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ABSTRACT

This paper introduces an automatic methodology to construct
emulators for costly radiative transfer models (RTMs). The
proposed method is sequential and adaptive, and it is based on
the notion of the acquisition function by which instead of op-
timizing the unknown RTM underlying function we propose
to achieve accurate approximations. The Automatic Gaussian
Process Emulator (AGAPE) methodology combines the inter-
polation capabilities of Gaussian processes (GPs) with the ac-
curate design of an acquisition function that favors sampling
in low density regions and flatness of the interpolation func-
tion. We illustrate the good capabilities of the method in toy
examples and for the construction of an optimal look-up-table
for atmospheric correction based on MODTRAN5.

Index Terms— Radiative transfer model, Gaussian pro-
cess, emulation, self-learning, look-up table, interpolation,
MODTRAN

1. INTRODUCTION

Agape (Ancient Greek ύγύπη, agápē) is “unconditional love
and charity, love of God for man and of man for God.”

Atmospheric correction of Earth Observation data aims to de-
rive surface properties (e.g. reflectance) through the inversion
of the atmospheric radiative transfer equations, and is perhaps
the most crucial step for successful remote sensing applica-
tions. Physically-based atmospheric correction methods [1]
are often preferred over faster empirical methods, such as
in [2], as their accuracy is also generally higher. These
physically-based methods rely on the inversion through a Ra-
diative Transfer Model (RTM) [3], which are however com-
putationally expensive and very often impractical for their
execution on a pixel-per-pixel basis [4]. To overcome this
limitation, large multi-dimensional look-up tables (LUTs) are
precomputed for their later interpolation [5]. However, the
computation of these LUTs still imposes a large computation
burden, requiring techniques of parallelization and execution
in computer grids. In order to further reduce this computation
burden, a possible strategy is to select an optimal subset of
anchor points in order to reduce the error of the interpolation
of LUTs. Compact and informative LUTs give raise, in turn,
to interesting possibilities for emulating RTMs [6].
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In this work, we address the problem of optimal selec-
tion of the points to be included in the LUT. The field has
received attention from (apparently unrelated) fields in statis-
tical signal processing and machine learning. The problem
has been cast as experimental optimal design [7, 8] of inter-
polators of arbitrary functions f . To reduce the number of
direct runs of the system (evaluations of f ), a possible ap-
proach is to construct an approximation of f starting with a
set of support points. This approximation is then sequentially
improved incorporating novel points given a suitable statisti-
cal rule. This topic is also related to different research areas:
optimal nonuniform sampling, quantization and interpolation
of continuous signals [9], the so-called Bayesian Optimiza-
tion (BO) problem [10, 11], and active learning [12]. Finally,
an interesting alternative approach is based on adaptive grid-
ding, where the aim is to construct a partitioning of X into
cells of equal size, where the cell edges have different lengths
depending on their spatial direction. This was the approached
followed in [13]. In order to find these lengths, the proposed
method uses a Gaussian Process (GP) with an automatic rel-
evant determination (ARD) kernel [14]. A clear problem of
such approach is that the number of hyper-parameters to be
estimated increases as the input dimension grows.

In this paper we introduce a simpler and more general ap-
proach. The proposed method is a sequential, adaptive and
automatic construction of the emulator based on the notion
of the acquisition function, similarly to the BO approach [10,
11]. Unlike in BO, our goal is not the optimization of the un-
known underlying function f but its accurate approximation
f̂ . Given a set of initial points, the emulator is built automat-
ically with the online addition of new nodes maximizing the
acquisition function at each iteration. Theoretically, the ac-
quisition function should incorporate (a) geometric informa-
tion of the unknown function f , and (b) information about the
distribution of the current nodes. Indeed, areas of high vari-
ability of f(x) requires the addition of more points as well as
areas with a small concentration of nodes requires the intro-
duction of new inputs. Thus, the experimental design problem
is converted into a sequential optimization problem where the
function to be optimized involves geometric and spatial infor-
mation (regardless of the dimensionality of the input space).

2. AUTOMATIC EMULATION

This section introduces the proposed scheme for automatic
emulation. We start by fixing the notation and presenting the
processing scheme, and then we discuss on the specifics of



the acquisition and interpolation functions. Some implemen-
tation details and remarks are finally given.

2.1. Notation and processing scheme

Let us consider a D-dimensional input space X , i.e., x ∈
X ⊂ RD and, for the sake of simplicity, we assume that
X is bounded. Let us denote the system to be emulated as
f(x) : X 7→ R, e.g. a complicated transfer equations mod-
eled with an expensive RTM. Given an input matrix Xt =
[x1, · · · ,xmt ] of dimensionD×mt, we have a vector of out-
puts yt = [y1, . . . , ymt

]ᵀ, where yt = f(xt), where the index
t ∈ N+ denotes the t-th iteration of the algorithm. Essentially,
at each iteration t one performs an interpolation f̂t(x|Xt,yt)
followed by an optimization step that updates the acquisition
function, At(x), updates the set Xt+1 = [Xt,xmt+1] adding
a new node, set mt ← mt + 1 and t← t+ 1. The procedure
is repeated until a suitable stopping condition is met such as
a certain maximum number of points is included or a least
precision error ε is achieved, ‖f̂t(x)− f̂t−1(x)‖ ≤ ε. We as-
sume scalar outputs in order to simplify the description of the
technique, yet the algorithm can be easily extended to multi-
output settings. Figure 1 shows a graphical representation of
a generic automatic emulator.

Interpolatorf(x)Xt At(x)

t t + 1

Xt+1yt
bft(x|Xt,yt)

Fig. 1. Graphical representation of an automatic emulator.

2.2. The Acquisition Function

Let us start describing the general properties that a generic
acquisition function At(x) should satisfy. We consider an
acquisition function defined as the product of two functions,
a geometry term Gt(x) and a diversity term Dt(x), i.e.,

At(x) = [Gt(x)]βt Dt(x), βt ∈ [0, 1], (1)

where Gt(x) : X 7→ R, Dt(x) : X 7→ R and hence At(x) :
X 7→ R. Moreover, βt is an increasing function with respect
to t, with limt→∞ βt = 1 (or βt = 1 for t > t′).

The first functionGt(x) represents some suitable geomet-
rical information of the hidden function f . The second func-
tionDt(x) depends on the distribution of the points in the cur-
rent vector Xt. More specifically, Dt(x) will have a greater
probability mass around empty areas within X , whereas
Dt(x) will be approximately zero close to the support points
and exactly zero at the support points, i.e., Dt(xi) = 0, for
i = 1, . . . ,mt and ∀t ∈ N. Since f is unknown, the func-
tion Gt(x) can be only derived from information acquired
in advance or by considering the approximation f̂ . Clearly,
in this case, the approximation f̂ is usually not well-fit in
the first iterations of the algorithm, so that the information
provided by Gt(x) should be disregarded or “tempered” (as
in tempering strategies for optimization [15]) in these first

iterations. This is the reason of using the tempering value βt.
If βt = 0, we disregard Gt(x) and At(x) = Dt(x) whereas,
if βt = 1, we have At(x) = Gt(x)Dt(x). An example of
acquisition function is given latter in Figure 2 (cf. §3).

2.3. The Gaussian Process Interpolator

An important step is the selection of the interpolator function
f̂ . In our work we consider a Gaussian Process (GP) interpo-
lator [14], which has been successfully used in remote sens-
ing [16]. Hereafter, the automatic emulator using GP is called
AGAPE. GPs give a full posterior probability from which we
can estimate the predictive mean µGP and variance σ2

GP for a
new point x. The predictive mean of the interpolating func-
tion for a new point x is thus given by

E[f̂t(x)] = µGP(x) = f̂t(x|Xt,yt) = kᵀ
xK
−1yt, (2)

where we defined a kernel function k(x, z) : X ×X 7→ R, the
corresponding kernel matrix Kij := k(xi,xj) of dimension
mt ×mt containing all kernel entries, and the kernel vector
kx = [k(x,x1), . . . , k(x,xmt

)]ᵀ that contains the similari-
ties between the input point x and the observed ones at iter-
ation t. The interpolation for x can be simply expressed as
a linear combination of f̂t(x) = kxα =

∑mt

i=1 αik(x,xi),
where the weights α = [α1, . . . , αmt

]ᵀ are α = K−1yt.1
The GP formulation provides also an expression for the

predictive variance, which helps us define the diversity term:

V[f̂t(x)] = σ2
GP(x) = k(x,x)− kᵀ

xK
−1kx, (3)

Here we consider the squared exponential kernel function,

k(x, z) = exp
(
−‖x− z‖2

2δ2

)
, (4)

where ‖·‖ is the `2-norm, and δ > 0 is a positive scalar hyper-
parameter. Other alternative kernels can be used depending
on the specific application. Note that σ2

GP(xi) = 0 for all
i = 1, . . . ,mt and σ2

GP(x) depends on the distance among
the support points xt, and the chosen kernel function k and
associated hyper-parameter δ. For this reason, the function
σ2

GP(x) is a good candidate to represents the distribution of the
xt’s since it is zero at each xi and higher far from the points
xi’s. Moreover, σ2

GP(x) takes into account the information of
the GP interpolator as previously remarked. Therefore, we
consider as the diversity term D(x) := σ2

GP(x), i.e., D(x)
is induced by the GP interpolator. As geometric information,
we consider enforcing flatness of the interpolation function,
and thus aim to minimize the norm of the the gradient of the
interpolating function f̂t w.r.t. the input data x, i.e.,

G(x) =
∥∥∥∇xf̂t(x|Xt,yt)

∥∥∥ =

∥∥∥∥∥
mt∑

i=1

αi∇xk(x,xi)

∥∥∥∥∥ . (5)

1Note that the solution reduces to invert the kernel matrix K. This is
related to the fact that interpolation is different from regression. In regression
settings, we typically introduce an extra hyper-parameter to account for the
noise variance, and that allows to control the complexity of the solution.



The intuition behind this choice is that wavy regions of f
(estimated by f̂t) require more support points than flat re-
gions. The gradient vector of k(x,xi) in Eq. (4) with x =
[x(1), . . . , x(d)]ᵀ and xi = [x(1)

i , . . . , x
(d)
i ]ᵀ, can be computed

in closed-form,

∇xk(x,xi) = −k(x,xi)

δ2
[(x(1)−x(1)

i ), . . . , (x(d)−x(d)
i )]ᵀ, (6)

which is used in Eq. (5) to estimate the geometry function
G(x). Several possibilities can be used as G(x), for instance,

G(x) =

∥∥∥∥∥
1
mt

mt∑

i=1

∇x [k(x,xi)]

∥∥∥∥∥, (7)

that reduces the dependence to the current approximation
f̂t. Finally, the acquisition function can be readily defined
as At(x) = [Gt(x)]βt Dt(x) as given in Eq. (1). For the
parameter we suggest βt = 1 − exp(−γt), where γ ≥ 0 is a
positive scalar, established by the user.

2.4. Optimization and Hyperparameter Tuning

An important advantage of using a GP interpolator is that the
application and coding for high dimensional input space is
straightforward. Furthermore, the GP formulation suggests
directly a suitable function D(x) = σ2

GP(x). However, un-
like in classical piece-wise linear or spline interpolation, we
have to tune the hyper-parameter δ. From a practical point
of view, we desire to find the highest value δ∗ such that the
resulting kernel matrix K is well-conditioned and thus invert-
ible. This was ensured by using a line search for the `2-norm
condition number [17, Chapter 9]. In order to optimize the ac-
quisition functionAt(x), we have employed different parallel
tempered-MCMC chains, that is parallel simulated annealing
methods as in [15]. Furthermore, in high dimensional input
spaces, the stop condition can be simplified considering the
evaluation of f̂t−1 and f̂t only in a set of checking points to
control the variation between f̂t−1 and f̂t.

3. SIMULATIONS

3.1. Toy Example

In order to test AGAPE, first we consider a toy example where
we can compare the achieved approximation f̂t(x) with the
underlying function f(x) which is unknown in the real-world
applications. In this way, we can exactly check the true accu-
racy of the obtained approximation using different schemes.
For the sake of simplicity, we consider the function

f(x) =

4X
i=1

exp
ˆ
−ai(x− bi)2

˜
+ c log(x), (8)

with x ∈ X = (0, 20] (hence D = 1), a1 = a2 = 0.5,
a3 = 5, a4 = 1, b1 = 1, b2 = 6, b3 = 12, b4 = 15 and
c = 0.35 (see Fig. 2). We start with m0 = 10 support points,
Xt = [x1, . . . , xm0 ], randomly chosen at each run within
the interval [0, 15]. More specifically, xj ∼ U([0, 15]) for

j = 1, . . . ,m0. We add sequentially and automatically other
21 points (so that the final number of points is m21 = 31) us-
ing different techniques: (a) random choice, uniformly within
X = (0, 20], (b) a deterministic approach filling the greatest
distance between two consecutive points, adding the middle
point, (c) AGAPE with Eqs. (7) and γ = 0 (AGAPE-1) and
(d) AGAPE with Eqs. (7) and γ = 0.1 in βt = 1− exp(−γt)
(AGAPE-2). We averaged the results over 104 independent
runs. We compare the estimated `2 and `∞ distances between
f̂t(x) and f(x) after the new 11 points have been added. The
results are given in Table 1, showing the `2 and `∞ distances,
with the corresponding 95% confidence intervals, and the per-
centage of distance reduction w.r.t. the random approach. We
can observe that the AGAPE schemes outperform the other
strategies. Furthermore, the incorporation of the geometric
information in AGAPE-2 provides the best results, reducing
the final distances of 57.7% and 67.3% respectively for the
`2 and `∞ distances, w.r.t. the random approach. Figure 2
depicts the function f(x) in Eq. (8), the approximation f̂(x),
and the acquisition function At(x) obtained after 3 iterations
of AGAPE, in a specific run.

0 5 10 15 20

0 5 10 15 20

bft(x)

f(x)

At(x)

Fig. 2. The function f(x) (top - solid line), its approximation
f̂t(x) (top - dashed line) and the acquisition function At(x)
(bottom - solid line) of AGAPE after 3 iterations.

3.2. Emulation of MODTRAN5

Our second example focuses on the optimization of selected
points for a MODTRAN5-based LUT. MODTRAN5 is con-
sidered as de facto standard atmospheric RTM for atmo-
spheric correction applications [3]. This RTM solves the
radiative transfer equation in the atmosphere considering the
effect of scattering and absorption by gasses and aerosols for
a flexible configuration of viewing and illumination condi-
tions and surface reflectance. In our test application, and for
the sake of simplicity, we have considered D = 2 with the
Aerosol Optical Thickness at 550 nm (τ ) and ground eleva-



Table 1. Results of the numerical example in Section 3.1.
Approach Distance `2 Perc. of Reduction Distance `∞ Perc. of Reduction
Random 0.0461 - [0.0440, 0.0481] −− 0.4744 - [0.4471, 0.5016] −−
Determ. 0.0388 - [0.0345, 0.0431] -15.83% 0.3905 - [0.3355, 0.4455] -17.68%
AGAPE-1 0.0209 - [0.0205, 0.0213] -54.66% 0.1643 - [0.1608, 0.1678] -65.36%
AGAPE-2 0.0195 - [0.0191, 0.0199] -57.70% 0.1549 - [0.1517, 0.1582] -67.34%

Table 2. Averaged (over 103 runs) number of nodes mt.
Random Latin Hypercube AGAPE

28.43 16.69 9.16

tion (h) as key input parameters. The underlying function
f(x) consists therefore on the execution of MODTRAN5 at
given values of τ and h at the single output wavelength of
760 nm (i.e. bottom of the O2-A band). The input parameter
space is bounded to 0.05-0.4 for τ and 0-3 km for h. In order
to test the accuracy of the different schemes, we have evalu-
ated f(x) at all the possible 1750 combinations of 35 values
of τ and 50 values of h. Namely, this thin grid represents the
ground-truth in this example.

We test (a) a random approach choosing points uniformly
within X = [0.05, 0.4]× [0, 3], (b) the Latin Hypercube sam-
pling (see, e.g., [13]) and (c) AGAPE (with γ = 0.1 and
the parallel MCMC for the optimization [15]). We start with
m0 = 5 points x1 = [0.05, 0]>, x2 = [0.05, 3]>, x3 =
[0.4, 0]>, x4 = [0.4, 3]> and x5 = [0.2, 1.5]> for all the
techniques. We compute the final number of nodes mt re-
quired to obtain an `2 distance between f and f̂ smaller than
0.03, with the different methods. The results, averaged over
103 runs, are shown in Table 2. AGAPE requires the addition
of ≈ 4 new points to obtain a distance smaller than 0.03.

4. CONCLUSIONS

We introduced an automatic method to construct emulators
and optimal look-up-tables for costly radiative transfer mod-
els (RTMs). We proposed an iterative scheme combining the
interpolation capabilities of GPs with the design of an ac-
quisition function that fosters a suitable choice of the nodes
and flatness of the interpolation function. The combination
of the geometric and diversity sampling criteria was possible
because the gradient of GP predictive mean function yields a
closed-form expression. We illustrated the good capabilities
of the method in two examples, one involving the atmospheric
correction based on the execution of MODTRAN5. Future
work is tied to the development of multi-output schemes and
testing in other costly RTMs.
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