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ABSTRACT

This paper introduces a methodology to construct emulators
of costly radiative transfer models (RTMs). The proposed
methodology is sequential and adaptive, and it is based on
the notion of acquisition functions in Bayesian optimization.
Here, instead of optimizing the unknown underlying RTM
function, one aims to achieve accurate approximations. The
Automatic Multi-Output Gaussian Process Emulator (AMO-
GAPE) methodology combines the interpolation capabilities
of Gaussian processes (GPs) with the accurate design of an
acquisition function that favors sampling in low density re-
gions and flatness of the interpolation function. We illustrate
the promising capabilities of the method for the construction
of an emulator for a standard leaf-canopy RTM.

Index Terms— Radiative transfer model, Gaussian pro-
cess, emulation, self-learning, look-up table, interpolation,
PROSAIL

1. INTRODUCTION

Physically-based radiative transfer models (RTMs) have con-
tributed fundamentally in understanding the radiation pro-
cesses occurring on the Earth’s surface and their interac-
tions with water, vegetation and atmosphere [1]. RTMs are
physically-based computer models that describe scattering,
absorption and emission processes [2]. They are useful in
a wide range of applications including (i) developing inver-
sion models to accurately retrieve atmospheric and vegetation
properties from remotely sensed data (see [3] for a review),
(ii) sensitivity analysis, and (iii) to generate artificial scenes
as would be observed by a sensor [4].

Continuous improvement in the accuracy of RTMs have
diversified them from simple turbid medium models towards
advanced ray tracing models that allow for explicit 3D repre-
sentations of complex scenes. Consequently, when it comes
to selecting an RTM for applications that demand many sim-
ulations, the current pragmatic approach is to search for a
good balance between acceptable accuracy and computational
complexity [3].

RTMs are typically used in remote sensing applications by
the generation of look-up tables (LUTs) [3]. LUTs are pre-
stored RTM input-output data pairs. At the retrieval phase,
one then seeks through the LUT by means of interpolation
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techniques [5]. However, such techniques are very computa-
tionally and memory demanding, especially when facing high
dimensional problems. Emulation of costly codes is an alter-
native to this type of approach. The core idea of emulation is
approximating the original deterministic model by a surrogate
statistical learning model, also referred to as a meta-model, or
emulator [6–8]. When an accurate emulator has been devel-
oped based on a limited set of simulations, it can then approx-
imate the original RTM at a tiny fraction of the original speed
and this be readily applied in tedious processing routines [9].
Essentially, an emulator functions as an interpolation method,
but based on statistical learning principles.
In this work, we advance in the construction of optimal emu-
lators. Optimality is here defined in terms of both aproxima-
tion error and compactness of the generated LUT. We are in-
terested in addressing the problem of optimal selection of the
points to be included in the LUT, and in turn to optimize the
corresponding emulator. This problem has received attention
from different sub-fields of statistical signal processing and
machine learning: from experimental optimal design [10] of
interpolators of arbitrary functions f , to optimal nonuniform
sampling, quantization and interpolation of continuous func-
tions [11], Bayesian Optimization (BO) [12], and recently
from active learning [13]. Our proposal for automatic emula-
tion and LUT construction is rooted in the field of BO, more
specifically in the concept of the acquisition function [12].
Unlike in BO, however, our goal is not the optimization of the
unknown underlying function f but its accurate approxima-

tion f̂ . We extend the preliminary work in [8] to a multioutput
framework. Given a set of initial points, the emulator is built
automatically with the addition of new points maximizing the
acquisition function at each iteration. The design of the ac-
quisition function is crucial. To this end we use Gaussian
processes [7, 14] for the modeling and inference. GPs pro-
vide not only state-of-the-art approximation errors, but also
mathematical tractability. The use of GPs allows us to design
acquisition functions involving analytical expressions. Our
method incorporates two terms, accounting for geometric in-
formation of the unknown function f , and diversity informa-
tion of the included nodes. Areas with either high variability
or uncertainty of f thus require the addition of more points.

2. AUTOMATIC EMULATION

In this section, we describe the generic automatic emulation
(AE) procedure of an unknown complex system f(x), e.g.,
an expensive RTM model. We start by fixing the notation
and then presenting the processing scheme. Let us consider a



D-dimensional bounded input space X , i.e., x ∈ X ⊂ R
D.

We consider a complex system with P outputs, f(x) : X 7→
R

P×1, i.e., Furthermore, let t ∈ N
+ denote the index of the

AE algorithm, and mt be the number of datapoints used by
the algorithm at iteration t. Then, corresponding to an input
matrix Xt = [x1, · · · ,xmt

] of dimension D×mt, we have a
P ×mt matrix of outputs,

Yt = [y1, . . . ,ymt
] (1)

where yk = [y1,k, . . . , yP,k]
⊺ = f(xk) with k = 1, . . . ,mt.

At each iteration t, given Xt and Yt, the AE method con-

structs an interpolator f̂t(x). Then, an acquisition function

At(x) : RD → R is built according to some suitable crite-
ria. This is followed by an optimization step for obtaining the
next input xmt+1, more specifically,

xmt+1 = argmax
x∈X

At(x). (2)

Thus, we update Xt+1 = [Xt,xmt+1], Yt+1 = [Yt,yt+1 =
f(xt+1)] adding a new node, set mt ← mt+1 and t← t+1.
The procedure is repeated until a stopping condition is met
such as a certain maximum number of points is included or

a least precision error ǫ is achieved, ‖f̂t(x) − f̂t−1(x)‖ ≤ ǫ.
Figure 1 shows a graphical representation of a generic multi-
output AE procedure. In the next sections, we present a spe-
cific implementation involving Gaussian Process interpola-
tors [14].

RTM f(x) Interpolator Acquisition At(x)

yt f̂t(x|Xt,Yt)

xt xt+1t← t+ 1

Fig. 1. Scheme of an automatic emulator.

3. THE GAUSSIAN PROCESS INTERPOLATOR

An automatic emulator is completely defined by the choice

of the interpolation method for building f̂(x) and the con-
struction procedure for the acquisition function At(x). In this
work, we consider a Gaussian Process (GP) interpolator [14],
which has been successfully used in remote sensing [7].

For simplicity, first let us consider the GP solution for
the scalar output case, i.e., P = 1. Hence, in this case the
vectorial function y = f(x) is a simple standard function
y = f(x), and the matrix

Yt = [y1,1, . . . , y1,mt
],

becomes a 1×mt vector. GPs give a full Gaussian predictive
density with predictive mean µGP and variance σ2

GP for an in-
put point x. The predictive mean of the interpolating function
for a new point x is given by

f̂t(x) = µGP(x) = k⊺

xK
−1Y

⊺

t , (3)

where we defined a kernel function k(x, z) : X ×X 7→ R, the
corresponding kernel matrix Kij := k(xi,xj) of dimension
mt × mt containing all kernel entries, and the kernel vec-
tor kx = [k(x,x1), . . . , k(x,xmt

)]⊺ of dimension mt × 1.
The interpolation for x can be simply expressed as a linear

combination of f̂t(x) = k⊺

xα =
∑mt

i=1
αik(x,xi), where the

weights α = [α1, . . . , αmt
]⊺ are α = K−1Y

⊺

t . The GP for-
mulation provides also an expression for the predictive vari-
ance

σ2
GP(x) = k(x,x)− k⊺

xK
−1kx. (4)

In this work, we consider the exponentiated quadratic kernel
function,

k(x, z) = exp

(
−
‖x− z‖2

2δ2

)
, (5)

where ‖ · ‖ is the ℓ2-norm, and δ > 0 is a positive scalar
hyper-parameter. In this work, the scalar hyper-parameter is
tuned by maximizing the marginal likelihood [14]. Note that

the norm of the gradient of the interpolating function f̂t w.r.t.
the input data x can be easily computed,

Gr(x) =
∥∥∥∇xf̂t(x|Xt,yt)

∥∥∥ =

∥∥∥∥∥

mt∑

i=1

αi∇xk(x,xi)

∥∥∥∥∥ . (6)

The gradient vector of k(x,xi) in Eq. (5) with x = [x1, . . . , xD]⊺

and xi = [x1,i, . . . , xD,i]
⊺, is

∇xk(x,xi) = −
k(x,xi)

δ2
[(x1 − x1,i), . . . , (xD − xD,i)]

⊺
. (7)

3.1. Multi-output GP interpolator

Several Multi-output GP schemes have been proposed [15].
For the sake of simplicity, in this work we consider a simple
approach. Let us define the p-th row of the matrix Yt as

ỹp,t = [yp,1, . . . , yp,mt
],

with p = 1, . . . , P as shown in Eq. (1). We apply one GP
interpolator for each output, i.e.,

f̂t(x) =





f̂1,t(x) = k
⊺

x,1K
−1

1 ỹ
⊺

1,t

...

f̂P,t(x) = k
⊺

x,PK
−1

P ỹ
⊺

P,t

, (8)

where the subindex in the kernel vector kx,p and the ker-
nel matrix Kp denotes the dependence to a different hyper-
parameter δp (we learn one for each output). Hence, for each
output, we have a different variance

σ2
p(x) = kp(x,x)− k⊺

x,pK
−1
p kx,p. (9)

Naturally, we have a different norm of the gradient of the in-
terpolating function, Grp(x), one for each output as well.



4. THE ACQUISITION FUNCTION

Let us start describing the general properties that a generic
acquisition function At(x) should satisfy [8]. We consider an
acquisition function defined as the product of two functions,
a geometry term Gt(x) and a diversity term Dt(x), i.e.,

At(x) = [Gt(x)]
βt Dt(x), βt ∈ [0, 1], (10)

where Gt(x) : X 7→ R, Dt(x) : X 7→ R and hence At(x) :
X 7→ R. Moreover, βt is an increasing function with respect
to t, with limt→∞ βt = 1 (or βt = 1 for t > t′). The first
function Gt(x) represents some suitable geometrical infor-
mation of the hidden function f . The second function Dt(x)
depends on the distribution of the points in the current vec-
tor Xt. We desire that Dt(x) is approximately zero close to
the nodes (Dt(xi) = 0, for i = 1, . . . ,mt and ∀t ∈ N) and
takes higher values around empty areas within X . Since f is
unknown, the function Gt(x) can be only derived from infor-
mation acquired in advance or by considering the approxima-

tion f̂ . The approximation has usually not achieved a good fit
in the first iterations of the algorithm, so that the information
provided by Gt(x) should be disregarded or “tempered” (as
in tempering strategies for optimization [16]) in these first it-
erations. This is the reason of using the tempering value βt.
If βt = 0, we disregard Gt(x) and At(x) = Dt(x) whereas,
if βt = 1, we have At(x) = Gt(x)Dt(x).

Note that σ2
p(xi) = 0 for all i = 1, . . . ,mt and for all p,

and each σ2
p(x) depends on the distance among the support

points xt, and the chosen kernel function k and associated
hyper-parameter δp. For this reason, it is reasonable to con-
sider as diversity term the following function

Dt(x) :=
P∏

p=1

σ2
p(x). (11)

We wish to use the geometric information term to sample
where the norm of the gradient is high and thus define

Gt(x) :=

P∏

p=1

Grp(x). (12)

The intuition behind this choice is that wavy regions of f

(estimated by f̂t) require more support points than flat re-
gions. Then, the acquisition function is defined At(x) =

[Gt(x)]
βt Dt(x) as in Eq. (10). For the parameter βt, we

suggest βt = 1− exp(−γt), where γ ≥ 0 is a positive scalar,
established by the user.

5. EXPERIMENTAL RESULTS

We tested our method for the emulation of the standard leaf-
canopy PROSAIL model. PROSAIL is the most widely
used RTM in the last twenty years in remote sensing stud-
ies [17]. PROSAIL models canopy reflectance using the
turbid medium assumption (i.e., modelling the canopy as a
turbid medium for which leaves are randomly distributed),

which is particularly well suited for homogeneous canopies.
PROSAIL simulates leaf reflectance from 400 to 2500 nm
with a 1 nm spectral resolution as a function of biochemistry
and structure of the canopy, its leaves, the background soil
reflectance and the sun-sensor geometry. Leaf optical prop-
erties are given by the mesophyll structural parameter (N )
and leaf chlorophyll (Chl), dry matter (Cm), water (Cw),
carotenoid (Car) and brown pigment (Cbr) contents. At
canopy level PROSAIL is characterized by leaf area index
(LAI), the average leaf angle inclination (ALA) and the hot-
spot parameter (Hotspot). The system geometry is described
by the solar zenith angle (θs), view zenith angle (θν), and
the relative azimuth angle between both angles (∆Θ). In
this experiment, for ease of computation, we chose as free
parameters the most important variable at leaf and canopy-
level respectively, namely Chl and LAI, and keep the rest
fixed. Table 1 shows the values for the remaining parameters
which are set for simulation of wheat. This results in an
input space of dimension two, where we restrict the variables
Chl ∈ [0; 80]µg/cm2 and LAI ∈ [0; 8]. We scale down
the output dimension from 2101 to 20 by principal compo-
nent analysis (PCA). This results in a function f(x), where
x = [Chl, LAI], mapping from an input space of dimension
D = 2 to the output space of dimension P = 20.

Table 1. Values of physical parameters used for simulating
with the PROSAIL model, corresponding to wheat.

N Cm Cw Car Cbr

1.5 0.01 µg/cm2 0.01 µg/cm2 8 g/cm2 0

ALA Hotspot θs θν ∆Θ
Spherical 0.01 30◦ 10◦ 0

We compare different approaches to sampling the data-
points that lead to a good emulator. In order to test the ac-
curacy of the different schemes, we evaluated f(x) at all the
possible 4900 combinations of 70 values of Chl and 70 val-
ues of LAI on a grid. This fine grid represents the ground-
truth in the experiment. It is on this dataset that we perform
PCA in order to obtain the 20 principal components used for
dimensionality reduction.

We test (a) a random approach choosing points uniformly
at each iteration, (b) the Latin Hypercube sampling approach
(see, e.g., [6]) and (c) AMOGAPE, using simulated anneal-
ing for optimization of At. We start with 50 points gener-
ated by LHS sampling for all the methods. For each added
point we compute the test root mean square error (RMSE) of

f̂ applied to the grid in the original (reflectance domain). In
other words the predicted 20-dimensional vector is projected
back into 2101-dimensional reflectance space and compared
to ground truth. The multioutput RMSE for the Nt = 4900
test points with output dimension Prefl. = 2101 is computed
as follows,

RMSE =

√√√√ 1

Nt

Nt∑

i=1

1

Prefl.

Prefl.∑

p=1

(yp,i − ŷp,i)2. (13)

The results, averaged over 50 runs, are shown in Fig. 2. The
LHS sampling method exhibits a lot of variance as it chooses
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Fig. 2. RMSE on test grid computed for emulators using dif-
ferent sampling methods. Each method is initialized with 50
points sampled with the LHS scheme, upon which 50 more
are sampled.

a completely new set of points for each iteration, as opposed
to the other approaches which sequentially add points to exist-
ing datasets. We see how the AMOGAPE rather quickly iden-
tifies the points it needs to build a stronger emulator, while
the LHS decreases the error and in a slower manner. The
completely random sampling method, not being designed to
maximize information gained, does not manage to reach the
same level of error as the other methods. This gap is expected
to widen as the input dimensionality grows.

6. CONCLUSIONS

We introduced an automatic methodology for constructing
emulators for costly RTMs. The methodology iteratively in-
corporates new sample points that meet both diversity and ge-
ometry criteria, thus sampling in low-density and more ’com-
plex’ regions. This is accomplished by building an acquisi-
tion function that takes into account predictive variance and
the norm of the gradient. The combination of the geomet-
ric and diversity sampling criteria was possible because the
gradient of the GP predictive mean function yields a closed-
form expression. We illustrated the good capabilities of the
method through emulation of leaf-canopy PROSAIL RTM.
Future work will tackle more challenging cases of emulation
involving more parameters and the MODTRAN model.

7. REFERENCES

[1] S. Jacquemoud, W. Verhoef, F. Baret, C. Bacour, P.J. Zarco-
Tejada, G.P. Asner, C. François, and S.L. Ustin, “PROSPECT
+ SAIL models: A review of use for vegetation characteriza-
tion,” Remote Sensing of Environment, vol. 113, no. SUPPL.
1, pp. S56–S66, 2009.

[2] M. Deiveegan, C. Balaji, and S.P. Venkateshan, “A polarized
microwave radiative transfer model for passive remote sens-
ing,” Atmospheric Research, vol. 88, no. 3-4, pp. 277–293,
2008.

[3] J. Verrelst, G. Camps-Valls, J. Muñoz Marı́, J.P. Rivera, F. Ver-
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