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Abstract: We acquaint the reader with the concept of structural nonlinearity. As the given 
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1. Introduction 
 

Modern science more and more deals with complicated structures, and physicists should be 

introduced to some system theoretic basics.  These basics help one, in the present example, to 

think about the "structure" of an observed liquid flow, and to explain its mathematical 

nonlinearity.  However, we start from something equationally more standard. 

 

2. The nonlinearity of the liquid flow 
 

  As is well known, the nonlinearity of the main hydrodynamic Navier--Stocks equation 

follows from the very dynamics.  This equation is Newton's second law equation applied to a 

moving element of the flow.  The acceleration is 

 

( )
dv v

v v
dt t


  


   (1) 

where the differential operator   
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dr
v

dt r


  


    (2) 

appears because ( , )v v r t  and  ( )r r t . 

    The "quadratic" by the velocity expression ( )v v  introduces the nonlinearity in the Navier-

-Stocks equation.   

 ( )
v

v v p v
t


       


   (3) 

written here for an incompressible flow.  For a compressible flow (more relevant to 

aerodynamics) this equation is changed [1], but the nonlinearity remains by the same reasons. 

 

3. The "structural nonlinearity" 
 

         For general nonlinear systems, it is conventional, after Poincare, Lyapunov, then Andronov 

at al, to write 

                                              0( , ( )), (0)
dx

F x u t x x
dt

   .                (4)                     

where ( )x t , or { ( )}kx t , is the vector of the state variables, 0x is the given initial value of ( )x t , 

i.e. all of the components { (0)}kx  are given, and ( )u t  is the vector of the inputs.    

    It is generally not clear in (4) how ( )x t  is changed if we replace ( )u t  by ( )ku t  with a 

constant k (a typical test of linearity), and we suggest another presentation of nonlinear systems, 

closer (in the meaning of a structure) to the presentation of the linear systems which is [2] 

            0[ ] [ ] ( ), (0)
dx

A x B u t x x
dt

   ,                   (5) 

 

where the matrices [A] and [B] represent the structure of the system.  

 

Remark:   

Dimensions of ( )x t  and ( )u t  in [5] need not be the same, and then the respective dimensions of 

the matrices also will be different.  However, one should see that since the human operator both 

applies to the system ( )u t  and defines 0x  (indeed, neither ( )u t , nor 0x  is defined by the producer 
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of the real system), there is a generalized input 0 , ( ) } {x u t , and the checking of the linearity has 

to be not ( ) ( )u t k u t , but  

                                              0 0 0{ , ( ) } { , ( ) } { , ( )    } x u t k x u t kx ku t   .      (6) 

                                                                                                                      

 

   If the processes in the system, initiated in any way by the (generalized) input, do not change the 

system, i.e. the parameters of the matrices in (5) are fixed, then the very physical system remains 

just the same as it was in rest, obviously linear.  

    Thus, we write, after [3], for a nonlinear system, the state equations not as (4), but as 

 

    0[ ( )] [ ( )] ( ), (0)
dx

A x x B x u t x x
dt

   .     (7) 

 

    That is, we suggest to basically define the nonlinearity as an influence of the 

processes in the system on the system's structure (parameters).   

 

    To our point, it is sufficient to be focused only on [A], that is, to deal only with the homogeneous 

equation obtained for ( ) 0u t  : 

                      0[ ( )] , (0)
dx

A x x x x
dt

                     (8) 

in which the nonlinearity is quite obvious.  The extended version (7) does not add a lot to the point. 

    Let us show how observing the "structural nonlinearity", or the "A(x)-nonlinearity" can help 

one to understand something in a difficult physics situation. This appears to be a matter of a very 

simple logic.  
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4. Why the hydrodynamic (aerodynamic) equations must be nonlinear 

from the "structural" system-theoretic point of view? 
  

Consider liquid (air) flow, namely, its velocity field  ( , )v r t  from the system theoretic point of 

view.  That is, let us see ( , )v r t  as some vector ( )x t  of the state variables of the "system", which 

has to be found.  However, the structure of the "system", i.e. the analogy to the above matrix [A] 

is just the same vector field  
 
that we can observe.  Indeed, in no other form the structure 

is given to the observer.  If we add the pressure p, also included in the given below Navier-Stocks 

equation, to the components of v , as an unknown, i.e. include p into vector x , the fact that the 

"structure" of the system is organically associated with the state variables remains.  For the flow, 

the connection of the structure [A] and the unknown ( )x t  is obvious simply because they are the 

same.  That is, the flow obviously has the structural [A(x)]-nonlinearity.   

    Of course, this simple observation and argument cannot constructively explain the processes 

that take place in the flow, however, it makes, in particular, the appearance of the turbulence not 

surprising, because it is well known that a chaotic state (here the turbulence) can be obtained only 

in a nonlinear (and never in any finite linear) system, which is a physical conclusion.  This shows 

the heuristic validity of the concept of "structural nonlinearity". 

    However, let us also directly observe the matrix [A(x)] in the Navier-Stocks equation. To rewrite 

this equation closer to (7) or (8) we have to agree about the following.  Since the system state 

equation theory does NOT deal with moving systems, we should use not Lagrange's, but Euler's 

hydrodynamics presentation [1], that is, to be focused not on a moving element of the flow, but on 

a certain point . Then,  is just at this point, and, for the localized unmoving system, we 

should interpret the partial derivative by time, 
v

t




, as the full derivative .  With these actions, 

we rewrite Navier-Stocks equation: 

                  [ ( ) ]
v p

v v
t

  
    

  
                     (9) 

thus: 

                 [ ( ) ]
dx p

x x
dt

 
    

 
  ,                (10) 

 

observing matrix  as       

( , )v r t

r x v

dx

dt

[ ( )]A x
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                      [ ( )] [ ( ) ]A x x


   


,                 (11) 

     or, returning to , 

                         [ ( )] [ ( ) ]A v v


   


                   (12) 

The structural nonlinearity of the flow is obvious. 

 

 

5. Conclusions, final remarks, and some pedagogical philosophy  

Motivated by the analysis of [2], we suggested to use the "structural" presentation of a nonlinearity, 

namely the [A(x)]-nonlinearity, for a qualitative analysis of complicated physical systems. 

  The two seemingly very different explanations of a nonlinearity of a liquid flow -- the spatial-

dynamic and the structural-view ones well agree with each other.  However, the main conclusion 

is not the well-known fact of nonlinearity of Navier-Stocks equation.  The heuristic point is that -

- when looking at liquid flow, and understanding that the "system" is the same initially unknown 

vector field, i.e. is the same as the very process, -- one who does not know anything about 

hydrodynamic theory, sees that there is a "structural nonlinearity", i.e. the hydrodynamic equations 

must be nonlinear.  One thus sees that the turbulence is a chaos that should be (and often is) 

observed through these nonlinear equations.   

    The concept of "structural nonlinearity" originates from the conventional linear system 

representation (5), which is on the border between the typical linear and nonlinear presentations. 

That we start directly from the form (7), and not from constructions of [A(x)] and [B(x)] for some 

concrete cases, reflects our principal position that nonlinearity as an influence of the 

processes in the system on the system's structure, which is clear in (7) or (8).  

    One notices that we do not accept the purely philological, i.e. in principle nonconstructive, 

though popular, definition of "nonlinear" as "not a linear one".  With such a "not"-definition, one 

could not surely see the liquid flow as a nonlinear system.  As well, by saying that "nonlinear" is 

"not a linear one", one assumes that in order to speak about nonlinearity, one has to already know 

what linearity is.  However, in variational calculus, straight lines appear as particular cases of the 

curves -- for instance, as realizing the minimal distance between two points.  That is, nonlinearity 

can be seen as more initial concept than linearity.   

    It would be very interesting if one could, after revealing the nonlinearity of the flow as suggested 

here, to find a phenomenological convincing way to show that ( )v  must appear in [ ( )]A v , and 

thus to suggest a new derivation of the Navier-Stocks equation.  That is, to try to inverse the way 

via (1), (3), and (9)-(12). On the heuristic-pedagogical regards, finding a new way to a known 

v
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equation can be useful.  For instance, the derivation by Einstein of the known Plank's formula of 

the black body radiation [4], led in [5] to foundation of quantum electronics.       
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