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A new calculation confirms the presence of spin radiation along the axis of rotation of a 

dipole. This is further proof of the need to introduce the spin tensor into classical 

electrodynamics, along with the energy-momentum tensor. 

Keywords: classical spin; electrodynamics; spin radiation. 

PACS: 75.10.Hk; 03.50.De 

 

1. Introduction 

Circularly polarized electromagnetic radiation contains angular momentum in the form of the 

angular momentum density [1,2].  

J. H. Poynting: “If we put E for the energy in unit volume and G for the torque per unit 

area, we have πλ= 2/EG ”  [2, p. 565]. 

This means that such radiation is Weyssenhoff’s spin-fluid [3]. 

J. Weyssenhoff: “By spin-fluid we mean a fluid each element of which possesses 

besides energy and linear momentum also a certain amount of angular momentum, 

proportional – just as energy and the linear momentum – to the volume of the element”. 

This is recorded in textbooks [4,5]. Since Emma Noether, this angular momentum has been 

described by the spin tensor density [6-8]  
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where 4/
µν

µν−= FFL  is the free electromagnetic field Lagrangian, λA  is the vector potential, and 

µνF  is the field-strength tensor. The local sense of a spin tensor is as follows. xytΥ  [J*s/m
3
] is spin 

volume density, xylΥ  [J/m
2
] is spin flux density, i.e. torque per unit area (cf. J. H. Poynting). 

The spin tensor is used in the publications [9-20]. However, the spin tensor is ignored in works 

expressing the common point of view, e.g. [21-25]. 

Besides spin, any electromagnetic field contains mass-energy and momentum, which are 

described by the energy-momentum tensor [26,27] 
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The local sense of the energy-momentum tensor is as follows. xtT  [N*s/m
3
] is momentum volume 

density, txT  [kg/m
2

*s] is mass-energy flux density. It means, e.g., dVTdp xtx =  is the momentum 

in the volume dV .  

Moment of momentum, e.g., dVyTxTdL xtytxy )( −=  is the orbital angular momentum of 

the momentum contained in the volume dV . So, the total angular momentum possessed by the 

volume dV  is 

dVTrdLdSdJ tkiiktikikik )2( ][+Υ=+= .                            (3) 

The total torque per the area lda , i.e. angular momentum flux, is 
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It is important that spin is not associated with a moment of a linear momentum, or even with a 

motion of matter. Hehl writes about spin of an electron [28]: 

“The current density in Dirac’s theory can be split into a convective part and a 

polarization part. The polarization part is determined by the spin distribution of the 

electron field. It should lead to no energy flux in the rest system of the electron because 

the genuine spin ‘motion’ take place only within a region of the order of the Compton 

wavelength of the electron”. 

 

2. Electromagnetic field of a rotating dipole 

Electromagnetic field of a rotating dipole p is well known [27,29,30] 
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The first terms of (5), (6) are proportional to r/1  and so represent radiation. This radiation is of 

circular polarization in the direction of the rotational axis, z-axis (see Fig. 1 from [31]). Therefore 

this field contains the spin flux xylΥ . We calculate this spin flux per sphere Constr =  in Section 3.  

 
At the same time this radiation contains no orbital angular momentum flux per elements lda  

of the sphere Constr = .  02/ ][ == l

lkiik
daTrdtdL . Really, the first terms fields E & H are 

orthogonal to each other and to the vector r. So, in any point, we can enter local Cartesian 

coordinates such that },0,0{ zl dada = , },0,0{},0,,0{},0,0,{ zHE yx === rHE , i.e. 

xz
xz

tx
tx FFFF ,,,  are not equal to zero only. Using this coordinates we find according to (2): 
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FFgTFFgT . So the orbital angular momentum is not radiated. 

The second terms field of (5), (6) contains the orbital angular momentum flux, or torque, per 

the sphere Constr = . In Refs [32-37], spherical coordinates were used, and the angular distribution 

of the torque was obtained (see Fig. 2): 
3
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where ϕθθ ddd sin=Ω . This torque is located in the neighborhood of the plane of rotation where 

the polarization is near linear. This torque is not radiated. This torque is like a static torque that 

someone can apply (Fig. 2).  

 



3. Spin radiation by a rotating dipole 

Spin radiated by the first terms field was calculated in [15] using the spin volume density xytΥ  on 

the assumption that this density is moving at the speed of light. Here the spin flux density xylΥ  is 

used. This is more naturally. 

Using  
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Using ∫ ω−=−= /EEA idt  yields 
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Accordingly to νµλλµν −=Υ ][
2 FA , we have 
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Because of l
iklik

S
dad Υ=τ , we need the Cartesian coordinates of elements of the sphere 

Constr = , which spherical coordinates are }0,0,{ ==ϕθ== ϕθ dadadddada rv . The 

transformation coefficients are; 
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This result, θ
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S
, is coincided with Ref. [15]. The angular distribution of 

the spin radiation is represent in Fig. 3. 

 

4. Conclusion 

A rotating electric dipole emits angular momentum flux of two types: (i) spin flux, which is directed 

mainly along the axis of rotation and determined by the spin tensor, and (ii) orbital angular 

momentum flux determined by the energy-momentum tensor. The spin flux is not recognized by 

nowadays electrodynamics. 

I am eternally grateful to Professor Robert Romer for the courageous publication of my 

question: "Does a plane wave really not carry spin?” [38]  (was submitted on 07 October, 1999).  
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