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Abstract.-This chapter applies Cantor’s diagonal argument to a table of rational num-
bers proving the existence of rational antidiagonals.
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Introduction

P205 This chapter proves a result on the decimal expansion of the rational
numbers in the rational open interval (0, 1), which is subsequently used
to discuss on a reordering of the rows of a table T that is assumed to
contain all rational numbers within (0, 1). A reordering such that the
diagonal of the reordered table T could be a rational number from which
different rational antidiagonals (elements of (0, 1) that cannot be in T )
could be defined. If that were the case, and for the same reason as in
Cantor’s diagonal argument, the rational open interval (0, 1) would be
non-denumerable, and we would have a contradiction in set theory, because
Cantor also proved the set of the rational numbers is denumerable.

Theorem of the nth Decimal

P206 Let Q01 be the set of all rational numbers in the rational open in-
terval (0, 1) expressed in decimal notation and completed, in the cases of
finitely many decimal digits, with a denumerable infinite number of 0’s
in the right side of their corresponding decimal expansions (numerical ex-
pressions that include all decimals digits of the number). According to the
hypothesis of the actual infinity, those decimal expressions exist as comple-
te totalities. Some infinite decimal expressions of rational numbers as, for
instance, 0, 30000000 . . . and 0, 299999999 . . . are different when conside-
red as strings of numerals (symbols), although they can also be considered
as representing the same number. Here, we are not considering all strings
of numerals that represent rational numbers in Q01 but all rational num-
bers in Q01 each with a unique decimal expression, the one just indicated.
On the other hand, and for the reasons given in P217, the consideration
of those double expressions has no consequences on the main argument of
this chapter.

1

https://www.researchgate.net/publication/349426775_Infinity_Put_to_the_Test


2 Cantor Diagonal Argument

P207 Let d be any decimal digit, n any natural number, and q0 any
element of Q01 whose nth decimal digit is just d, for instance:

q0 = 0,11(n−1). . . 1d000 . . . (1)

From q0 it is possible to define different sequences of different elements
of Q01, all of them with the same nth decimal digit d. For example the
sequence 〈qn〉:

q1 = 0,11(n−1). . . 1d1000 . . . (2)

q2 = 0,11(n−1). . . 1d11000 . . . (3)

q3 = 0,11(n−1). . . 1d111000 . . . (4)

q4 = 0,11(n−1). . . 1d1111000 . . . (5)

q5 = 0,11(n−1). . . 1d11111000 . . . (6)

. . .

qi = 0,11(n−1). . . 1d111 (i). . . 1000 . . . (7)

. . .

The bijection (one to one correspondence) f between the set N of the
natural numbers and 〈qn〉 defined by

∀i ∈ N : f(i) = qi (8)
proves the following:

a)Theorem P207, of the nth Decimal.-For any given decimal digit and

any given position in the decimal expansion of the elements of Q01,

there exists a denumerable subset of Q01, each of whose different ele-

ments has the same given decimal digit in the same given position of

its corresponding decimal expansion.

A rational diagonal argument
P208 Let Qdn be the subset of Q01 each of whose elements has the same
decimal digit dn in the same nth position of its decimal expansion. Accor-
ding to the Theorem P207 of the nth Decimal, Qdn is denumerable. So, its
superset Q01 will be infinite, either denumerable or non-denumerable. Let
g be any injective function of N in Q01. This function makes it possible to
define a table T whose successive rows r1, r2, r3 . . . are just the successive
images g(1), g(2), g(3) . . . of the elements of N in Q01.
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P209 Since the successive rows 〈rn〉 of T are indexed by the whole set N of
the natural numbers, T is ω-ordered (Theorem of the indexed collection). In
addition, to assume the existence of the set of all finite natural numbers as
a complete infinite totality, as Cantor did in 1883 [3, p. 103-104], means to
assume the rows of T also exist as a complete infinite totality. According
to this Cantor’s assumption (hypothesis of the actual infinity subsumed
into the Axiom of Infinity in modern set theories), every row rn of T will
be preceded by a finite number, n−1, of rows and succeeded by an infinite
number, ℵo, of such rows. We will now examine a conflicting consequence
of this case of ω-asymmetry.

P210 The diagonal D = 0.d11d22d33 . . . of T is a real number within (0, 1)
whose nth decimal digit dnn is the nth decimal digit of the nth row rn of
T . As in Cantor’s diagonal argument [2], it is possible to define another
real number A, said antidiagonal, by replacing each of the infinitely many
decimal digits ofD with a different decimal digit. By construction A cannot
be in T because it differs from each row ri of T at least in its ith decimal
digit. Since A is a real number within (0, 1), it will be either rational
or irrational. If it were rational, and for the same reason as in Cantor’s
diagonal argument, g would not be a one to one correspondence

P211 A row ri of T will be said n-modular if its nth decimal digit is
n(mod 10). This means that a row is, for instance, 2348-modular if its
2348th decimal digit is 8; or that it is 45390-modular if its 45390th decimal
digit is 0. If a row rn is n-modular (being n in n-modular the same number
as n in rn) it will be said d-modular. For instance, the rows:

r1 = 0,1007647464749943400034577774413 . . .

r2 = 0,2200045667778943000000000000000 . . .

r3 = 0,0033333333333333333333333333333 . . .

r7 = 0,1001007000111111114444444444433333 . . .

r20 = 0,1234567890123456789011111111111111 . . .

are all of them d-modular. It is clear that certain rational numbers as 0.4̂3
or 0.3353333333 cannot be d-modular, whatever be their corresponding
rows in T . As will be seen in Chapter 30, these type of numbers pose new
problems to the hypothesis of the actual infinity.

P212 Consider now the following permutation D of the rows 〈rn〉 of T :

a) For each of the successive rows ri of T :
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• If ri is d-modular then let it unchanged.

• If ri is not d-modular then exchange it with any following i-modular
row rj, j>i, provided that at least one of the succeeding rows rj, j>i

be i-modular. Otherwise let it unchanged.
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Figura 11.1 – The fourth row of T before being d-exchanged (Left); and after
having been d-exchanged (right). Note that only the digits of the decimal ex-
pansions are represented, not including the initial 0 or the subsequent decimal
separator.

The exchange of a non-d-modular row ri with a following i-modular row

will be referred to as d-exchange (see Figure 11.1). Thanks to the condition
j > i (in rj, j>i), once a row ri has been d-exchanged, it becomes d-modular
and will remain d-modular and unaffected by the subsequent d-exchanges.
On the other hand, the successive d-exchanges do not change the type
of order of T but the rational numbers indexed by the same successive
indexes. Or in other words, d-exchanges interchange the content of some
couples of rows of T , but not its type of order.

P213 The permutation D could even be considered as a supertask [5].
Indeed, let 〈tn〉 be an ω-ordered sequence of instants within a finite interval
of time (ta, tb), being tb the limit of the sequence. Assume that D is applied
to each row ri just at the precise instant ti. The bijection f(ti) = ri proves
that at tb the d-exchanges of the permutation D will have been applied to
all rows of T .

P214 It can be proved that all rows of T become d-modular as a con-
sequence of the permutation D. In effect, assume that a row rn did not
become d-modular as a consequence of the permutation D. This means
that rn is not d-modular and could not be d-exchanged with a n-modular
row ri,i>n. Now then, all n-modular rows have the same digit n(mod 10)
in the same nth position of its decimal expansion, and according to the
Theorem P207 of the nth Decimal there are infinitely many rational num-
bers with the same digit in the same position of its decimal expansion,
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whatever be the digit and the position. Accordingly, since n is finite, the
row rn is preceded by a finite number k (0 ≤ k < n) of n-modular rows,
and succeeded by an infinite number, ℵo, of n-modular rows. Any of these
infinitely many n-modular rows succeeding rn had to be d-exchanged with
rn. It is then impossible for rn not to become d-modular as a consequen-
ce of D. Therefore, each and every row rn of T becomes d-modular as a
consequence of D.

P215 Let us remark the basic formal structure of the above argument
P214 (a simple Modus Tollens). Consider the following two propositions
p1 and p2 about the permutation D:

p1: Not all rows of T becomes d-modular because of D.

p2: At least one non-d-modular row rn of T could not be d-exchanged.

It is quite clear that p1 implies p2: if not all rows of T becomes d-modular
because of D, then at least one non-d-modular row rn of T could not be
d-exchanged. Now then, being all natural numbers finite, n is finite; and
taking into account the Theorem P207 of the nth Decimal, there is a finite
number, k (0 ≤ k < n), of n-modular rows preceding rn and an infinite
number, ℵo, of n-modular rows succeeding rn, one of which had to be d-
exchanged with rn. In consequence proposition p2 is false and so will be
p1. In symbols:

p1 ⇒ p2 (9)

¬p2 (10)

—————
∴ ¬p1 (11)

P216 The result proved in P214 is a formal consequence of both the Theo-
rem P207 of th nth Decimal and the fact that every row rn of T is always
preceded by a finite number, k (0 ≤ k < n), of n-modular rows and suc-
ceeded by an infinite number, ℵo, of such n-modular rows (ω-asymmetry).
Recall that this ω-asymmetry is an inevitable consequence of assuming,
as Cantor did in 1883, the existence of the ω-ordered set N as a complete
infinite totality, a hypothesis subsumed into the Axiom of Infinity.

P217 Let Td be the table resulting from the permutation D. Since all of
its rows are d-modular, its diagonal D will be the periodic rational num-
ber 0.1234567890 . It is now immediate to define infinitely many rational
antidiagonals from D. Indeed, let us consider periods of ten decimal digits
none of which coincide in position with the ten decimal digits of the period
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1234567890 of the diagonal D. The number of those periods is 910. From
any two of them, for instance, q1 = 0123456789 and q2 = 0321456789, it
is possible to define different ω-ordered sequences of rational antidiagonals
〈An〉, for instance:

∀n ∈ N : An = 0.q1q1
(n). . . q1q2 (12)

whose elements cannot be in Td for the same reason as in Cantor’s diagonal
argument. Being periodic rational numbers with a period of nine different
digits, the antidiagonals 〈An〉 cannot be redundant decimal expressions of
elements of Td that are not in Td just because of their redundancy with
the decimal expressions that are in fact in Td. Indeed, these redundant ex-
pressions are periodic expressions whose periods have always the same and
unique digit: the digit 9. If, on the contrary, those redundant expressions
were not considered redundant but representing each of them a different
rational number, they would be in Td, and the same argument above would
prove they are different from the antidiagonals 〈An〉. In consequence, and
since all those antidiagonals are rational numbers which are not in Td, we
must conclude that the injective function g between N and Q01 defining T ,
is not surjective, i.e. it is not a bijection.

P218 Since the injective function g defining T is any injective function

between N and Q01 and it cannot be surjective, we must conclude it is
impossible to define a bijection between N and Q01. Consequently, Q01 is
non-denumerable. Although the above inference suffices to conclude that
Q01 is non-denumerable, it could be (inappropriately) argued, as against
Cantor’s diagonal argument, that a new table T ′ could be defined so that
r′1 = A and r′i+1 = ri, ri ∈ T, ∀i ∈ N. The new table T ′ would be de-
numerable, but through the same diagonal argument, the same conclusion
on the impossibility of a bijection between N and Q01 would be reached.
And the same recursive argument could be applied to any table defined in
terms of any other previous table and its corresponding antidiagonal, while
the new table continue to be denumerable. A bijection between N and Q01

is impossible. So, Q01 is non-denumerable, and we have a contradiction in
set theory because Cantor proved Q is denumerable [3, p. 123] [1].

P219 the Permutation D makes it possible to develop other arguments
whose conclusions also point to the inconsistency of the hypothesis of the
actual infinity. For instance, it is clear that certain elements of Q01 as,
0.21, 0.35421, 0.2111111111 and many others cannot become d-modular
if they were in the table T . This problem will be analyzed in Chapter 30,
although for the case of a table of natural numbers.



A final remark 7

A final remark

P220 As with all discussions on the hypothesis of the actual infinity, the
above one is a conceptual discussion unconcerned, as Cantor’s diagonal
argument, with the physical possibilities of carrying out all the involved
operations. The formal inconsistency of a hypothesis does not depend on
those possibilities, but on the fact of deducing from it a contradiction
(Principle of Autonomy). And recall that from an inconsistent hypothesis
anything can be deduced, from apparently reasonable assertions to any
absurdity. It seems convenient to end by recalling again that an argument
cannot be refuted by other different argument simply because it reaches
an opposite conclusion. In W. Hodges words [4, p. 4]:

How does anybody get into a state of mind where they persuade themsel-

ves that you can criticize an argument by suggesting a different argument

which doesn’t reach the same conclusion?

This inadmissible strategy is frequently used in the discussions related to
the actual infinity hypothesis (and in general in any discussion involving a
“main stream” of thought). But to refute an argument means to indicate
where and why that argument fails. If two correct arguments based on the
same set of hypotheses lead to contradictory conclusions, they are simply
proving the existence of a contradiction. And, therefore, the inconsistency
of at least one of the assumed hypotheses. In our case, the only hypothesis
is the hypothesis of the actual infinity, according to which the infinite sets
and sequences exist as complete totalities. The alternative is the hypothesis
of the potential infinity, according to which only finite sets and sequences
can be considered as complete totalities, unlimited and as large as wished,
but always finite if they have to be considered as complete totalities. From
this finitist perspective it is not possible to deduce the above contradictions
because every row is preceded and succeeded by a finite number of rows.
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