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Majorana fermion solution is obtained from the self-consistent effective Hamiltonian theory[1].
The ground state is conjectured to be a non-empty vacuum with 2 fermions, one for each type.
The first type is the original charged fermion and the second type the chiral charge-less Majorana
fermion. The Marjorana fermion is like a shadow of the first fermion cast by the non-empty vacuum.

Recently, Wang et. al.[1] apply the Bogolyubov trans-
formation to the 4 local many-body basis states and con-
jectured that for ground state, due to Pauli exclusion
principle, only 3-local basis is needed and further derived
a tight-binding version of the quadratic Hamiltonian. In
this letter, we formulate a similar variational Ansatz in
the continuum limit and solves the two chiral-symmetry
broken modes for fermionic excitations. We begin with
the following variational Ansatz:

For any spin-1/2 fermionic ground state, there exist an
effective vacuum field [Vac(x)), defined by the unitary
Bogolyubov transformation related to {a(x), 5(x)}:
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and an effective quadratic Hamiltonian, where the
fermionic 2-body interaction term can be reduced to a
local 2 x 2 effective field Veg():
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such that the quadratic effective Hamiltonian gives ex-
act ground state energy and the low-lying single fermion
excitation energy in the thermodynamic limit. Further-
more, the self-consistent ground state |Gnd) solved from
the effective quadratic Hamiltonian above must satisfy
the following self-consistent condition
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in addition to the usual charge-conservation condition
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The total energy functional for

{a(x), B(x)} is thus
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where p is the Lagrangian multiplier for the charge con-
servation condition, a.k.a the chemical potential or Fermi
energy, and ¢; are the eigenvalues of the single particle
quadratic effective Hamiltonian
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It is important to note that the self-consistent condition
Eq. (4) is much more stringent than just the expecta-
tion value of the {-paring operator is zero. To gain some
intuition on the non-double-occupancy of ¢-particles in
the ground state for a quadratic effective 2 x 2 Hamilto-
nian, a discussion on the relationship of the many-body
quadratic Hamiltonian to the single-particle solution to
the related single-particle Hamiltonian is in order. Simi-
lar to Dirac equation for single electron, the single parti-
cle effective Hamiltonian is a 4 matrix Hamiltonian. Its
eigenvalues and eigenstates are those of single particle en-
ergies and wavefunctions. The many-body ground state
is a filled Fermi sea of the single particle states up to the
level of total charge of the system. Thus, the variational
many-body wavefunction for the ground state is
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where
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and each #4; corresponds to an eigenstate ¢;(x) of the



single-particle Hamiltonian
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Note that in t-representation, each + annihilation oper-
ator is a mixture of ¢ creation and annihilation opera-
tors. The self-consistent constraint Eq. (4) simply en-
forces that
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Note that we have truncated the 4 x 4 Bogolyubov
transformation to 4 x 2 due to the ground state con-
straint. For excited states, since the vacuum state is not
empty, we shall put back the anti-particle states to al-
low particle-hole pair excitations. Thus we recover the
second quantized Dirac-Hamiltonian
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where A/ denotes the normal ordering operator, which
preserves the self-consistent constraint.

Next, we will show how to construct the effective local
tensor field for systems of long range 2-body interactions.
The second quantized form of a general 2-body interac-
tion in w)-representation is

N 1 ’ /
Ho =3 U(;;A///dmdw V(e — ") Tori0r 0
@)L (@) (2 )a ()
1
== dzdz'V(x — ') To ror N
20
dh@) (da@)il (@) — d(@ = @)oo ) (@)
=H2 + ﬁU

(14)

(15)
where the spatial off-diagonal interaction H, is
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and the self-interaction, a.k.a. the Hubbard term in con-
tinuum limit, is
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In simplifying the self-interaction term we have used the
following property for spin-isotropic interactions such as
Coulomb interaction
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and use 72 = f, we have
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Thus, the self-consistent condition Eq. (4) effectively
renormalizes away effect of 7ig4ne; on ground state
and single-fermion excitations, and the remaining self-
interaction term "¢ can be renormalized away by a
diagonal shifting of chemical potential, or zero point en-
ergy.

Thus the local effective tensor field in ¢-representation
is
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where the diagonal-potential %(m) in 1)-representation is
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where
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And by defining
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we have the local exchange potential in ¢-representation
as
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Now use the Dirac Hamiltonian for our iz(a:, D),
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we have
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For homogeneous system, f/eﬁr is a constant matrix.
The implication of a non-zero off-diagonal potential
Vi () in Veg is that the degeneracy of the Dirac equa-
tion is lifted and the eigenvalues of the Dirac equation at
moment k becomes

eurelk) = 1/ (me + 2V )2 + k2

eo(k) = V/m2 + k2

where m, is the renormalized electron mass. Assuming
all electron mass comes from Coulomb interactions, we
have
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To conclude, we have obtained the self-consistent
ground state for any fermionic systems. The low-energy

excitations of the system has two modes, one is of an ef-
fective quantized charge and the other does not. The sec-
ond mode, since it is charge-less, may be identified with
Majorana fermion and the other is the original electron.
Note that the Majorana mode is actually the a shadow of
the original fermion cast by the nonempty vacuum and is
always associated with the original particle. So it is more
like a resonance. Another thing to be noted is that the
resonance frequency, depends on the details of the exter-
nal field and the underlying off-diagonal single-fermion
density matrix element, thus much less stable than the
renormalized electron mass.
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