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Abstract: This article attempts to use mathematical methods to solve the influence of the change of
space-time structure on the gravitational constant. After adopting a purely mathematical method, it
means that if there is a problem with the conclusion, you only need to find the reason in the axiom
system proposed in this article. This can make the discussion of the problem more concise.
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1 Introduction

In my last paper '), T tried to analyze the experimental influence of Jupiter on the measurement of
the gravitational constant on the earth's surface. Through specific calculations, it is found that
theoretical estimates can significantly improve the results of many gravitational measurement
experiments since 2000. However, after reviewing my papers [1-3], T feel that one of the issues is not
clear enough. The question is how the gravitational constant will increase when the space is
compressed. And why is the degree of space-time compression closely related to gravitational
potential? This article attempts to use mathematical reasoning to discuss in depth the influence of

the change of space-time structure on the gravitational constant.

Figure 1(a) shows a space-time coordinate, reflecting the situation where space-time is compressed
from left to right. The scale on the axis indicates the length of the space unit.
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Figure 1. Flat and compressed spacetime

As can be seen from the top coordinate (a) in Figure 1, because space-time is compressed, it means
that different spatial scales are displayed on the space-time coordinates. In the compressed space-
time range, the space unit is relatively short, while in a relatively flat space-time, the space unit is
relatively long. However, it is very inconvenient to deal with the problem of a coordinate system
whose space unit length is changing. Therefore, (b) and (c¢) in Figure 1 introduce two coordinate
systems with uniform scales, Ref and Ref”, respectively.

2 Changes in the length of different

spacetime reference systems

Definition 1: Space-time reference system refers to a coordinate system with uniform scale
with a specific space unit length as the unit of measurement, here referred to as the reference
system.

In Figure 1(a), if we use the relatively flat space unit length on the left as a scale to mark the entire
system, then this space-time can be called a flat space-time reference system, which is represented
by Refin Figure 1(b). It can be seen that the scale of the Ref reference system is uniform, but the
scale interval is longer. And if the more severely compressed space unit length on the right is used
as a scale to mark the entire system, then this space-time can be called a compressed space-time
reference system. It is represented by Ref’ in Figure 1(c). It can be seen that the scale of the Ref’
spacetime reference system is relatively small.

Definition 2: The space unit length I represents the basic unit used to measure a length in a

certain spacetime reference system.

Definition 3: Intrinsic length refers to the length measured in the space-time reference system
whose space unit length is 1. The intrinsic space length can be expressed as a multiple of the



space unit length.

Definition 4: The intrinsic length is expressed in bold font. Letters in unbold font indicate the
length measured in a certain spacetime reference system. The length measured in a spacetime
reference system multiplied by the space unit length of the corresponding reference system is
equal to the intrinsic length.

which is
a=al

Where a is the intrinsic length, / is the length of the space unit of the reference system, and « is the
length measured in the reference system.

With the above definitions of some terms, let's determine the axiom system.
Axiom 1: Space-time is an elastic substance that can be squeezed by mass

This is basically consistent with the assumption of general relativity. In general relativity, the space-
time around the mass will be curved due to the existence of mass. And this bending of time and
space also means that time and space are compressed.

Axiom 2: The compressed space-time has a shorter space unit length. A completely flat space-
time without any mass and energy has an infinite space unit length.

In Figure 1, for a relatively flat space-time, the space unit length is limited. But compared to those
compressed space-time, the space unit length is much larger. But if there is a completely flat space-
time at infinity, it means that there is no mass or energy in it, so this space-time has no physical
meaning. For a space-time without any physical meaning, there is no spacetime unit length.
Conversely, if a space-time has a finite spacetime unit length, it means that the space-time can be
measured and has physical meaning.

Therefore, the term "flat space-time" is used in this article to mean space-time with a very small
amount of mass and energy. And completely flat space-time means space-time without mass and
energy at infinity.

According to the above axioms, we can further reason and obtain a series of meaningful theorems.

Theorem 1: If the same length result is measured in different spacetime reference systems, the
intrinsic length corresponding to the measured length of the compressed spacetime reference
system is shorter.

As shown in Figure 1, if the measured result in any reference frame is a, then the length is observed
in the compressed space-time reference frame Ref’, and the length can be expressed as:

a =al



Now switch to the flat space-time reference system Ref. Since the unit length of the Ref reference

system is /, therefore

a=al
Since

1>
Then

a>a

It shows that although the measurement results of the two reference systems are the same, their
intrinsic lengths are different. The intrinsic length of the flat space-time reference frame is longer.

Theorem 2: With the same intrinsic length, the result measured in the compressed space-time
reference system is longer than that of the flat space-time reference system

Prove:
In Ref
a=al
In Ref”
a=al
Since
1>1
Then
a>a

Corollary 1: The Schwarzschild radius measured by the compressed space-time reference

frame is longer

Consider the Schwarzschild radius solved by Einstein's field equation as an intrinsic length #;.

If we observe r, in a relatively flat spacetime reference frame Ref’

We can get



ry =715l
Now we switch to the compressed space-time reference system Ref” to observe ;.
We can get
re=r/l'
Since the unit length of the Ref reference system is larger, it means
I1>T
Then

>

3 Mass in different spacetime reference

frames

Theorem 3: According to the requirements of conservation of energy, the rest masses observed
in any space-time reference frame are equal.

Prove:

According to the relativistic mass-energy formula

E= /mgc“ + p2c?

Although the mass is located in a non-inertial frame of reference (such as a compressed space-time
frame of reference), it is always possible to use an appropriate method, such as changing the inertial
frame of reference so that p=0

therefore:
_ 2.4 _ 2
E = |mge* =mye

It means that the static mass of the object will not change regardless of whether it is observed from
the Ref or Ref reference system.



4 The relationship between space unit length

and gravitational potential

Conjecture: The length of space unit is inversely proportional to the gravitational potential

Regarding the relationship between space unit length and gravity, if space-time is regarded as an
elastic substance, the squeezing of space-time by mass will compress the surrounding space-time.
This space-time compression effect will cause a change in the spacetime unit length. According to
the knowledge of elasticity, the displacement of space-time can be solved, and then the specific
situation of space-time compression can be calculated, and then the relationship between space unit

length and gravity can be calculated from this.

But such calculations will face some serious problems. For example, we don’t know if space-time
is an elastic substance, what is its elastic modulus? In addition, space-time is four-dimensional, and
solving with three-dimensional elasticity knowledge will also face the problem of incorrect results
caused by deformation in the time dimension.

Here we understand the relationship between gravity and space unit length from Axiom 2 proposed
in this article.

According to Axiom 2, the space unit length of a completely flat space-time at infinity is infinite.
Therefore, the relationship between unit length and gravity can be expressed in many forms,
including: reciprocal relationship, inverse square relationship, multiple inverse square relationship,

exponential relationship, etc.
The simplest one is the reciprocal relationship, namely:

_a
=7

Here g is used to represent a physical quantity related to gravity. It can be force, field strength,
gravitational potential, etc. In addition, considering that the magnitude of gravity is usually

proportional to mass, the above formula can also be expressed as:

_bM
9= T

If we let
b=-G

Then the above formula becomes



This is actually the formula for calculating gravitational potential.

If the above relationship adopts the reciprocal relationship of multiple powers, it can be expressed
as:

If expressed in exponential form, then
g=—-GMe™

This article adopts the reciprocal relationship, that is, the gravitational potential is used to express
the magnitude of gravity.

In this way, the relationship between space unit length and distance is proportional, and inversely
proportional to gravitational potential. which is:

5 Gravitational constants in different

spacetime reference frames

Theorem 4: The measured value of the gravitational constant of the compressed space-time

reference frame is larger

Proof: For an object with a mass of m, the Schwarzschild solution can be obtained by using the
Einstein field equation. This solution can be regarded as the intrinsic length of the Schwarzschild

radius, namely

Gm

ri.=—
s c2

According to Theorem 2, the Schwarzschild radius measured in a flat space-time reference frame is
expressed as



The Schwarzschild radius measured in the compressed space-time reference frame is expressed as

G'm

r =—
N C2

According to Theorem 3, no matter which space-time reference frame is in, the static mass of the
object will not change. And c is a constant, so the only thing that can be changed on the right side
of the equation is the gravitational constant. Therefore, the gravitational constant of the compressed
space-time reference frame is represented by G'.

considering

>
Then we can get

G'>G

Theorem 5: The gravitational constant in different spacetime reference frames is proportional
to the gravitational potential at that place

prove

6 Conclusion

This article attempts to prove mathematically the influence of space-time compression on the
gravitational constant. This allows us to have a more concise understanding of the changing law of
the gravitational constant. Of course, mathematics only provides us with a tool to make our analysis
process more logical. Therefore, this analysis ultimately needs to rely on the verification of
experimental data.

The conclusion of this paper relies on two axioms, namely, space-time can be compressed, and
space-time compressed, the space unit length used to measure the length will be shorter, and the
space unit length of completely flat space-time at infinity is infinite.

In order to analyze the influence of space-time compression on the gravitational constant without
relying on the elastic modulus of the elastic material that constitutes space-time, this article has a
conjecture that the space unit length is inversely proportional to the gravitational potential. Such a
conjecture can make the calculation process very concise. From the specific analysis of some

experimental datal'l, this assumption is quite reasonable.
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Figure 1. Flat and compressed spacetime
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