract its form from Eqs. 2 and 19.
The cross section contains an overall factor of 1/Ei besides the exponential suppression factor.

Hence we expect the matrix element would be proportional to 1/E
1/4
i . This is because in the

cross section there is an additional factor 1/
√
Ei arising due to the flux factor. We assume that

the amplitude does not show rapid oscillation with Ei in the overlap region and hence we can
assume its energy dependence to be of the form

Ifi ∝
√
B(Ei)

E
1/4
i

(22)

A more detailed, first principles, procedure would involve solving the Schrodinger equation
using a model nuclear potential. We may get a reasonable idea by using the Coulomb wave
functions obtained in Ref. [46]. These have also been used to compute the proton fusion
reaction rate [47] and lead to exactly the same energy dependence as given in Eq. 22. This
also agrees with the overall energy dependence of the amplitude that can be extracted from the
WKB analysis [41].

We may now extract the full form of this amplitude from Eqs. 2 and 19. We point out
that the factor ωf in Eq. 16 is the frequency of the final state photon and will involve a typical
nuclear energy scale. This will have a relatively slow dependence on Ei. We, therefore, propose
the following model for Ifi:

Ifi =

√
3c

2ξ
√
αωf

~
|Ef − Ei|

√
S(Ei)

Ei
B(Ei)F (Ei)N2 (23)

where we have arbitrarily set the overall sign of the amplitude to be positive. This will cancel
and does not contribute to the final result. Here we have used the fine structure constant
α = e2/(4π~c). The extra factor of 4π in the denominator (in comparison to atomic units)
arises since we follow the conventions used in [40]. This model is reasonable at low energies.
Once the energy becomes of order MeV this will break down. This is because it may no longer be
reasonable to assume that S(Ei) is a slowly varying function of Ei and furthermore the amplitude
may also show oscillations with Ei. For such energies it may be better to extract the form of
this amplitude by a model calculation. The precise energy where it breaks down depends on
the Coulomb barrier, which is higher for nuclei of larger atomic number. As mentioned above, a
more detailed analysis can be performed by using a model nuclear potential, which we postpone
to future work.
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We should point out that here we have considered the fusion process from an initial state
with l = 0 for which the Coulomb barrier is smallest. This is expected to be applicable at low
energies. The final state has to be an excited state of 3He with l = 1. The calculation above
can be easily generalized for different initial and final states. The detailed form obtained in this
section will be used in the calculation of the proposed process in the next section. However
most of the factors will cancel out and the most important factors that will contribute are those
contained in Eq. 2. We should also mention that here we are considering this process only as
an illustration. This is applicable to all processes with a photon in the final state. Furthermore
the calculation can be easily generalized for different final states.

3 Photon Induced Fusion

In this section we propose a specific higher order process which may give a large contribution at
low energies inside a medium. We are specifically interested in a medium which is being driven
by some external agent, as an electrochemical reaction [48]. Our proposed process basically relies
on the existence of an incident flux of photons, which may be real or virtual, although for our
analysis here we shall consider them to be real. Hence a medium is not absolutely required as
long as we create conditions such that this flux exists. We load the system with a large number
of light nuclei, such as protons or deuterons, perhaps through an electrochemical process and
hence the system is also constantly changing with time. These particles may become bound
to other particles and some may be in quasi-free state inside matter. The potential is shown
schematically in Fig. 2 with the particle being in a bound state at energy E. The potential may
be split into two parts the molecular (or atomic) and the nuclear potential, each of which hosts
a tower of states, which may be termed molecular and nuclear states respectively. By molecular
potential we mean the potential energy of two nuclei shielded by electrons when they are far
away from one another such that the nuclear interaction is negligible. The nuclear potential
refers to the potential experienced by the nuclei when they are within a few fermi distance from
one another. These are illustrated in Fig. 2 by the potential wells at large and small distances
respectively from the origin. The wave functions for these two eigenstates peak in the two
respective potential wells and decay rapidly in the adjacent well.

The first order calculation of the fusion process is reviewed in the previous section. The
main change in this calculation in a medium would be that at very low energies the two particle
system would be in a bound state. For somewhat higher energies we may take it to be a quasi-
free state within the medium. By this we mean that its wave function would be modified by
the medium and the particles cannot have infinitely large separations. However compared to
the typical scale of the nuclear force we may treat the incident wave almost as free. We point
out that this is being done only for convenience. A more accurate analysis would solve the
Schrodinger equation in medium in order to determine the wave functions of such particles and
use them directly for the computation of the proposed process.

The proposed reaction is higher order in comparison to the reaction in the previous section
and normally it will be suppressed in comparison. However at low energies, the cross section
corresponding to the first order process falls very rapidly. Hence, it is possible that as the energy
of the system goes down a higher order process starts to dominate. Here we examine such a
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Figure 2: A schematic representation of the potential experienced by nucleus 1 at energy E inside
a medium. The potential is centered at the position of another nucleus (2) in the medium. At
very short distances the particle 1 experiences the nuclear force due to particle 2. At large
distances it experiences the Coulomb force due to interactions with all particles in the medium.
The potential levels off at large distances, not shown in the figure.

9



possibility in detail.

Let us assume that the initial state nucleus interacts with a photon. This may be a free
photon or a virtual photon due to scattering from a charged particle. Here we will assume it to
be free. This acts as a perturbation on the system and now the entire process proceeds within
the framework of second order perturbation theory. The specific process we are considering may
be written as

1H + 2H + γ(ωi)→ 3He + γ(ωf ) (24)

The process involves three particles in the initial state and would depend on the incident photon
flux. Alternatively we may also have reactions induced by an incident flux of electrons and other
charged particles which interacts with the nuclei by exchange of a photon.

We may write the second order contribution to the transition amplitude as

〈f |T (t0, t)|i〉 =

(
− i
~

)2∑
n

∫ t

t0

dt′ei(Ef−En)t′/~〈f |HI(t
′)|n〉

∫ t′

t0

dt′′ei(En−Ei)t
′′/~〈n|HI(t

′′)|i〉

(25)
with HI(t) given by Eq. 9. We point out that in the present case we have a photon present in
the initial state also. We take its frequency to be ωi whereas the frequency of the final state
photon is taken to be ωf . We obtain two contributions to the amplitude [40]. In one of these
the initial state photon first gets annihilated and later the final state photon is emitted. In the
second the time order of these photons is reversed.

We start by considering the first process. Since we need to annihilate the photon in the
initial state, the time dependence of HI(t

′′) is e−iωit
′′
. The t′′ integral then gives∫ t′

t0

dt′′ei(En−Ei)t
′′/~〈n|HI(t

′′)|i〉 = − i~eξ
µ

√
~

2ωiV
〈n|~εβ · ~p |i〉

× ei(En−Ei−~ωi)t
′/~ − ei(En−Ei−~ωi)t0/~

En − Ei − ~ωi
(26)

In order to compute the transition matrix element in Eq. 25 we substitute the expression for the
integral over t′′ given in Eq. 26. We see from Eq. 26 that it involves two separate terms. The
second term depends on the arbitrary parameter t0 which needs to be set equal to −∞ at the
end of the calculation. The integral over t′ for this term will set energy Ef = En−~ωf where ωf
is the frequency of the photon emitted in this process. The process under consideration would
have Ef + ~ωf = Ei + ~ωi where Ei = E is the energy of the initial two particle system. Hence
this term will give a contribution smaller than the standard leading order term discussed in
section 2 and will be dropped. In any case we expect that the perturbation would go to zero as
t0 → −∞ and hence this term should be set to zero in any case.

We next evaluate the transition amplitude Eq. 25. The transition matrix element can be
written as

〈f |T (t, t0)|i〉 = i
e2ξ2

2µ2V

√
1

ωiωf

∫ t

t0

dt′ei(Ef−Ei−~ωi+~ωf )t′/~
∑
n

〈f |~ε′β′ · ~p |n〉〈n|~εβ · ~p |i〉
En − Ei − ~ωi

(27)
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To proceed further we replace the operator ~p in the second matrix element in terms of the
commutator of H0 and ~r using Eq. 18. We obtain

〈f |T (t, t0)|i〉 = − e2ξ2

2µ~V

√
1

ωiωf

∫ t

t0

dt′ei(Ef−Ei−~ωi+~ωf )t′/~M (28)

where

M =
∑
n

[
〈f |~ε′β′ · ~p |n〉〈n|~εβ · ~r |i〉

En − Ei − ~ωi
+
〈f |~εβ · ~p |n〉〈n|~ε′β′ · ~r |i〉

En − Ei + ~ωf

]
(En − Ei) (29)

Here we have also added the second contribution in which the time order of the photons is
reversed, as mentioned earlier. However, it is clear that the second term is likely to be suppressed.
This is because the denominator in this term involves the energy of the emitted photon which
is generally quite large, of the order of 1 MeV. Hence it will always be much larger than the
denominator in the first term except when En becomes comparable to ~ωf , i.e. of order MeV.
However for such high energies, at which the Coulomb barrier is no longer relevant, it may not
be reasonable to drop the energy dependence of the factor S(E) in Eq. 2 for the fusion cross
section. Furthermore the integral Ifi may no longer have a simple dependence on Ei and Eq.
23 may not be valid for such high energies. For this reason we shall terminate the sum over
n at energies of order 500 KeV. For energies smaller than these the second term in Eq. 29 is
expected to give a much smaller contribution than the first. Since here we are interested only
in an order of magnitude estimate of the effect it is reasonable to just focus on the first term
in the amplitude given in Eq. 29. The precise upper cutoff on the energy scale would depend
on the reaction under consideration and is expected to be higher for larger values of the atomic
number due to increase in the Coulomb barrier.

Using this we obtain the transition rate as before,

dP̃

dt
=

1

∆T

∫
dEγfργ |〈f |T (t0, t)|i〉|2 (30)

where Eγf = ~ωf is the final state photon energy and ργ is the number density of photon
states at energy Eγf , given by Eq. 14. In this case the time integral will be proportional to
∆Tδ(Ef − Ei − ~ωi + ~ωf ) where, as in the last section, ∆T = t − t0 is the total time. This
transition rate corresponds to incident photon flux density of c/V . Hence we should divide by
this flux density and multiply by the experimental flux density per unit frequency interval Fγ
and integrate over frequency ωi. We should also sum over the final photon polarizations and
average over the initial photon polarizations. This leads to

dP

dt
=

1

∆T

∫
dωiFγ

V

c

∫
dE′γργ |〈f |T (t0, t)|i〉|2

=
α2ξ4

µ2c2

∫
dΩ′dωiFγ

ωf
ωi

1

2

∑
ββ′

|M|2 (31)

Using this we can obtain the cross section by using Eq. 21.

The calculation involves a matrix element 〈n|~εα · ~r|i〉 which depends on the wave functions
inside the medium. This is an important amplitude which would require detailed modelling
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of particle wave functions in medium. Here we shall make an estimate of this amplitude by
assuming that both initial and final states behave approximately as free particle states within
the medium. We expect that this approximation would be valid over a certain length scale
beyond which the wave function will fall rapidly. This length scale is also expected to increase
with energy. For our calculation we shall assume a value for this length scale that is much larger
than the typical interatomic distance. For a more reliable estimate we would need a detailed
form of the wave functions which we do not pursue in this paper and simply assume free particle
wave functions over a certain distance scale. This should give a reliable order of magnitude
estimate. The free particle is taken to be moving in the z direction. We can expand its wave
function in terms of Legendre polynomials Pl(cos θ), such that

eikz =
∞∑
l=0

Aljl(kr)Pl(cos θ) (32)

where jl are the spherical Bessel functions and Al = il(2l + 1). Here we shall take the initial
particle to be in the l = 1 state and final (or intermediate) particle corresponding to state |n >,
to be in l = 0 state. Hence we only need to consider these terms in the expansion. The overall
normalization of the wave function A is set equal to 1/

√
V , as usual.

We take the final state (|n〉) in the matrix element under consideration to be the s-wave
state since fusion process is maximal for this state, although it is possible that our calculated
cross section may not have as strong a dependence on l as the leading order process. In any
case, this particular choice is being made for a sample calculation. In general we may assume
states different from the ones taken here. The initial state is taken to have l = 1. We have
taken the initial wave to be propagating in the z direction and are considering a transition from
l = 1,m = 0 to l = m = 0 state. Hence we can replace ~εβ · ~r by z ~εβ · ẑ. Since the initial photon
is unpolarized we need to average over the two polarization vectors. We obtain

〈n|~εβ · ~r|i〉 = ~εβ · ẑ
∫
d3r ψ∗nzψi = i

4π

V
I ~εβ · ẑ (33)

where

I =

∫ L

0
drr3j0(k′r)j1(kr) (34)

Here the factor 1/V arises due to the overall normalization factors A = 1/
√
V in the two wave

functions, and the functions j1(kr) and j0(k′r) due to the initial and intermediate state (|n〉)
wave functions respectively. Furthermore k and k′ = kn are the wave numbers associated with
the initial and intermediate states respectively. The Bessel functions are given by

j0(k′) =
sin k′r

k′r

j1(kr) =

[
sin kr

k2r2
− cos kr

kr

]
(35)

With this we obtain

I =
L

2k′k

[
cos(k′ + k)L

k′ + k
+

cos(k′ − k)L

k′ − k

]
(36)
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This is valid for k′ > k. We will use this only in the limit k′ >> k. In this limit we may drop
the factor k in both the denominators. Hence

I ≈ L

2k′2k

[
cos(k′ + k)L+ cos(k′ − k)L

]
(37)

We emphasize that the wave functions being used represent a simple model within the
medium. We shall require wave functions of relatively high energy within condensed matter
medium. A detailed study of such wave functions is postponed to future research. It may be
reasonable to consider some generalizations in order to determine how they might affect our
result. For example, at large distance in comparison to nuclear size, the dominant change from
the free particle wave functions is expected to be an energy dependent phase shift. We have
performed preliminary calculations of such phase shifts by using a reasonable nuclear potential
and a Coulomb potential including electron screening effects. We find that the final results are
same up to a factor of order unity. Hence we do not expect such generalizations to change our
result in a fundamental manner.

We next obtain the cross section. As in the case of leading order calculation, we divide the
transition rate in Eq. 31 with the number of target particles N2 and the incident flux F = vn1

in order to obtain the fusion cross section. Here v is the relative velocity between the two
particles. This will essentially involve a division by a factor v/V where v is the relative velocity
corresponding to energy Ei. The final nuclear state with quantum numbers (l′,m′) has l′ = 1
and we also need to sum over m′, as in the previous section. We obtain

σ(2) =
16π2α2ξ4

µ2c2V 2

∫
dΩ′dωiFγ

ωf
ωi

1

2

∑
ββ′m′

∣∣∣∣∣∑
n

En − Ei
En − Ei − ~ωi

I〈f |~ε′β′ · ~p |n〉

∣∣∣∣∣
2
~εβ · ẑ~εβ · ẑ
N2F (Ei)

(38)

The factor 1/2 before the sum over polarizations β, β′ is due to averaging over the initial polar-
izations. We next average over the initial polarization vector orientations. This involves integral
over dΩ corresponding to the angles of the initial photon polarization vector and division by 4π.
This leads to an overall factor of 1/3 for each β = 1, 2. Hence we obtain

σ(2) =
16π2α2ξ4

3µ2c2V 2

∫
dΩ′dωiFγ

ωf
ωi

∑
β′m′

∣∣∣∣∣∑
n

En − Ei
En − Ei − ~ωi

I〈f |~ε′β′ · ~p |n〉

∣∣∣∣∣
2

1

N2F (Ei)
(39)

We next need the matrix element 〈f |ε′β′ · ~p|n〉 which involves an overlap with a nuclear state.
Using Eq. 18 we can express this as,

〈f |~ε′β′ · ~p |n〉 =
iµ

~
(Ef − En)〈f |~ε′β′ · ~r |n〉 (40)

The matrix element on the right hand side can be expressed as

〈f |~ε′β′ · ~r |n〉 =

∫
d3rψ∗f~ε

′
β′ · ~rψn = N

(∫ ∞
0

drr3R∗fRn

)
IΩ (41)

where N is a normalization factor and IΩ is the angular integral, given by,

IΩ =

∫
dΩ
(
Y m′

1

)∗
~ε′β′ · r̂Y 0

0 (42)
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Here Y m
l are the spherical harmonics. The important point is that the angular part decouples

from the radial part. It does not depend on the energy En and hence can be taken out of the
sum over n in Eq. 39. The angular integrals and the sums over β′ and m′ can now be performed
exactly as in the previous section and lead to an overall factor of 8π/3. We, therefore, obtain

σ(2) =
8π

3

16π2α2ξ4

3~2c2V 2

∫
dωiFγ

ωf
ωi

∣∣∣∣∣∑
n

(En − Ei)(Ef − En)

En − Ei − ~ωi
IIfn

∣∣∣∣∣
2

1

N2F (Ei)
(43)

The factor Ifn is the radial integral

Ifn =

(∫ ∞
0

drr3R∗fRn

)
(44)

The integral Ifn can be extracted from the leading order analysis described in the previous
section by using Eqs. 22 and 23. In making this identification we note that we require the
matrix element in a kinematic regime different from that in Eq. 23. In obtaining Eq. 23 we had
Ei = Ef + ~ωf whereas in the present case En 6= Ef + ~ωf . We shall assume that extrapolation
to a different kinematic regime is allowed. This is reasonable since the main change is in the
energy of the emitted photon which would be different in the two cases. However this energy
is large in comparison to the incident energy and can have only a weak dependence on the
incident energy. We also need to take care of the fact that in the present case the incident flux
factor F (Ei) corresponds to energy Ei whereas this matrix element involves the initial state of
energy En. Hence the factor 1/Ei in Eq. 23 would be replaced by 1/

√
EiEn. Essentially the

matrix element will involve a factor 1/E
1/4
n . It is important to note that the barrier penetration

amplitude that arises in this matrix element depends on unperturbed energy eigenvalue En.
Hence, if we take En >> Ei, we expect that the barrier penetration factor would be much larger
in the present case. Similar ideas have been proposed earlier [21, 22, 24].

Let us now explain why we expect an enhancement in the second order result at low energies.
We should point out that the energy En can take any value. We expect that as En becomes large
the contribution will be suppressed since the intermediate state can only be short lived. This
suppression is essentially represented by the factor (En − Ei − ~ωi) in the denominator in Eq.
39. The process is also suppressed due to the fact that it is a higher order process. Furthermore
the cross section would also depend on the incident photon flux, which may not be very small.
As we shall see the integral I does not lead to very significant suppression. The most important
factor, namely the barrier tunnelling amplitude is contained in the amplitude in Eq. 40. Our
main point is that this factor is controlled by the energy En rather than Ei. The energy En can
take a rather large value and hence the barrier tunnelling suppression factor may not be too
small.

Let us now extract the amplitude Ifn from the calculation in the previous section, as ex-
plained above. Using Eq. 23 we can write this as

Ifn =

√
3c

2ξ
√
αωf

~
|Ef − En|

√
S(En)

En
B(En)F (En)N2 (45)
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We then obtain

σ(2) =
32π3ξ2α

3V 2

∫
dωi

Fγ
ωi

∣∣∣∣∣∑
n

En − Ei
En − Ei − ~ωi

I

√
S(En)B(En)F (En)

EnF (Ei)

∣∣∣∣∣
2

(46)

We convert the sum over n into an integral using the standard density of states. We obtain

σ(2) =
32π3ξ2α

3V 2

∫
dωi

Fγ
ωi

∣∣∣∣∣
∫
dE′ρ(E′)

E′ − Ei
E′ − Ei − ~ωi

I

√
S(E′)B(E′)F (E′)

E′F (Ei)

∣∣∣∣∣
2

(47)

where

ρ(E) = g
L3µ3/2

√
E√

2π2~3
(48)

Here g is the internal degeneracy factor of the state and we have replaced the discrete energy
values En by the symbol E′. We next assume that S(E′) is a slowly varying function of energy
and set its value at E′ = 0. In general S(E′) shows a slow increase with energy. Including this
increase will lead to a larger value for the cross section. The factor F (E′)/F (E) =

√
E′/E. The

cross section now becomes

σ(2) =
16π2ξ2αµ3g2

3π3~6

S(0)

E1/2

∫
dωi

Fγ
ωi

∣∣∣∣∣
∫
dE′

E′ − Ei
E′ − Ei − ~ωi

I (E′)1/4[B(E′)]1/2

∣∣∣∣∣
2

(49)

Inserting the expression for I from Eq. 37 we obtain

σ(2) =
ξ2αg2

6π

S(0)

E3/2

∫
dωi

Fγ
ωi

∣∣∣∣∣L
∫
dE′

E′ − Ei
E′ − Ei − ~ωi

[B(E′)]1/2

(E′)3/4
[cos(k′ + k)L+ cos(k′ − k)L]

∣∣∣∣∣
2

(50)
This is our final result for the cross section for the reaction given in Eq. 24. With minor
modifications it can be applied to similar reactions with different nuclei, with photons in the
initial and final states. For a given incident flux of photons the cross section shows an increase
with decrease in photon frequency. This may appear counter intuitive from the point of view of
barrier penetration but is perfectly reasonable if one realizes that larger wavelengths generally
lead to an increase in cross section. The barrier penetration factor occurs inside the integral
over E′ for which the upper limit is ∞. For large values of E′ it need not be very small. In the
next section we shall perform the integral over E′ and evaluate this cross section by imposing
an upper limit on energy.

We point out that analysis in this section has been performed for a particular process.
However it is applicable for all processes which proceed by emission of a photon. We just need
to use the factors S(0) and B(E) relevant for the process. It can also be easily generalized
for other final states in which the reaction proceeds purely by strong interactions or by weak
interactions by making a suitable change in the perturbation Hamiltonian. Furthermore in the
initial state we have so far assumed that the reaction is induced by a free photon. As mentioned
earlier a possible generalization is that the reaction may proceed by exchange of a virtual photon
with an incident electron. We also emphasize that the inverse process in which a nucleus may
break up into two daughter nuclei can also be induced by this process. This means that the
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reaction given in Eq. 24 can proceed in both directions. In general the inverse reaction will
require a photon of very high energy. However we may conceive of situations in which a nucleus
is in a state that it has enough energy to break up. In that case a low energy incident photon
may affect its rate through this process.

In our analysis we have considered the initial state wave functions to be free particle wave
functions. The analysis can easily be generalized to the case when the initial state is bound.
We do not expect any major deviations in our result for such a case and postpone this to future
work. A brief discussion on this is given in section 4. Furthermore the main purpose of our
analysis in to obtain an order of magnitude estimate that demonstrates that such reactions can
be important at low energies. For this purpose our approximation is reasonable. More refined
analysis is postponed for future research.

3.1 Estimate of the cross section

Next, we estimate the cross section for the process in Eq. 24. The cross section may be expressed
as

σ(2) =
ξ2αg2

6π

S(0)

E3/2

∫
dωi

Fγ
ωi
|I1|2 (51)

where

I1 = 2L

∫ yu

yl

dy′

√
B(y′)

y′

[
cos(y′ + y)L̃+ cos(y′ − y)L̃

]
(52)

L̃ =
√

2µL/~, y =
√
Ei and y′ =

√
E′. Here we have assumed that E′ >> Ei, ~ωi and set

E′−Ei ≈ E′ and E′−Ei−~ωi ≈ E′. The integral I1 is expected to show oscillatory dependence
on L. As explained earlier the length L has a physical interpretation. It is the distance scale
over which the wave function acts approximately as a free particle. Beyond this distance it
will decay rapidly within the medium. This physical picture would be valid only for energies
smaller than an upper limit. Once the energy becomes very large, the wave function may spread
over the entire medium since the Coulomb repulsion may no longer suppress it. For very high
energies of order MeV, we may not be able to ignore the energy dependence of S(E) in the basic
formula for the cross section (Eq. 2). Hence we will impose an upper limit of about 500 KeV on
this integral. The precise upper limit would depend on the reaction under consideration since
the Coulomb repulsion is more effective for a high Z nucleus. Furthermore we will average the
integral squared |I1|2 over a certain range of length scales. This is justified by the fact that
we may have a range of initial state energies and we should average over them. For different
energies we may need to choose slightly different values of L. Furthermore the medium may not
be homogeneous and wave function may depend on position. Hence it is reasonable to add over
contributions from a range of cut off length scales. We choose the range 20a0 to 20.2a0, where
a0 is the Bohr radius, in order to average over L. The value of |I1|2 is not very sensitive to these
precise values provided it is averaged over a sufficiently large range.

In order to get an order of magnitude estimate we assume an experiment with an incident
current of 1 ampere/cm2 on some target medium. This corresponds to an electron flux of
(1.6 × 10−19)−1 sec−1 · cm−2. Assuming a potential difference of 10 eV, we expect maximum
energy of electrons to be 10 eV. As these electrons collide with particles in the medium photons
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will be produced. Typically these photons will have energies significantly smaller than that
of electrons. The electrons are expected to undergo multiple collisions, loosing energy at each
collision. Hence we expect a significant flux of photons with energies substantially lower than
10 eV. Here we do not perform a detailed modelling of this process and assume that this leads
to a photon flux of similar order as that of electrons with frequencies of photons in the infrared
range. This is also reasonable since we do not expect the temperature in the medium to rise
above 1000 K which will correspond to infrared frequencies. Furthermore we point out that the
photon flux that we have assumed is also of same order of magnitude as obtained for a blackbody
at room temperature of roughly 300 K. Hence we set ωi = 2πνi with νi = 5 × 1013 Hz. This
leads to ∫

dωi
Fγ
ωi

=
1

1.6× 10−19

1

2π × 5× 1013
cm−2 (53)

We set g = 2 assuming that the fusion proceeds by an initial state of spin 1/2. The initial state
has l = 0 and the spins of proton and deuteron can combine to lead to total angular momentum
of 1/2 and 3/2. Here we consider the contribution from the spin 1/2 state. The value of S(0) for
the reaction given in Eq. 5 is 2.5× 10−4 keV barn. We take the initial state energy of Ei = 10
eV corresponding to a potential difference of 10 V.

We compute the integral |I1|2 by setting the lower limit on energy E′ equal to 20 eV. We
first compute it by ignoring screening effect, which will be included later. The integral fluctuates
with L and hence we average it over a range of length scales for reasons discussed earlier. Its
value as a function of the upper limit on energy E′ after averaging over L = 20a0 to 20.2a0 is
shown in Fig. 3. We also show the result for the range L = 20 to 40 a0 and for L = 50 to 60
a0. We see that the three results agree reasonably well and hence find that the answer is not
too sensitive to precise values of L chosen for averaging. We have also checked this calculation
for a relatively low value of L = 2 to 2.2 a0. This also gives a similar result. We find that
(I1)2 increases with energy and then shows saturation beyond E′ = 300 KeV. Actually at high
energies it shows small fluctuations about a value of roughly 3.8×10−6. As explained above our
formalism may require modifications for sufficiently high energies and it is encouraging that we
find approximate saturation near the upper limit shown in Fig. 3. We conservatively take the
value of (I1)2 to be of order 3× 10−6 in atomic units. For the values given we obtain

σ(2) = 1.4× 10−25 I2
1 (54)

in atomic units. This leads to

σ(2) = 9× 10−28 I2
1 ≈ 1.3× 10−47 cm2 (55)

This exceeds the result obtained from Eq. 2 for E = 10 eV by an extremely large factor if we
use the standard barrier penetration factor [41] given in Eq. 3,

B = exp[−b/
√
E] (56)

In the above estimate we have ignored screening. We now take these effects into account. For
this purpose we use the approximate fit given in Ref. [15]. It finds that the barrier penetration
factor may be approximated as exp(−4.13

√
µ). This is likely to give a reasonable order of

magnitude estimate for the present case of E = 10 eV. More refined estimation is postponed to
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Figure 3: The square (I2
1 ) of the integral I1 in atomic units as a function of the upper limit on

energy. The solid line is obtained by averaging over L in the range 20-20.2 a0 while the points
(+) and (×) are obtained by averaging over 20− 40 a0 and 50− 60 a0 respectively.

future research. For the reaction under consideration this leads to an effective screening energy
of approximately Es = 21 eV, i.e. the barrier penetration factor in Eq. 56 agrees with this fit
for energy equal to E + Es = 31 eV. Using this screening energy we obtain the standard cross
section for this process to be roughly equal to 10−88 cm2 for E = 10 eV. Hence we find an
enhancement of approximately 41 orders of magnitude. This is sufficiently large and makes low
energy nuclear reactions observable in laboratory at conditions close to ambient temperature
and pressure, but with electromagnetic perturbations analyzed in this work. In fact this is large
enough to suggest that some of the experimental claims made on low energy nuclear reactions or
cold fusion are reliable. We point out that our result does not show a very significant dependence
on the screening energy.

In the estimate above we have ignored the energy dependence of the factor S(E). This factor
is expected to show a slow increase with energy which will lead to a further enhancement of the
cross section and the reaction rate.

In our calculation above we have assumed the incident particle of 10 eV. It is interesting
to see how our results would change if we took a much lower value of energy, such as 1 eV
or less than an eV. In this case we would need to terminate our integral I1 at much smaller
values of the length scale L since now it will act as a bound state with a length scale of few
a0. As we have already remarked the values of |I1|2 even in this case are very similar to what
is obtained earlier. Hence we do not expect any significant suppression even in this case due to
barrier penetration factor and rates are likely to be very similar to what we have obtained in
this section. Essentially it seems that this process does not have a very strong dependence on

18



energy in comparison to what is seen in the leading order process discussed in section 2.

Our analysis can easily be generalized to other processes which may or may not have photon
in the final state. Here we briefly comment on what may be expected in the case of photon
induced fusion of a light nuclei, such as proton, with a high Z nuclei with the production of
a photon. For this, our formalism may be applied directly with a suitable change in some
parameters, such as, the reduced mass and the exponent in the barrier penetration factor B(E).
We have made some preliminary estimates of the integral I1 for the case of Z1 = 1, Z2 = 20,
A1 = 1 and A2 = 40. We find that in this case also |I1|2 is not very small, at most few orders
of magnitude smaller than that in Fig. 3 obtained for the process given in Eq. 24. In some of
these cases the factor S(E) may be much larger than the current process and hence we expect
that fusion with even high Z nuclei may occur at observable rates in a laboratory at relatively
low energies and temperatures.

3.2 Cross section at Solar energies

We next evaluate the contribution of our proposed reaction at solar energies. We compare the
cross section for the reaction given in Eq. 5 with the cross section for the reaction in Eq. 24.
Using the standard formula Eq. 2 we find that at energy of 1 keV, relevant to solar interior, the
cross section for Eq. 5 is roughly 10−39 cm2. In order to estimate the cross section for Eq. 24 we
consider the flux of blackbody photons at temperature of 107 K. The photon flux coming out of
a spherical surface of small radius in solar interior, centered at the center of the Sun, is found to
be approximately 3× 1032 s−1 · cm−2. Here we have assumed a mean energy of photons of order
1 keV. Dividing by the angular frequency ω for such photons we find that the flux factor leads
to an enhancement factor of roughly 6× 109 in comparison to Eq. 53. The energy denominator
in Eq. 51 leads to a suppression factor of 1/(100)3/2. Taking all this into account we find the
cross section for Eq. 24 to be roughly 10−41 cm2 about 2 orders of magnitude lower than the
cross section for the standard reaction. The lower value is obtained mainly because the cross
section for our mechanism shows a very mild dependence on the initial energy E = Ei whereas
the standard reaction rises very sharply with E. It is clear that at solar energies our process
gives a relatively small contribution and the standard process dominates. The difference is only
about two orders of magnitude and hence we expect that somewhat below solar energies our
proposed mechanism will start to play an important role. Hence it may play a role in stars of
mass smaller than Sun, which can be investigated in future research.

4 Fusion from a bound initial state

In our analysis so far we have assumed that the initial two particle state can be approximated
as a free particle state. As mentioned above this is only an approximation and for most energies
the wave function of this state inside a medium will decay beyond a certain length scale. Hence
it may be considered as a bound state whose spatial extent is likely to be large compared to a
typical molecular bound state. For accurate calculations we will require such high energy wave
functions in the energy range 10 eV to few MeV inside the condensed matter medium. The
formalism developed in sections 2 and 3 can be easily generalized to handle such bound states.
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Let us first consider the basic process Eq. 5 discussed in section 2. We now consider the initial
state |i〉 as a bound state. The calculation of the transition rate dP/dt goes through exactly as
earlier and we obtain Eq. 16. The transition rate in this case is conveniently expressed in terms
of the rate constant A [49], whose expression can directly be extracted from Eq. 16 in terms of
the nuclear wave function. The cross section can again be written as in Eq. 21 and we shall
choose the wave function normalization such that N2 = 1. However the flux factor F (E) is now
more complicated since we are not dealing with a plane wave. Here we do not need to go into
such details since all we require is its energy dependence which is same as before. Hence it is
again equal to the velocity v divided by a factor which has dimensions of volume. Its dependence
on energy again goes as

√
E. With this understanding the final equation for the amplitude, Eq.

23, remains unchanged.

We next consider the photon induced reaction Eq. 24. In this case the calculation proceeds
exactly as in section 3 up to Eq. 31. Using this we determine the cross section σ′(2) by the
relation

σ′(2) =
dP

dt

1

N2F (Ei)
(57)

We again focus on only the first term in the matrix elementM in Eq. 29. Substituting this into
Eq. 57 and using the amplitude in Eq. 45 we obtain

σ′(2) = 2παξ2S(0)

∫
dωi

Fγ
ωi

1

2

∑
β

∣∣∣∣∣∑
n

√
B(En)

En

(
En
Ei

)1/4

〈n|~εβ · ~r|i〉
En − Ei

En − Ei − ~ωi

∣∣∣∣∣
2

. (58)

Here we have summed over the final state photon polarizations as in section 3 and set the
ratio F (En)/F (Ei) =

√
En/Ei. The remaining matrix element in the above equation can be

expressed as

〈n|~εβ · ~r|i〉 =

∫
d3rY 0

0 R
∗
00(En)~εβ · ~rR10(Ei)Y

m
1 (59)

Here we have set l = 1 and l = 0 for the initial state and intermediate states (|n〉) respectively
and R10(Ei) and R00(En) represent the corresponding radial wave functions. By a suitable
choice of coordinates we can take the initial state to be m = 0 state. We then obtain

〈n|~εβ · ~r|i〉 =
1√
3
~εβ · ẑI1 (60)

where

I1 =

∫
drR∗00(En)r3R10(Ei) (61)

Substituting back in Eq. 58 and averaging over the initial state polarization orientations and
summing over β we obtain

σ′(2) =
2παξ2S(0)

9

∫
dωi

Fγ
ωi

∣∣∣∣∣∑
n

√
B(En)

En

(
En
Ei

)1/4

I1
En − Ei

En − Ei − ~ωi

∣∣∣∣∣
2

. (62)

We can now solve the Schrodinger equation inside the medium in order to obtain the radial
wave functions R00 and R10 for a wide range of energies. We expect that the initial state wave
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function R10 would be required for a relatively low energy of order 10 eV, while the final wave
function R00 would be required for a rather large range of energies extending up to order of
MeV. For low energies we may obtain the bound state eigenfunctions while for high energies it
may be convenient to use continuum eigenfunctions. In any case we see that the calculation is
well defined once we know the precise eigenfunctions.

5 Discussion and Conclusions

We have introduced a new mechanism for nuclear fusion which may play an important role
at low energies. We propose that the reaction takes place by a perturbation. In most of our
analysis we have assumed that this perturbation is caused by a flux of real photons. However it
may also take other forms. For example, a flux of electrons or other charged particles may also
induce these reactions by exchange of virtual photons. The fusion reaction then proceeds by
forming a virtual state whose energy is unrestricted and we need to consider contributions from
all energies. Due to the high energy possible for these states the barrier penetration probability
is not very small and it does not lead to a strong suppression of the cross section. The dominant
suppression in the current case arises from the incident flux factor of photons or other particles,
the use of relatively high energy intermediate states and the fact that the process involves second
order in perturbation theory. The barrier penetration factor also leads to a suppression but it
is much milder in comparison to the standard process.

We have performed a detailed calculation of the Hydrogen and deuteron fusion reaction
to form He-3. Assuming a realistic incident photon flux at infrared frequencies we find that
the cross section for this reaction is at least 41 orders of magnitude higher than the standard
fusion reaction at incident energy of 10 eV. It is sufficiently large to make such fusion reactions
observable in laboratory at low energies under conditions much milder than what is required for
the conventional thermonuclear fusion. Furthermore this also provides an explanation for many
of the claims made in the area of low energy nuclear reactions. However a detailed calculation
is needed for each experimental situation in order to evaluate its applicability. The formalism
is applicable to a wide range of processes. Remarkably the Coulomb barrier penetration factor
shows a relatively mild dependence on the charge of the nuclei in comparison to the standard
reaction. Hence even fusion with high Z nuclei corresponding to lattice sites is possible at low
energies at observable rates. This probably explains the large number of new elements seen in
many low energy nuclear reaction experiments.

We require wave functions for the two body nuclear system in a medium for which we
have assumed that the free particle wave functions provide a good approximation. This can
be improved in future for more accurate analysis but is sufficient for our order of magnitude
estimates. A more refined treatment is postponed to future research. This will be required in
order to make precision comparison with experimental data. It may also be interesting to design
a controlled experiment whose outcome may be compared with theoretical predictions in order
to test our proposal.

It seems possible that low energy nuclear reactions are happening through our proposed
mechanism on a very wide scale as is often claimed by scientists working in this field. The
rates are expected to be low but observable even at low energies and low temperature. The
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process does not show a very strong dependence on energy of the initial state nuclei but does
depend on the flux of incident photons. The precise dependence needs to be determined by going
beyond our order of magnitude estimate and performing a more detailed analysis. Remarkably,
for fixed flux, the cross section actually increases with decrease in the energy of the incident
photon 1. Hence, for a given flux, the process is actually enhanced with decrease in the photon
frequency. Due to the frequency dependence, it will be interesting to reevaluate the effect of
low frequency electromagnetic waves on biological media taking our proposed reactions into
consideration. Our proposal may also be used in order to design a low energy experiment or
device which may provide optimal yield of fusion products. Given that the process can happen
at ambient conditions it is possible that such processes have been happening slowly throughout
the evolution of the Universe and may have some effect on the relative abundance of elements
observed today. Such reactions may also be taking place on the surface of the Earth as well
as in the interior and it will be interesting to study their implications. Hence it will be very
interesting to apply our formalism to the large number of experimental claims in this area. We
emphasize that with a suitable choice of interaction Hamiltonian our mechanism is applicable to
all LENRs. Hence we hope our work will initiate an exciting era in the study and applications
of low energy nuclear reactions eventually leading this field into precision science.
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