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1 Introduction

The flight of a pitch is a complicated function of the forces on the ball after it leaves a

pitcher’s hand. The force that the pitcher influences the most, the lift force, determines

how much a pitch trajectory will change due to spin. A typical pitch is airborne for about

400 milliseconds and the batter must predict its path and start his swing within the first

200 milliseconds [3]. Small errors in prediction impair the batter’s ability to make contact

and, as a result, pitchers benefit from using spin to alter pitch trajectories [5].

Characteristics of the lift force, which is also known as the Magnus force, have been

estimated from data acquired by the Trackman (TM) radar [6]. The TM system has been

used at MLB ballparks for several years to measure the trajectory and spin vector magnitude

for pitches [4]. The Hawk-Eye optical sensor was introduced as MLB’s primary pitch-

tracking technology in 2020. In addition to the measurements generated by the TM radar,

Hawk-Eye provides information about the direction of the spin vector. We show that this

additional information can be used to characterize a side force which has been theorized to

result from an asymmetric flow separation, aka seam shifted wake, caused by the surface

roughness of the ball [2, 16]. The existence of the side force is supported by differences in

observed and inferred spin axes [15] as well as by laboratory measurements [14].

2 Baseball Aerodynamics

The trajectory of a baseball traveling through the air depends on the translational velocity

vector v and the spin vector ω which has a magnitude defined by the spin rate and a

direction defined by the spin axis and the right-hand rule as shown in Fig. 1. Gravity pulls
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the ball down, drag acts opposite the velocity direction, and the lift and side forces cause

the ball to move in directions that are perpendicular to v. If we define the velocity and spin

vector directions by the unit vectors v̂ = v/|v| and ω̂ = ω/|ω|, then the lift force acts in the

direction of ω̂ × v̂ and the side force acts in the direction of ω̂ − (v̂ · ω̂)v̂. The geometry is

shown in Figure 2 where the direction of the undepicted side force is orthogonal to both the

drag and lift force directions.

Figure 1: Spin vector ω

Figure 2: Forces on a spinning baseball in flight
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3 The Lift Force

The magnitude of the lift force [12] is given by

|FL| =
1

2
ρACL|v|

2 (1)

where ρ is the air density, A is the ball cross-sectional area, and CL is the dimensionless

lift coefficient. Increases in CL increase |FL| and cause larger spin-induced changes in pitch

trajectory which typically lead to improved pitch quality [5].

The spin vector ω can be written as

ω = ω‖ + ω⊥ (2)

where ω‖ is parallel to v̂ and ω⊥ is perpendicular to v̂. ω‖ is known as the gyro component

of the spin and does not contribute to the lift force [13]. The magnitudes of ω‖ and ω⊥ are

given by

|ω‖| = |ω||ω̂ · v̂| (3)

and

|ω⊥| = |ω||ω̂ × v̂|. (4)

The spin efficiency [10] measures the proportion of the spin vector magnitude that is

transferred to the lift force FL. The spin efficiency is defined by

E =
|ω⊥|

|ω|
(5)

which simplifies to E = |ω̂ × v̂| using equation (4).

The dimensionless spin parameter S [7] plays an important role in determining CL and is

defined as the ratio of the speed of the ball surface relative to its center to the translational

speed of the ball center

S =
2πR|ω|

|v|
(6)
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where R is the ball radius.

The lift coefficient CL can be modeled by

CL = f(S)|ω̂ × v̂| (7)

where f(S) is an increasing function of S with f(0) = 0 [8]. We have developed a method [6]

to generate an estimate of f(S) from TM data. Since the lift and side forces cannot be

separated using TM, this estimate will tend to overestimate f(S). This effect, however,

is small since the pitches which are most influential in determining the estimate have the

largest spin efficiencies and correspondingly small side force contributions. Nevertheless,

we address this issue by using large sets of TM data [6] in combination with smaller sets

of laboratory optical data [1, 12] to recover the shape of f(S) and use a scale factor that

is estimated from Hawk-Eye data to compensate for the effects of the small side force

contributions. We showed in [6] that this scale factor is also useful to account for small

changes in the baseball from year-to-year. The estimate f̂(S, k) is represented by a Hill

function of the form

f̂(S, k) =
kASn

an + Sn
(8)

with parameters A = 0.370, n = 1.651, and a = 0.137 where the scale factor k accounts for

the aforementioned side force contributions and changes in the baseball.

4 The Side Force

4.1 Sensor Data

The TM sensor coordinate system has its origin at home plate with positive z up, posi-

tive y parallel to the ground plane in the direction from the origin to the pitcher’s mound,

and positive x pointing to the right from the catcher’s perspective. The TM system gener-

ates a nine-parameter model for each pitch in terms of the three-dimensional acceleration

vector a = (ax, ay, az) which is assumed constant over the pitch trajectory and the three-

dimensional velocity and position vectors for a point on the trajectory. These parameters
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can be used to recover the full path of the pitch from the measured release point using the

equations of motion. The system also estimates the magnitude of the spin vector |ω| from

the distribution of Doppler shifts. Hawk-Eye generates the same pitch descriptors as the

TM system but also provides information about the direction of the spin vector.

4.2 Constraining the Lift Acceleration

As described in Section 2, the acceleration for a pitch is the sum of acceleration components

due to gravity, drag, lift, and the side force

a = aG + aD + aL + aS. (9)

Publicly available Hawk-Eye data includes the direction θω of the projection of the spin

vector onto the xz-plane. If the unit spin vector is represented by ω̂ = (ωx, ωy, ωz) then θω

is given by

θω = atan2(ωz, ωx). (10)

We will show that θω can be used to estimate the three-dimensional spin vector ω and to

separate the acceleration components.

The measured θω restricts ω̂ to a one-parameter family of unit vectors

ω̂(ωy) = (a cos θω, ωy, a sin θω) (11)

where a =
√
1− ω2

y with −1 ≤ ωy ≤ 1. This, in turn, restricts the unit vector in the

direction of the lift acceleration to

âL(ωy) =
ω̂(ωy)× v̂

|ω̂(ωy)× v̂|
(12)

where v̂ is the unit velocity vector.

The magnitude of the lift acceleration is

|aL(ωy)| = |(a− aG) · âL(ωy)| (13)
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which enables CL(ωy) to be computed using equation (1) adjusted according to Newton’s

second law along with fine-grained air density data acquired as described in [6]. Since the

velocity vector is not constant, we use the mean velocity over each pitch trajectory for the

computation.

4.3 Pitch Groups

We consider the processing of groups of pitches for the 2020 season where each group

corresponds to a single pitcher and pitch type such as (Shane Bieber, curveball). The ith

group is characterized by v̂(i), S(i), CL(ωy, i), and θω(i) which are the respective means of

v̂, S, CL(ωy), and θω over the pitches in the group where the v̂ mean is renormalized to a

unit vector. We also define ω̂(ωy, i) using (11) with θω = θω(i).

These descriptors provide two ways to compute the spin efficiency for each group i. Using

the definition of equation (5) gives

E1(ωy, i) = |ω̂(ωy, i)× v̂(i)| (14)

and using equation (7) gives

E2(ωy, i, k) =
CL(ωy, i)

f̂(S(i), k)
(15)

where f̂(S, k) is given by (8) and k is an unknown scale factor as described in Section 3.

For a given group i and scale factor k, we define ω∗
y(i, k) as the value of ωy that minimizes

the absolute difference between the two spin efficiency estimates

|E1(ωy, i)− E2(ωy, i, k)| (16)

and define k∗ as the value of k that minimizes

N∑

i=1

|E1(ω
∗
y(i, k), i)−E2(ω

∗
y(i, k), i, k)| (17)

where N is the number of pitch groups. A 3-D spin vector direction estimate ω̂∗(i) for each

group i is then given from equation (11) by setting ωy = ω∗
y(i, k

∗) to obtain
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ω̂∗(i) = (a(i) cos(θω(i)), ω
∗
y(i, k

∗), a(i) sin(θω(i))) (18)

where a(i) =
√
1− (ω∗

y(i, k
∗))2.

4.4 Separating the Acceleration Components

Let a(i) be the mean acceleration vector for pitch group i. The mean drag acceleration for

group i can be computed as

aD(i) = − [(a(i)− aG) · v̂(i)] v̂(i). (19)

The lift direction unit vector for the group can be computed by substituting ω̂∗(i) into (12)

to get

âL(i) =
ω̂∗(i)× v̂(i)

|ω̂∗(i)× v̂(i)|
(20)

which gives an estimate of aL(i) as

aL(i) = [(a(i)− aG) · âL(i)] âL(i) (21)

The side acceleration aS(i) can then be estimated using

aS(i) = a(i)− aG − aD(i)− aL(i) (22)

4.5 The Side Force Coefficient

The magnitude of the side acceleration can be written

|aS| =
1

2m
ρACS|v|

2 (23)

where CS is the dimensionless side force coefficient [2]. We can estimate CS(i) for pitch

group i by replacing aS, ρ, and v by their respective means over the pitch group. Figure 3

is a scatterplot of CS(i) versus cosα(i) = |ω̂(i) · v̂(i)| for the 334 pitch groups that included

at least 200 pitches in 2020 where α is the angle between the spin and velocity vectors.
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From equation (3), cosα(i) is the fraction of the spin vector magnitude that contributes to

gyrospin. Sinkers are plotted in red, four-seam fastballs are plotted in green, and other pitch

types are plotted in blue. We see that the maximum value of CS increases approximately

linearly with cosα. A side force efficiency ratio could therefore be defined as the fraction

of the maximum CS that a pitch achieves given its cosα. We see that sinkers have the

highest value for this ratio. We see that the upper bound for CS for four-seam fastballs is

also approximately linear with a similar slope to the upper bound for sinkers. Approximate

upper bound lines for the sinker and four-seam fastball are plotted in Figure 3.
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Figure 3: CS versus cosα for pitch groups, 2020

4.6 Comparing the Lift and Side Forces

Since the lift and side forces are orthogonal, we can combine equations (1) and (23) to

compute the magnitude of their sum as

|FL + F S| = R
√
C2

L + C2

S (24)

where
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R =
ρA|v|2

2
· (25)

Thus, we can examine the contributions of CL and CS to the total force on a pitch. From

equation (7) the lift coefficient is given by

CL = f(S) sinα. (26)

Using the process described in Section 4.3 we found k = 0.962 for the estimate f̂(S, k)

in equation (8) for the 2020 Hawk-Eye data. We note that this value of k is smaller

than the values found in [6] using Trackman data. This is consistent with the ability to

remove the side force contributions when computing the lift coefficient model using Hawk-

Eye measurements.

The side force coefficient can be expressed as

CS = ESfS(cosα) (27)

where ES is the side force efficiency and fS(cosα) is the upper bound to CS as a function

of cosα. We approximate fS(cosα) using the equation of the red line in Figure 3 to get

fS(cosα) = 0.093 cosα + 0.0526. (28)

Figure 4 uses equations (26)-(28) to plot CL and CS as a function of α for a typical S

value of 0.22 and a side force efficiency ES of 1.0. We see that CL increases with α while

CS decreases and that the lift coefficient is larger over most of the range even with the

assumption of ES = 1. From equation (3), we see that CS will decrease as the magnitude

of the gyro component of the spin decreases for fixed ES.

4.7 Movement

Pitch movement [9] [11] is typically defined as the difference between the (x, z) location

of a pitch at home plate and the (x, z) location of a pitch thrown at the same speed that

is only acted on by gravity. Since the computed movement will depend on the distance

the pitch travels, we use the convention of computing movement from y = 40 feet. The
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Figure 4: CL and CS versus α for S = 0.22, ES = 1.0

movement vector for an acceleration vector a = (ax, ay, az) is given by (pfx x, pfx z) =

(0.5axt
2, 0.5(az − ag)t

2) where t is the time for the pitch to travel from y = 40 feet to home

plate and ag is the acceleration due to gravity in the z-direction.

The direction and magnitude of the movement vector have been shown to be key de-

terminants of a pitch’s effectiveness [5]. Table 1 displays the average amount of movement

due to each force by pitch type. We see that the four-seam fastball has the highest average

movement due to the Magnus force while the sinker has the highest average movement due

to the side force. The last column in the table provides the average run value of the move-

ment due to the side force per 100 pitches [5]. The side force provides the most value for

the split, sinker, and changeup and the least value for the curve.

Figures 5-11 examine the average movement vectors due to the three force components

for each pitch type for right-handed and left-handed pitchers. Each plot shows the average

movement from the pitcher’s point of view with respect to a circle of radius of twelve inches.
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Table 1: Average movement in inches due to each force by pitch type

pitch type Drag Magnus Side Total SideR/100
Changeup 1.33 7.98 2.40 9.38 0.42
Curve 1.49 8.81 1.28 7.81 0.03
Cutter 1.20 4.28 2.04 5.60 0.26

Four-seam 1.18 9.68 1.16 10.96 0.15
Split 1.42 7.29 2.79 8.66 0.67
Sinker 1.20 9.28 3.42 11.02 0.48
Slider 1.34 3.35 1.52 3.51 0.18

Figure 5: Movement due to Drag, Magnus, and Side forces, Changeup, Pitcher POV
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Figure 6: Movement due to Drag, Magnus, and Side forces, Curve, Pitcher POV

Figure 7: Movement due to Drag, Magnus, and Side forces, Cutter, Pitcher POV
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Figure 8: Movement due to Drag, Magnus, and Side forces, Four-seam, Pitcher POV

Figure 9: Movement due to Drag, Magnus, and Side forces, Split, Pitcher POV
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Figure 10: Movement due to Drag, Magnus, and Side forces, Sinker, Pitcher POV

Figure 11: Movement due to Drag, Magnus, and Side forces, Slider, Pitcher POV
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Table 2 lists all pitchers who averaged at least 4 inches of side force movement on

sinkers in 2020. Tables 3-8 lists all pitchers who averaged at least three inches of side force

movement on pitch types other than sinkers. We note that the side force movement of 6.52

inches on the four-seam for Tyler Rogers is uncharacteristic of this pitch type and sources

besides MLB including Brooks Baseball classify this pitch as a sinker.

Table 2: Side Force Movement leaders, Sinker, 2020

pitcher Movement (inches)
Lance Lynn 5.61

Kyle Hendricks 5.46
Adrian Houser 5.32
Lance McCullers 5.25
Jared Hughes 5.09
Dane Dunning 4.97
Gregory Soto 4.75
Zach Britton 4.75

Frankie Montas 4.70
Corbin Burnes 4.69
Alec Mills 4.65

Justus Sheffield 4.61
Spencer Turnbull 4.59

Brad Keller 4.52
Aaron Civale 4.49

Brandon Kintzler 4.48
Ryan Weber 4.32

Brandon Woodruff 4.26
Patrick Corbin 4.00
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Table 3: Side Force Movement leaders, Changeup, 2020

pitcher Movement (inches)
Pablo Lopez 4.67

Phillips Valdez 4.67
Kyle Gibson 3.83
Zac Gallen 3.70
Luis Castillo 3.64
Dylan Bundy 3.52
Luke Weaver 3.46
Dallas Keuchel 3.21
Logan Webb 3.03

Carlos Carrasco 3.02
Johnny Cueto 3.01

Table 4: Side Force Movement leaders, Curve, 2020

pitcher Movement (inches)
Framber Valdez 4.51
Jose Berrios 3.17

Table 5: Side Force Movement leaders, Cutter, 2020

pitcher Movement (inches)
Jon Lester 3.87

Wander Suero 3.38
Yusei Kikuchi 3.37

Ryan Yarbrough 3.32
Trevor Bauer 3.31
Will Harris 3.17
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Table 6: Side Force Movement leaders, Four-seam, 2020

pitcher Movement (inches)
Tyler Rogers 6.52
Mike Minor 3.50
Alex Cobb 3.33

J.B. Wendelken 3.25
Anthony Kay 3.19
Brent Suter 3.17
Brad Keller 3.00

Table 7: Side Force Movement leaders, Split, 2020

pitcher Movement (inches)
Alex Cobb 3.08

Table 8: Side Force Movement leaders, Slider, 2020

pitcher Movement (inches)
Matt Wisler 4.10

Mike Clevinger 3.96
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