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Abstract

We propose a novel adaptive importance sampling scheme for Bayesian inversion problems
where the inference of the variables of interest and the power of the data noise is split. More
specifically, we consider a Bayesian analysis for the variables of interest (i.e., the parameters
of the model to invert), whereas we employ a maximum likelihood approach for the estimation
of the noise power. The whole technique is implemented by means of an iterative procedure,
alternating sampling and optimization steps. Moreover, the noise power is also used as a tempered
parameter for the posterior distribution of the the variables of interest. Therefore, a sequence of
tempered posterior densities is generated, where the tempered parameter is automatically selected
according to the actual estimation of the noise power. Numerical experiments show the benefits of
the proposed approach.

1 Introduction
The estimation of unknown parameters from noisy observations is an essential problem in signal
processing, statistics and machine learning [5, 2, 13, 4]. Within the Bayesian signal processing
framework, these problems are addressed by constructing posterior probability distributions of the
unknowns. Given the posterior, one often wants to make inference about the unknowns, e.g., if we are
estimating parameters, finding the values that maximize their posterior, or the values that minimize
some cost function given the uncertainty of the parameters. Unfortunately, obtaining closed-form
solutions, usually expressed as integrals of the posterior, is infeasible in most practical applications.
Hence, developing approximate computational techniques (such as importance sampling and MCMC
algorithms) are often required [17, 9, 12].

The so-called tempering of the posterior is a well-known procedure for improving the performance
of the Monte Carlo (MC) algorithms [8, 11, 6, 14]. The tempering is obtained by modulating an arti-
ficial scale parameter or by sequentially including new data. The reasons of the improvement in the
performance are several: improving mixing, discovering modes, foster the exploration of the inference
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space etc. In the first iterations of the MC scheme, a posterior density with a bigger scale is consid-
ered. The artificial scale parameter (often called “temperature”) is reduced during the iterations, until
considering the true posterior distribution. However, the user should decide a temperature schedule,
i.e., a decreasing rule for the scale parameter, which is usually chosen in an heuristic way. In the
literature, the tempering procedure has gained a particular attention for the estimation of the marginal
likelihood (a.k.a., Bayesian model evidence) [6, 15, 10].

In this work, we design an adaptive importance sampling (AIS) scheme for Bayesian inversion
problems, where an automatic tempering procedure is implemented. We consider that the vector of
observations y is obtained by a nonlinear transformation f(θ) of the variables of interest θ, perturbed
by additive Gaussian noise with unknown power σ2. The nonlinear mapping f(θ) usually represents a
complex physical model or a computer code etc. The resulting posterior densities are usually highly
multimodal and complex distributions. Furthermore, the inference task in the a joint space [θ, σ] is
particularly challenging. Indeed, “wrong choices” of σ values can easily jeopardize the sampling of
θ. We proposed a split strategy to tackle this problem. We consider an optimization approach over σ
and a sampling scheme for θ. More specifically, we design an iterative procedure where this two tasks
are alternated. Additionally, the actual maximum likelihood (ML) estimation of the noise power, σ̂2

ML,
is employed as a tempering parameter, starting from high values and then “cooling down” according
to the ML estimations at each iterations. Therefore, the proposed scheme deals with a sequence of
tempered posteriors according to the current estimation σ̂2

ML. It is important to observe that, given a
fixed vector θ, the ML estimation σ̂2

ML can be obtained analytically. The advantages of the proposed
scheme are shown in two numerical experiments, one of them considering a complex astronomical
model.

2 Problem Statement
Let denote the observed measurements as y = [y1, ..., yK]> ∈ RK , and the variable of interest that we
desire to infer, as θ = [θ1, ..., θM]> ∈ Θ ⊆ RM. Furthermore, let consider the observation model

y = f(θ) + e, (1)

where we have a nonlinear mapping,

f(θ) = [ f1(θ), ..., fK(θ)]> : Θ ⊆ RM → RK , (2)

and a Gaussian perturbation noise,

e = [e1, ..., eK]> ∼ N(e|0, σ2IK), (3)

with σ > 0, and we have denoted the K-dimensional unit matrix as IK . The noise variance σ2 is
unknown, in general. The mapping f could be analytically unknown: the only assumption is that we
are able to evaluate pointwise the nonlinear mapping f(θ). The likelihood function is

`(y|θ, σ) =
1

(2πσ2)K/2 exp
(
−

1
2σ2 ||y − f(θ)||2

)
, (4)

=
1

(2πσ2)K/2 exp

− 1
2σ2

K∑
k=1

(yk − fk(θ))2

 . (5)
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Note that we have two types of variables of interest: the vector θ contains the parameters of the non-
linear mapping f(θ), whereas σ is a scale parameter of the likelihood function.

Goal. Given the vector of measurements y, we desire to make infer regarding the hidden parame-
ters θ and the noise power σ2, obtaining at least a point estimators θ̂ and σ̂2. Note also that the
vector

r = f(θ) ∈ RK , (6)

is a multivariate random variable obtained by the transformation of the random vector θ trough the
nonlinear mapping f. Hence, an additional possible outcome is to obtain an smoothing version of the
given observation vector y ∈ RK , i.e., r̂ ∈ RK (as well as uncertainty and correlation analysis between
different yk’s). Finally, we are also interested in design efficient schemes in order to perform model
selection, i.e., to compare, select or properly average different models.

Bayesian inference. We consider prior densities p(θ) and p(σ) over the unknowns. Hence, the
complete posterior density is

π̄(θ, σ|y) =
1

p(y)
π(θ, σ|y) =

1
p(y)

`(y|θ, σ)p(θ)p(σ), (7)

where π(θ, σ|y) = `(y|θ, σ)p(θ)p(σ) and note that π̄(θ, σ|y) ∝ π(θ, σ|y). The marginal likelihood
Z = p(y) is

Z = p(y) =

∫
R+

∫
Θ

π(θ, σ|y)dθdσ, (8)

This quantity is often needed for model selection. Since Z(y) is generally unknown, we can usually
evaluate pointwise the unnormalized posterior π(θ, σ|y). From now on, we remove the dependence on
y to simplify the notation, using π̄(θ, σ), π̄(θ, σ), and Z. More generally, the computation of integrals
of the form

I =

∫
R+

∫
Θ

h(θ, σ)π̄(θ, σ)dθdσ, (9)

where h(·) : Θ × R+ → R is an integrable function, is usually required. We consider a Monte Carlo
quadrature approach for approximating the integral above and, more generally, provide a particle ap-
proximation of the posterior π̄(θ, σ|y).

Problem. Generally, generating efficiently samples from a complicated posterior in Eq. (7) and
computing efficiently the integrals as in Eqs. (8)-(9) is an hard task. Moreover, this task becomes
often more difficult when we try to perform a joint inference where are involved scale parameters,
i.e., σ, and parameters of the nonlinearity, i.e., θ. Indeed, “wrong choices” of σ values can easily
jeopardize the sampling of θ. Below, we describe the strategy that we propose to tackle this problem.

Conditional and marginal posteriors. In this scenario, the conditional posteriors are often con-
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sidered, for instance,

π̄θ|σ(θ|σ) = p(θ|y, σ) =
p(θ, y, σ)

p(y, σ)
=
`(y|θ, σ), gθ(θ)gσ(σ)

p(y|σ)gσ(σ)
,

=
`(y|σ,θ)gθ(θ)

p(y|σ)
, (10)

and the other one is π̄σ|θ(σ|θ) =
`(y|σ,θ)gσ(σ)

p(y|θ) . The conditional marginal likelihood is obtained by inte-
grating out one of the two variables, i.e.,

Z(σ) = p(y|σ) =

∫
Dθ

`(y|θ, σ)gθ(θ)dθ. (11)

For computational reasons, or since we could be interested only in one of the two variables, we can
consider the marginal posteriors defined as

π̄σ(σ) = p(σ|y) =
p(y|σ)gσ(σ)

p(y)
, (12)

π̄θ(θ) = p(θ|y) =
p(y|θ)gθ(θ)

p(y)
, (13)

where p(y|θ) =
∫
R+ `(y|θ, σ)gσ(σ)dσ. Generally, the integral (11) cannot be computed and an approx-

imation Ẑ(σ) = p̂(y|σ) is required. Finally note that the relationship among complete, conditional and
marginal posteriors is give by

π̄(θ, σ) = p(θ, σ|y) = p(θ|y, σ)p(σ|y), i.e., π̄(θ, σ) = π̄θ|σ(θ|σ)π̄σ(σ). (14)

3 Suggested approach
The idea underlying the proposed scheme is to split the space [θ, σ], restricting the sampling problem
only with respect to θ and considering an optimization problem for with respect to σ. For the sake of
simplicity, let us consider an improper uniform prior over θ. The proposed scheme described in the
next section obtains the following three aims:

1. MAP and ML estimation. Given an approximation of the maximum likelihood (ML) estimator
σ̂(t)
ML (at the t-th iteration of the proposed scheme), we also provide an approximation of the

conditional maximum a-posteriori (MAP) estimator

θ̂MAP|σ̂
(t)
ML ≈ arg max

θ
π̄θ|σ(θ|σ̂(t)

ML). (15)

An important consideration is that, if σ̂(t)
ML → σ̂ML as t grows, then θ̂MAP|σ̂

(t)
ML → θ̂MAP, where

θ̂MAP ≈ arg max
θ

π̄θ|σ(θ|σ̂ML) = arg max
θ

π̄(θ, σ̂ML).
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2. Particle approximation. We approximate the measure of the conditional posterior density after
T iterations, i.e.,

π̄θ|σ(θ|σ̂(T )
ML ) =

`(y|θ, σ̂(T )
ML )gθ(θ)

p(y|σ̂(T )
ML )

, (16)

by a set of weighted samples {θ(n)
t , w̃(n)

t } for t = 1, ...,T and n = 1, ...,N, i.e.,

π̂θ|σ(θ|σ̂(T )
ML ) =

T∑
t=1

N∑
n=1

w̃(n)
t δ(θ − θ(n)

t ).

3. Marginal likelihood estimator. We suggest to ways for estimating of the marginal likelihood
Z = p(y). One possible estimator is

Ẑ = Ẑ(σ̂ML) ≈ p(y|σ̂ML). (17)

Other more sophisticated procedure is to approximate the integral

Ẑ ≈ Z =

∫
R+

p(y|σ)gσ(σ)dσ ≈
∫
R+

Ẑ(σ)gσ(σ)dσ, (18)

where Ẑ(σ) = p̂(y|σ) is an estimator for each possible value of σ (often called conditional
marginal likelihood).

These three objectives are obtained by an iterative procedure. Thus, the resulting schemes are adaptive
Monte Carlo algorithms which combines sampling schemes ad stochastic optimization. However,
some part the conditional posterior of σ can be analytically maximized as shown below (jointly with
some important considerations).

3.1 Analysis of the conditional posterior of σ2

Note that the conditional marginal posterior with respect to σ is

`(y|θ, σ) ∝
1
σK exp

(
−
||y − f(θ)||2

2σ2

)
(19)

∝

(
1
σ2

) K
2

exp
(
−
||y − f(θ)||2

2σ2

)
, (20)

that, with respect to σ2, has the form of an Inverse Gamma density. Then, we can focus on π̄σ2 |θ(σ2|θ)
since this pdf can be studied analytically. For instance, it has a unique mode (maximum likelihood) at

σ2
ML|θ =

1
K
||y − f(θ)||2, (21)

where we have remarked that the expression above represents a MAP estimator conditioned to a spe-
cific value of θ. For K > 4, we can also obtain that

var(σ2|θ) ∝
1

K2 ||y − f(θ)||4.
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The expression above shows that if Monte Carlo methods (MCMC or IS) is exploring a region where
θ does not provide a good fit with the data y (through the model f) then the variance is proportional to
the square of the MSE, i.e., it can be huge. This intuitively explains the issue of dealing with the joint
sampling of θ and σ.

Improper uniform prior over θ. Let us consider here an improper uniform prior over θ. In this
scenario, we have θ̂MAP = θ̂ML which can be expressed as

θ̂ML = arg min
θ
||y − f(θ)||2.

As a consequence, σ̂ML and θ̂MAP are related as

σ̂ML =

√
1
K
||y − f(θ̂MAP)||2, (22)

where σ̂ML is the global ML estimator of σ. See Appendix A for further details.

4 Automatic Tempering Adaptive Importance Sampling (ATAIS)
In this section, we describe an adaptive importance sampler with an automatic tempering approach
which follows the suggestions previously described. At each iteration t of the algorithm, we have an
ML approximation of σ, i.e., σ̂(t)

ML. Considering Eq. (10), we define the tempered conditional posterior
at the t-th iteration,

π̄t(θ) ∝ πt(θ) = πθ|σ(θ|σ̂(t−1)
ML ) = `(y|θ, σ̂(t−1)

ML )gθ(θ), (30)

At each iteration, we consider π̄t(θ) ∝ πt(θ) as a target distribution. The dependence on the iteration t
is due to σ̂(t)

ML varies with t. The ATAIS algorithm is outlined in Table 1. Table 2 contains further de-
tails. It is important to remark that, if σ̂(0)

ML is bigger of the true ML value, we generate a non-increasing
sequence of σ̂(t)

ML, i.e., σ̂(0)
ML ≥ σ̂

(1)
ML ≥ ...σ̂

(t)
ML ≥ σ̂

(t+1)
ML etc.

IS steps. A set of N samples {θ(n)
t }

N
n=1 are drawn from a (normalized) proposal density q(θ|µt,Σt)

with mean µt and a covariance matrix Σt. An importance weight

w(n)
t =

πt(θ
(n)
t )

q(θ(n)
t |µt,Σt)

,

is assigned to each sample.

Proposal adaptation. A particle approximation of the conditional MAP estimator of θ is given by
θ̂t = arg max

n
πt(θ

(n)
t ). The value of current MAP approximation πt(θ̂t) is then compared with the

global MAP estimator obtained so far denoted as πMAP. If πt(θ̂t) ≥ πMAP, all the global MAP estimators
are updated and the proposal pdf is moved at θ̂t, i.e., we set

θ̂MAP = θ̂t, π(t)
MAP = πt(θ̂t), µt = θ̂t, (31)
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Table 1: ATAIS: AIS with automatic tempering

1. Initializations: Choose N, µ1, Σ1, and obtain an initialization for σ̂(0)
ML , πMAP (it can be done

using a particle approximation at step t = 0).

2. For t = 1, . . . ,T :

(a) Sampling:
i. Draw θ(1)

t , ...,θ(N)
t ∼ q(θ|µt,Σt).

ii. Assign to each samples the weights

w(n)
t =

πt(θ
(n)
t )

q(θ(n)
t |µt,Σt)

=
πθ|σ(θ(n)

t |σ̂
(t−1)
ML )

q(θ(n)
t |µt,Σt)

, n = 1, ...,N. (23)

(b) Current maximum estimations:
i. Obtain θ̂t = arg max

n
πt(θ

(n)
t ), and compute r̂t = f(θ̂t) (for alternatives see Table

2).

ii. Compute σ̂t =

√
1
K ||y − r̂t||

2.

(c) Global maximum estimations:
i. If σ̂t ≤ σ̂

(t−1)
ML , then set σ̂(t)

ML = σ̂t. Otherwise, set σ̂(t)
ML = σ̂(t−1)

ML .

ii. If πt(θ̂t) ≥ πMAP, then set θ̂MAP = θ̂t and πMAP = πt(θ̂t).

(d) Adaptation: Set

µt = θ̂MAP, (24)

Σt =

N∑
n=1

w̄(n)
t (θ(n)

t − θ̄t)>(θ(n)
t − θ̄t) + δIM, (25)

where w̄(n)
t

w(n)
t∑N

i=1 w(i)
t

are the normalized weights, θ̄t =
∑N

n=1 w̄(n)
t θ(n)

t and δ > 0.

3. Output: Return the final estimators θ̂MAP, σ̂ML, and all the weighted samples {θ(n)
t , w̃(n)

t }, for
all t and n, with the corrected weights

w̃(n)
t = w(n)

t
πT+1(θ(n)

t )

πt(θ
(n)
t )

. (26)

Otherwise, we keep the previous values θ̂MAP, πMAP and µt = µt−1. The covariance matrix Σt is adapted
by considering the empirical covariance of the weighted samples. Note that, we set µt = θ̂MAP instead
of using the empirical mean of the samples (as in other AIS schemes). This is due to we have no-
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Table 2: Possible model approximations

1. MAP: Given θ̂t = arg max
n
πt(θ

(n)
t ), then set

r̂t = f(θ̂t), (27)

2. MMSE: Given w̄(n)
t

w(n)
t∑N

i=1 w(i)
t

and θ̄t =
∑N

n=1 w̄(n)
t θ(n)

t , then set

r̂t = f(θ̄t), (28)

3. Fully-Bayesian solution: Given w̄(n)
t

w(n)
t∑N

i=1 w(i)
t

, then set

r̂t =

N∑
n=1

w̄(n)
t f(θ(n)

t ). (29)

tice that this choice provide better and more robust results, specially as the dimension of the problem
grows.

Automatic tempering. As we show in the previous section, the current ML estimator of σ can be
obtained analytically as

σ̂t =

√
1
K
||y − r̂t||

2, (32)

where r̂t = f(θ̂t) (some alternatives are given in Table 2). If the current ML estimator σ̂t is smaller
than a global one σ̂ML, i.e., σ̂t < σ̂(t−1)

ML , then we update σ̂(t)
ML = σ̂t, Otherwise, we keep the value of

σ̂(t)
ML = σ̂(t−1)

ML .

ATAIS outputs. After T iterations, a final correction of the weights is needed, i.e.,

w̃(n)
t = w(n)

t
πT+1(θ(n)

t )

πt(θ
(n)
t )

, (33)

in order to obtain a particle approximation of the measure of the final conditional posterior π̄θ|σ(θ|σ̂ML).
Thus, the algorithm returns the final estimators θ̂MAP, σ̂ML, and all the weighted samples {θ(n)

t , w̃(n)
t }, for

all n = 1, ...,N and t = 1, ...,T . Other outputs can be obtained with a post-processing of the weighted
samples, as shown below.

Approximation of Z(σ) = p(y|σ). After the T iterations of ATAIS, we can also approximate the
conditional marginal likelihood Z(σ) = p(y|σ) without additional evaluations of the target function.
Indeed, saving the error values at each particles obtained for the computation of the likelihood function
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during ATAIS,
e(n)

t = ||y − f(θ(n)
t )||2,

then for a generic value of σ we can compute the IS weights,

ρ(n)
t (σ) =

1
σK exp

(
−

e(n)
t

2σ2

)
gθ(θ)

q(θ(n)
t |µt,Σt)

.

Thus, the IS estimator of the conditional marginal likelihood Z(σ) = p(y|σ) is given by the arithmetic
mean of the weights ρ(n)

t (σ),

Ẑ(σ) = p̂(y|σ) =
1

NT

T∑
t=1

N∑
n=1

ρ(n)
t (σ). (34)

Furthermore, if we draw σ(r) ∼ gσ(σ), from r = 1, ...,R then we can approximate the global marginal
likelihood by applying the standard Monte Carlo to the integral in Eq. (18),

Ẑ =
1
R

R∑
r=1

Ẑ(σ(r)). (35)

An approximation of the marginal posterior π̄σ(σ) =
p(y|σ)gσ(σ)

p(y) in Eq. (12) can be also obtained as

π̂σ(σ) =
Ẑ(σ)gσ(σ)

Ẑ
. (36)

5 Simulations
We test the proposed scheme in two numerical examples. The first numerical experiment is a simple
bidimensional example (which is easy to be reproduced). The second experiment considers a real-
world application, i.e., a radial velocity models of exoplanet systems which is often employed in
astronomy applications (with a dimension of the inference problem of 6 and 11).

5.1 First numerical analysis
For the sake of simplicity, let us consider θ ∈ R and an observation model given by the equation

yk = θ2 − log(| sin(10θ)|) + ek,

where e ∼ N(ek|0, σ2) and clearly f (θ) = θ2 + log(| sin(10θ)|). We consider θtrue = 2.5, and σtrue = 4.
We generate K = 8 observations from the model above. We also consider a uniform prior for θ in
[0, 20]. The conditional posterior π̄θ|σ(θ|σtrue) is shown in Figure 1(c). We can observe that π̄θ|σ
is highly multimodal. Figure 1 also depict the conditional posteriors π̄θ|σ(θ|σ) with σ ∈ {10, 20}.
Considering also a uniform prior over σ in [0, 20], we have also a bidimensional complete posterior
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over [θ, σ], which is depicted in Fig. 2(a).
In this bidimensional example, it is possible to obtain the ground-truths using an expensive thin grid.
The expected value and variance of the conditional posterior θ|σtrue, approximated by a thin grid,
E[θ|σtrue] = 2.48 and var[θ|σtrue] = 0.11. The MAP estimator of the conditional posterior θ|σtrue is
θMAP|σtrue = 2.56. The expected value and variance of marginal posteriors of θ and σ are E[θ] = 2.46,
var[θ] = 0.18, E[σ] = 4.32 and var[σ] = 2.43 (these values coincide with the expected value and
the diagonal of the covariance matrix of the complete posterior). The MAP estimator provided by
the complete posterior is [θMAP-joint, σMAP-joint] = [2.56, 3.23]. Since the prior over σ is uniform, the
maximum likelihood of σ is σML = σMAP-joint = 3.23. These values can be obtained sampling in the
2D space [θ, σ] and then considering the components of the drawn vectors. The MAP estimator of the
marginal posteriors in Eq. (12) are θMAP-marg = 2.56 and σMAP-marg = 3.46. The two marginal posteriors
are shown in Figures 2(b)-(c).
We apply ATAIS with the goal of estimating the expected value and the variance of the posterior
density with respect to θ. we consider a Gaussian proposal q(θ|µt, λt) with µ0 = 10 and a starting
variance of λ0 = 4. Note that µ0 is located in region that does not contains modes. We also start with
σ̂(0)
ML = 20 and πMAP = 0 (initial conditions). The Mean Square Error (MSE) of ATAIS, averaged over

500 runs, in estimation of different moments and modes as function of N (and with T = 10), is given
in Table 3. The ML estimation σ̂(t)

ML as function of the iteration t (with N = 5) for different runs, is
given in Figure 3(a). Approximations π̂σ(σ) obtained as in Eq. (36) of the marginal posterior π̄σ(σ),
in one specific run, with different N ∈ {10, 100, 500} and T = 10.

0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(a) σ = 20.

0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

(b) σ = 10.

0 2 4 6 8
0

0.5

1

1.5

(c) σ = σtrue = 4.

Figure 1: Conditional posteriors corresponding to different value of σ: more specifically, (a) σ = 20,
(b) σ = 10, (c) σ = σtrue = 4.

5.2 Radial velocity curves of exoplanets and binary systems
In this example, we consider an application in an astronomical model. In recent years, the problem
of revealing objects orbiting other stars has acquired large attention. Different techniques have been
proposed to discover exo-objects but, nowadays, the radial velocity technique is still the most used
[7, 3, 1, 18]. The problem consists in fitting a model (the so-called radial velocity curve) to data
acquired at different moments spanning during long time periods (up to years). The model is highly

10



(a) Complete posterior.

0 2 4 6 8
0

0.5

1

1.5

(b) Marginal posterior π̄θ(θ).

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

(c) Marginal posterior π̄σ(σ).

Figure 2: The bidimensional complete posterior π̄(θ, σ) and the two marginal posteriors π̄θ(θ), π̄σ(σ)
in Eq. (12), obtained by using a thin grid approximation.

5 10 15 20
0

5

10

15

20

(a) σ̂(t)
ML

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5
True
N=500
N=100
N=10

(b) π̂σ(σ) for different N (T = 10).

Figure 3: (a) The ML estimation σ̂(t)
ML (different runs) versus the iteration t, with N = 5. (b) The true

marginal posterior π̄σ(σ) and different approximations, in one specific run, π̂σ(σ) obtained as in Eq.
(36) with different N ∈ {10, 100, 500} and T = 10 (hence, the total number of samples are NT ).

non-linear and it is costly in terms of computation time (specially, for certain sets of parameters).
Obtaining a value to compare to a single observation involves numerically integrating a differential
equation in time or an iterative procedure for solving to a non-linear equation. Typically, the iteration
is performed until a threshold is reached or 106 iterations are performed. The problem of radial
velocity curve fitting is applied in several related applications.

Observation model - likelihood. When analysing radial velocity data of an exoplanetary system,
it is commonly accepted that the wobbling of the star around the centre of mass is caused by the sum
of the gravitational force of each planet independently and that they do not interact with each other.
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Table 3: MSE of ATAIS (averaged over 500 runs), in the estimation of different moments and modes as function of N
and T = 10.

Moments-Modes N = 10 N = 100 N = 1000 N = 5000
E[θ|σtrue] 0.0311 0.0098 0.0034 0.0024

var[θ|σtrue] 0.0474 0.0370 0.0298 0.0201
θMAP|σtrue 0.0410 0.0337 0.0285 0.0127

E[σ] 0.9233 0.0785 0.0097 0.0023
var[σ] 6.1869 0.2640 0.0035 0.0010
σMAP-marg 0.0056 0.0004 0.0001 3 · 10−5

σML 8 · 10−5 2 · 10−5 5 · 10−7 6 · 10−9

Each planet follows a Keplerian orbit and the radial velocity of the host star is given by

yr,t = V0 +

S∑
i=1

Ki
[
cos

(
ui,t + ωi

)
+ ei cos (ωi)

]
+ ξt, (37)

with t = 1, . . . ,T and r = 1, . . . ,R. The number of objects in the system is S , that is consider known
in this experiment (for the sake of simplicity). Both yr,t, ui,t depend on time t, and then ξt is a Gaussian
noise perturbation with variance σ2. For the sake of simplicity, we consider this value known, σ2 = 1.
The likelihood function is defined by (37) and some indicator variables described below. The angle
ui,t is the true anomaly of the planet i and it can be determined from

dui,t

dt
=

2π
Pi

(
1 + ei cos ui,t

)2

(1 − ei)
3
2

(38)

As mentioned above, this equation has analytical solution. As a result, the true anomaly ut can be
determined from the mean anomaly M. However, the analytical solution contains a non linear term
that needs to be determined by iterating. First, we define the mean anomaly Mi,t as

Mi,t =
2π
Pi

(t − τi) , (39)

where τi is the time of periastron passage of the planet i and Pi is the period of its orbit (see Table ??).
Then, through the Kepler’s equation,

Mi,t = Ei,t − ei sin Ei,t, (40)

where Ei,t is the eccentric anomaly. Equation (40) has no analytic solution and it must be solved by
an iterative procedure. A Newton-Raphson method is typically used to find the roots of this equation
[16]. For certain sets of parameters this iterative procedure, can be particularly slow. We also have

tan
ui,t

2
=

√
1 + ei

1 − ei
tan

Ei,t

2
, (41)
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The variable of interest is then θ is the vector

θ = [V0, ka,1, ω1, e1, P1, τ1, . . . , ka,S , ωS , eS , PS , τS ], (42)

Then, for a single object (e.g., a planet or a natural satellite), the dimension of θ is M = 5 + 1 = 6,
with two objects the dimension of θ is is M = 11 etc.

This example consists in a synthetic radial velocity curve of a planetary system with one planet
or two planets (i.e., S = 1 or S = 2). More specifically, we generate simulated data with a model
with two planets. The orbital parameters of the planets are listed in Table 4, where P is the period
of the orbit, ka is the amplitude of the curve, e is the eccentricity of the orbit, ω is the argument of
perigee and τ is the last periastron passage. A mean velocity v0 = 5 m s−1 is assumed. A Gaussian
noise perturbation is added with a standard deviation σ = 3 m s−1. To simulate observations, a total
of K = 120 points are selected from three, random time periods (and two planets in the system). Note
that the amplitude of the radial velocity curve of the second planet is close to the noise level. We
run ATAIS and a standard AIS scheme with the model with one planet and with the model with two
planets. The purpose of this simulation is to check the ability of the method to detect the two planets
(by approximating the model evidence).

Table 4: Main orbital parameters of the two exoplanets in the simulation.
Parameter Planet 1 Planet 2
P 15 d 115 d
ka 25 m s−1 5 m s−1

e 0.1 0.0
ω 35◦ 10◦

τ 3 d 24 d

Figure 4: Comparison of the results of the ATAIS algorithm with the simulations (blue dots). Left
panel shows, in grey, the radial velocity curve for θ̂MAP using a model with one planet. Right panel is
like left panel but considering a model with two planets.
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We apply ATAIS and a standard AIS scheme [4] over the space [θ, σ] for approximating the model
evidence Z = p(y) (marginal likelihood) of both models (one planet or two planets) with the given data
(generated considering two planets). Uniform priors are considered for each parameter: P ∈ [0, 365],
ka ∈ [−20, 20], e ∈ [0, 1], ω ∈ [0, 2π], and τ ∈ [0, 50] (moreover, σ ∈ [0, 30] for the standard
AIS scheme). The ATAIS algorithm and the standard AIS scheme has been run with N = 105 and
T = 50 iterations for both, the model with one and two planets. In both case, we consider the same
Gaussian proposal with a starting standard deviation of 5 for each component (note that the standard
AIS scheme works in higher dimensional space due the inference over σ). To decide which model is
more probable, the model evidence Z of each model is estimated. More specifically, we approximate
the one-planet model Ẑ1 = p̂1(y) of the two-planets model Ẑ2 = p̂2(y) with the ATAIS algorithm and
the standard AIS scheme. When Ẑ1 > Ẑ2 we select the first model otherwise if, Ẑ1 < Ẑ2, we select the
second one. The true model is the two-planets model, since the simulated data are generated from the
two-planets model. After 500 independent runs, the percentage of correct detection of the true model
for ATAIS is ≈ 98%, whereas with the standard AIS scheme is only ≈ 56%. This due to the difficulty
of making inference jointly over [θ, σ]. In ATAIS, the ratio between the model evidences (averaged
over the 500 runs) is Ẑ1 = p̂1(y) is Z2/Z1 ≈ 5 · 103. Therefore, for ATAIS, the model with two planets
is clearly more probable than the model with one planet.

The fitted curves, corresponding to the vector of parameters θ̂MAP obtained with ATAIS. are shown
in Fig. 4. From the figure, it is not clear which model fits better the simulated observations (blue
points), although the model with two planets seems to fit better the observations in the time period
from 200 to 300 days. The values of θ̂MAP, obtained in one specific run by ATAIS, is given in Table 5.
We notice that ω and τ are highly correlated and more iterations may be needed to obtain the actual
global maximum, but the remaining parameters obtained from θ̂MAP are similar to the simulated values.
In addition, the amplitude of the curve of the second planet is close to the intensity of the noise, what
makes difficult to derive the best fit for that planet. Summarizing, our results show the method is able
to discriminate between a model with one planet (with 6 dimensions of the inference problem) and a
model with two planets (with 11 dimensions of the inference problem), for this particular simulation.
Finally, the evolution of the automatic tempering parameter σ̂(t)

ML is shown in Fig. 5. The dashed line
is the evolution of σ̂(t)

ML for the single-planet model. The continuous line is the evolution of σ̂(t)
ML for the

model with two planets. In this second model, the tempering parameters reaches a smaller value, as
expected.

Table 5: The value of θ̂MAP for the 2-planets model
Parameter Planet 1 Planet 2
P 14.99 d 110.39 d
K 23.78 m s−1 3.50 m s−1

e 0.05 0.00
ω 43.7◦ 0.39◦

τ 6.8 d 7.96 d
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Figure 5: Evolution of the tempering parameter σ̂(t)
ML. The dashed line is the evolution for the model

with one planet. The continuous line is the evolution of the two-planets model.

6 Conclusions
We have proposed a novel AIS scheme for Bayesian inversion problems where an automatic temper-
ing procedure is implemented (called ATAIS). The inference of the variables of interest θ and the
noise power σ2 is divided. A sampling strategy is considered for θ and an optimization approach is
employed for σ2. Thus, ATAIS performs an iterative procedure, alternating sampling and optimiza-
tion steps. Therefore, the proposed scheme deals with a sequence of tempered posteriors according
to the current estimation of the noise power. We have also discussed to possibility of approximating
the marginal posterior of σ without additional evaluation of the complex model (and of the posterior).
Several simulations are provided and the application to a sophisticated astronomical model has been
considered, where the number of planets in the system is detected by the analysis of the marginal
likelihood. The results show the benefits of the proposed scheme. For instance, in the astronomical
example, the percentage of correct detection of the true model obtained by ATAIS is ≈ 98%, whereas
with the standard AIS scheme is only ≈ 56%. As future research, we plan to extend the ATAIS scheme
in order to deal with an observation model with correlated noise perturbations (for instance, using a
Gaussian Process).
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A On the optimization of the likelihood function
Let us set δ = σ2 and consider to optimize of the likelihood function

`(θ, δ) =
1

(2πδ)K/2 exp
(
−

V(θ)
δ

)
.

Recall that, in our model, we have V(θ) = ||y − f(θ)||2. We desire to obtain

[θML, δML] = arg max `(θ, δ).

We can write the gradient and equal to zero,
∇θ`(θ, δ) = −

1
δ
∇θV(θ)

[
1

(2πδ)K/2 exp
(
−

V(θ)
δ

)]
= 0 =⇒ ∇θV(θ) = 0,

∂`(θ, δ)
∂δ

=
e−

V(θ)
δ (2V(θ) − δK)

2
K
2 +1δ

K
2 +2 πK/2

= 0 =⇒ δ =
2
K

V(θ).

(43)

We have obtained that the ML solution is defined by the system of equations,
∇θV(θML) = 0

δML =
2
K

V(θML).
(44)
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