Angular momentum emission by a rotating dipole

Radi I. Khrapko^{*}

Moscow Aviation Institute - Volokolamskoe shosse 4, 125993 Moscow, Russia

A new calculation confirms the presence of spin radiation along the axis of rotation of a dipole. This is further proof of the need to introduce the spin tensor into classical electrodynamics, along with the energy-momentum tensor.

Keywords: classical spin; electrodynamics; spin radiation. **PACS**: 75.10.Hk; 03.50.De

1. Introduction

Circularly polarized electromagnetic radiation contains angular momentum in the form of the angular momentum density [1,2].

J. H. Poynting: "If we put E for the energy in unit volume and G for the torque per unit area, we have $G = E\lambda/2\pi$ " [2, p. 565].

This means that such radiation is Weyssenhoff's spin-fluid [3].

J. Weyssenhoff: "By spin-fluid we mean a fluid each element of which possesses besides energy and linear momentum also a certain amount of angular momentum,

proportional – just as energy and the linear momentum – to the volume of the element". This is recorded in textbooks [4,5]. Since Emma Noether, this angular momentum has been described by the spin tensor density [6-8]

$$Y_{c}^{\lambda\mu\nu} = -2A^{[\lambda}\delta^{\mu]}_{\alpha} \frac{\partial \mathsf{L}}{\partial(\partial_{\nu}A_{\alpha})} = -2A^{[\lambda}F^{\mu]\nu}, \qquad (1)$$

where $L = -F_{\mu\nu}F^{\mu\nu}/4$ is the free electromagnetic field Lagrangian, A^{λ} is the vector potential, and $F_{\mu\nu}$ is the field-strength tensor. The local sense of a spin tensor is as follows. Y^{xyt} [J*s/m³] is spin volume density, Y^{xyl} [J/m²] is spin flux density, i.e. torque per unit area (cf. J. H. Poynting). The spin tensor is used in the publications [9-20]. However, the spin tensor is ignored in works expressing the common point of view, e.g. [21-25].

Besides spin, any electromagnetic field contains mass-energy and momentum, which are described by the energy-momentum tensor [26,27]

$$T^{\mu\nu} = -g^{\mu\lambda}F_{\lambda\alpha}F^{\nu\alpha} + g^{\mu\nu}F_{\alpha\beta}F^{\alpha\beta}/4.$$
⁽²⁾

The local sense of the energy-momentum tensor is as follows. T^{xt} [N*s/m³] is momentum volume density, T^{tx} [kg/m²*s] is mass-energy flux density. It means, e.g., $dp^{x} = T^{xt} dV$ is the momentum in the volume dV.

Moment of momentum, e.g., $dL^{xy} = (xT^{yt} - yT^{xt})dV$ is the orbital angular momentum of the momentum contained in the volume dV. So, the total angular momentum possessed by the volume dV is

$$dJ^{ik} = dS^{ik} + dL^{ik} = (Y^{ikt} + 2r^{[i}T^{k]t})dV.$$
(3)

The total torque per the area da_1 , i.e. angular momentum flux, is

$$d\tau^{ik} = d \tau^{ik}_{S} + dL^{ik} / dt = (Y^{ikl} + 2r^{[i}T^{k]l}) da_{l}.$$
 (4)

^{*} Email: <u>khrapko_ri@hotmail.com</u>, <u>khrapko_ri@mai.ru</u>, <u>http://khrapkori.wmsite.ru</u>

It is important that spin is not associated with a moment of a linear momentum, or even with a motion of matter. **Hehl** writes about spin of an electron [28]:

"The current density in Dirac's theory can be split into a convective part and a polarization part. The polarization part is determined by the spin distribution of the electron field. It should lead to *no* energy flux in the rest system of the electron because the genuine spin 'motion' take place only within a region of the order of the Compton wavelength of the electron".

2. Electromagnetic field of a rotating dipole

Electromagnetic field of a rotating dipole **p** is well known [27,29,30]

$$\mathbf{E} = \left[\frac{\omega^{2}(\mathbf{p}r^{2} - (\mathbf{p}\mathbf{r})\mathbf{r})}{4\pi\varepsilon_{0}c^{2}r^{3}} + \frac{i\omega(\mathbf{p}r^{2} - 3(\mathbf{p}\mathbf{r})\mathbf{r})}{4\pi\varepsilon_{0}cr^{4}} - \frac{(\mathbf{p}r^{2} - 3(\mathbf{p}\mathbf{r})\mathbf{r})}{4\pi\varepsilon_{0}r^{5}}\right]\exp(ikr - i\omega t), \quad (5)$$

$$\mathbf{H} = \left[\frac{\boldsymbol{\omega}^2 \mathbf{r} \times \mathbf{p}}{4\pi c r^2} + \frac{i\boldsymbol{\omega} \mathbf{r} \times \mathbf{p}}{4\pi r^3}\right] \exp(ikr - i\boldsymbol{\omega} t) \,. \tag{6}$$

The first terms of (5), (6) are proportional to 1/r and so represent radiation. This radiation is of circular polarization in the direction of the rotational axis, z-axis (see Fig. 1 from [31]). Therefore this field contains the spin flux Y^{xyl} . We calculate this spin flux per sphere r = Const in Section 3.

Polarization of the electric field seen by looking from different directions at a circular oscillator

Torque distribution

Spin flux distribution

At the same time this radiation contains no orbital angular momentum flux per elements da_l of the sphere r = Const. $dL^{ik} / dt = 2r^{[i}T^{k]l}da_l = 0$. Really, the first terms fields **E** & **H** are orthogonal to each other and to the vector **r**. So, in any point, we can enter local Cartesian

coordinates such that $da_l = \{0, 0, da_z\}$, $\mathbf{E} = \{E_x, 0, 0\}$, $\mathbf{H} = \{0, H_y, 0\}$, $\mathbf{r} = \{0, 0, z\}$, i.e. F_{tx} , F^{tx} , F_{xz} , F^{xz} are not equal to zero only. Using this coordinates we find according to (2):

 $T^{xz} = -g^{xx}F_{x\alpha}F^{z\alpha} = 0$, $T^{yz} = -g^{yy}F_{y\alpha}F^{z\alpha} = 0$. So the orbital angular momentum is not radiated.

The second terms field of (5), (6) contains the orbital angular momentum flux, or torque, per the sphere r = Const. In Refs [32-37], spherical coordinates were used, and the angular distribution of the torque was obtained (see Fig. 2):

$$dL^{ik} / dt d\Omega = \omega^3 p^2 \sin^2 \theta / 16\pi^2 \varepsilon_0 c^3$$
⁽⁷⁾

where $d\Omega = \sin\theta d\theta d\phi$. This torque is located in the neighborhood of the plane of rotation where the polarization is near linear. This torque is not radiated. This torque is like a static torque that someone can apply (Fig. 2).

3. Spin radiation by a rotating dipole

Spin radiated by the first terms field was calculated in [15] using the spin volume density Y^{xyt} on the assumption that this density is moving at the speed of light. Here the spin flux density Y^{xyl} is used. This is more naturally.

Using

$$\mathbf{E} = \frac{\omega^2 (\mathbf{p}r^2 - (\mathbf{p}\mathbf{r})\mathbf{r})}{4\pi\varepsilon_0 c^2 r^3} \exp(ikr - i\omega t), \quad \mathbf{H} = \frac{\omega^2 \mathbf{r} \times \mathbf{p}}{4\pi c r^2} \exp(ikr - i\omega t), \quad p_x = p, \quad p_y = ip$$
(8)

yields

$$E_{x} = F_{tx} = \frac{\omega^{2} p(r^{2} - x^{2} - ixy)}{4\pi\varepsilon_{o}c^{2}r^{3}}, \ E_{y} = F_{ty} = \frac{\omega^{2} p(ir^{2} - xy - iy^{2})}{4\pi\varepsilon_{o}c^{2}r^{3}}, \ E_{z} = F_{tz} = \frac{-\omega^{2} p(zx + izy)}{4\pi\varepsilon_{o}c^{2}r^{3}}, \ (9)$$

$$H_{x} = F^{zy} = \frac{-i\omega^{2} pz}{4\pi cr^{2}}, \quad H_{y} = F^{xz} = \frac{\omega^{2} pz}{4\pi cr^{2}}, \quad H_{z} = F^{yx} = \frac{\omega^{2} p(ix - y)}{4\pi cr^{2}}.$$
 (10)

Using $\mathbf{A} = -\int \mathbf{E} dt = -i\mathbf{E}/\omega$ yields

$$A_{x} = \frac{\omega p(-ir^{2} + ix^{2} - xy)}{4\pi\varepsilon_{o}c^{2}r^{3}}, \quad A_{y} = \frac{\omega p(r^{2} + ixy - y^{2})}{4\pi\varepsilon_{o}c^{2}r^{3}}, \quad A_{z} = \frac{\omega p(izx - zy)}{4\pi\varepsilon_{o}c^{2}r^{3}}.$$
 (11)

Accordingly to $Y^{\lambda\mu\nu} = -2A^{[\lambda}F^{\mu]\nu}$, we have

$$Y^{xyx} = -\frac{\Re}{2} \{ \overline{A}^{x} F^{yx} \} = \frac{\omega^{3} z^{2} x}{32\pi^{2} \varepsilon_{0} c^{3} r^{5}}, \quad Y^{xyy} = \frac{\Re}{2} \{ \overline{A}^{y} F^{xy} \} = \frac{\omega^{3} z^{2} y}{32\pi^{2} \varepsilon_{0} c^{3} r^{5}},$$
$$Y^{xyz} = -\frac{\Re}{2} \{ \overline{A}^{x} F^{yz} - \overline{A}^{y} F^{xz} \} = \frac{\omega^{3} (r^{2} + z^{2}) z}{32\pi^{2} \varepsilon_{0} c^{3} r^{5}}$$
(12)

Because of $d \tau^{ik} = Y^{ikl} da_l$, we need the Cartesian coordinates of elements of the sphere

r = Const, which spherical coordinates are $da_v = \{da_r = d\theta d\varphi, da_\theta = 0, da_\varphi = 0\}$. The transformation coefficients are; $\frac{\partial r}{\partial x} = \frac{x}{r}$, $\frac{\partial r}{\partial y} = \frac{y}{r}$, $\frac{\partial r}{\partial z} = \frac{z}{r}$, and $\sqrt{g} = r^2 \sin \theta$. So we have $da_l = \{da_x = x \sin \theta d\theta d\varphi, da_y = yr \sin \theta d\theta d\varphi, da_z = zr \sin \theta d\theta d\varphi\}$, and

$$d \, \mathfrak{T}_{S}^{xy} = \mathbf{Y}^{xyl} da_{l} = \mathbf{Y}^{xyx} da_{x} + \mathbf{Y}^{xyy} da_{y} + \mathbf{Y}^{xyz} da_{z}$$
$$= \frac{\omega^{3} p^{2} (z^{2} x^{2} + z^{2} y^{2} + r^{2} z^{2} + z^{4})}{32 \pi^{2} \varepsilon_{0} c^{3} r^{4}} \sin \theta d\theta d\phi = \frac{\omega^{3} p^{2}}{16 \pi^{2} \varepsilon_{0} c^{3}} \cos^{2} \theta \sin \theta d\theta d\phi.$$
(13)

This result, $d \tau_s^{xy} / d\Omega = \frac{\omega^3 p^2}{16\pi^2 \varepsilon_0 c^3} \cos^2 \theta$, is coincided with Ref. [15]. The angular distribution of

the spin radiation is represent in Fig. 3.

4. Conclusion

A rotating electric dipole emits angular momentum flux of two types: (i) spin flux, which is directed mainly along the axis of rotation and determined by the spin tensor, and (ii) orbital angular momentum flux determined by the energy-momentum tensor. The spin flux is not recognized by nowadays electrodynamics.

I am eternally grateful to Professor Robert Romer for the courageous publication of my question: "Does a plane wave really not carry spin?" [38] (was submitted on 07 October, 1999).

References

- 1. Sadowsky A. Acta et Comm. Imp. Universitatis Jurievensis 7, No. 1-3 (1899)
- Poynting J. H., "The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light". *Proc. R. Soc. Lond. A* 82, 560-567 (1909)
- Weyssenhoff J. and Raabe A. Relativistic Dynamics of Spin-Fluids and Spin-Particles. *Acta Phys. Polon.* 9 7-19 (1947)
- 4. Crawford F.S., Jr., Waves: Berkley Physics Course V. 3 (Berkeley, California June, 1968)
- 5. Feynman R. P., R. B. Leighton, M. Sands, *The Feynman Lectures on Physics* (Addison–Wesley, London, 1965) Vol. 3, p. 17–10.
- 6. Corson E M Introduction to tensors, spinors, and reativistic wave-equation NY, Hafner, 1953 p.71
- 7. Soper D. E., Classical Field Theory (N.Y.: Dover, 2008), p. 114
- 8. Barut A. O. *Electrodynamics and Classical Theory of Particles and Fields* (Macmillan, New York, 1964), p. 102
- Shrapko R. I. Absorption of Spin by a Conducting Medium AASCIT Journal of Physics Vol. 4, No. 2, Page: 59-63 (2018)
 - http://www.aascit.org/journal/archive2?journalId=977&paperId=6355
- 10. Khrapko R. I. Absorption of angular momentum of a plane wave *Optik* **154** (2018) 806–810 <u>http://khrapkori.wmsite.ru/ftpgetfile.php?id=161&module=files</u>
- 11. Khrapko R. Unknown spin radiation J. Phys.: Conf. Ser. **1172** 012055 (2019) https://iopscience.iop.org/article/10.1088/1742-6596/1172/1/012055/pdf
- 12. Khrapko R. I. Origin of Spin: Paradox of the classical Beth experiment. In *Unfolding the Labyrinth: Open Problems in Mathematics, Physics, Astrophysics, and other areas of science* (Hexis Phoenix 2006), pp. 57-71 <u>https://arxiv.org/abs/math/0609238</u>
- 13. Khrapko R.I. "Mechanical stresses produced by a light beam" *J. Modern Optics*, **55**, 1487-1500 (2008) <u>http://khrapkori.wmsite.ru/ftpgetfile.php?id=9&module=files</u>
- 14. Khrapko R. I. "Reflection of light from a moving mirror" *Optik* **136** (2017) 503–506 <u>http://khrapkori.wmsite.ru/ftpgetfile.php?id=153&module=files</u>
- 15. Khrapko R. I. Spin radiation from a rotating dipole. *Optik* **181** (2019) 1080-1084 <u>http://khrapkori.wmsite.ru/ftpgetfile.php?id=172&module=files</u>
- 16. Khrapko R. I. Radiation damping of a rotating dipole *Optik.* **203** (2020) Article 164021 <u>http://khrapkori.wmsite.ru/ftpgetfile.php?id=189&module=files</u>
- 17. Khrapko R. I. Absorption of spin of a plane circularly polarized wave *Optik* (2020) Article 164527 <u>http://khrapkori.wmsite.ru/ftpgetfile.php?id=187&module=files</u>
- 18. Khrapko R. I. True energy-momentum tensors are unique. Electrodynamics spin tensor is not zero <u>https://arxiv.org/abs/physics/0102084</u>
- 19. Khrapko R. I. Violation of the gauge equivalence arXiv:physics/0105031
- 20. Khrapko R. I. Spin transmitted to the mirror when light is reflected (2005) <u>http://trudymai.ru/published.php?ID=34126</u> In Russian.
- 21. Andrews D.L., M. Babiker (Editors) The angular momentum of light (Cambridge 2013)
- 22. Heitler W The Quantum Theory of Radiation (Oxford: Clarendon, 1954) p. 401.
- 23. Allen L., Padgett M. J. "Response to Question #79. Does a plane wave carry spin angular momentum?" *Am. J. Phys.* **70**, 567 (2002).
- 24. Simmonds J. W., M. J. Guttmann, *States, Waves and Photons* (Addison-Wesley, Reading, MA, 1970)
- 25. Ohanian H. C., "What is spin?" Amer. J. Phys. 54, 500-505 (1986).
- 26. Landau L. D., Lifshitz E. M. The Classical Theory of Fields (Pergamon, N. Y. 1975).
- 27. Jackson J. D., Classical Electrodynamics, (John Wiley, 1999), p. 350.
- 28. Hehl F. W. "On the energy tensor of spinning massive matter in classical field theory and general relativity" *Reports on Mathematical Physics* **9** 55 (1976)
- 29. Becker R. Electromagnetic Fields and Interactions, V.1 (NY, Dover, 1982) p. 284
- 30. Corney A., Atomic and Laser Spectroscopy (Oxford University Press, 1977) p. 36

- 31 Meyers, R. A. Encyclopedie of Physics Science and Technology, v. 2 (N.Y., AP, 1987) p. 266
- 32. Sommerfeld A. *Atombau und Spektrallinien* 1 Band (FR1EDR. V1EWEG & SOHN BRAUNSCHWEIO 1951)
- 33. Vul'fson K S Angular momentum of electromagnetic waves *Sov. Phys. Usp.* **30** 724–728 (1987)
- 34. Barabanov A L Angular momentum in classical electrodynamics *Phys. Usp.* **36** (11) 1068–1074 (1993)
- 35. Khrapko R I Spin of dipole radiation, <u>http://trudymai.ru/published.php?ID=34635</u> (2001)
- 36. Khrapko R I "Radiation of spin by a rotator", <u>http://www.ma.utexas.edu/cgi-bin/mps?key=03-315</u> (2003)
- 37. Khrapko R I "Spin is not a moment of momentum" <u>http://trudymai.ru/published.php?ID=28834</u> (2012)
- 38. Khrapko R I "Does plane wave not carry a spin?" *Amer. J. Phys.* **69** 405 (2001) http://khrapkori.wmsite.ru/ftpgetfile.php?id=10&module=files

The article was rejected without peer review many times.

Scientific Society journals are not prepared to criticize the concept held by the Authorities **Stojan Rebic** Associate Editor Physical Review Letters wrote:

We find that your claim that

"the need to replace the modern spin concept with the concept of Sadowsky & Poynting" is unsubstantiated.

Journal of the Optical Society of America A (404508)

I am sorry to inform you that your recent submission to JOSA A will not be considered for publication.

Sincerely, JOSA A Manuscripts Office

Physics Letters A (01668)

I have studied your work with care. To my regret, I have to inform you that your manuscript cannot be considered for publication, and thus it has been rejected Dr. Feng Jiang

Europhysics Letters (G42633)

Unfortunately we cannot accept your submission in regard to your past behaviour. The EPL Editorial Office

Physical Review Letters (LV16365)

We regret to inform you that we have concluded that it is not suitable for publication in any APS journal.

Alessandro S. Villar

Journal of Electromagnetic Waves and Applications (0430)

I regret to inform you that I feel it unsuitable for publication in JEWA Professor Mohamad Abou El-Nasr

JETP Letters (mixj-3622r)

Редколлегия отклонила Вашу статью, так как не нашла достаточно оснований для ее срочной публикации.

Зав.редакцией "Писем в ЖЭТФ" И. Подыниглазова