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L. Martino†, J. López-Santiago∗, J. Mı́guez∗

† Universidad rey Juan Carlos (URJC), Madrid, Spain.
∗ Universidad Carlos III de Madrd (UC3M), Madrid, Spain.

April 17, 2020

Abstract

We propose a new Monte Carlo technique for Bayesian inversion problem. The power
of the noise perturbation in the observation model is also estimated jointly with the rest
of parameters. Moreover, it is also used as a tempered parameter. Hence, a sequence of
tempered posterior densities is considered where the tempered parameter is automatically
selected according to the actual estimation of the power of the noise perturbation.

1 Introduction

UNDER CONSTRUCTION

2 Problem Statement

Let denote the observed measurements as y = [y1, ..., yK ]> ∈ RK , and the variable of inter-
est that we desire to infer, as θ = [θ1, ...,θM ]> ∈ Θ ⊆ RM . Furthermore, let consider the
observation model

y = f(θ) + e, (1)

where we have a nonlinear mapping,

f(θ) = [f1(θ), ..., fK(θ)]> : Θ ⊆ RM → RK , (2)

and a Gaussian perturbation noise,

e = [e1, ..., eK ]> ∼ N (e|0, σ2IK), (3)

with σ > 0, and we have denoted the K-dimensional unit matrix as IK . The noise variance σ2

is unknown, in general. The mapping f could be analytically unknown: the only assumption is
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that we are able to evaluate pointwise the nonlinear mapping f(θ). The likelihood function is

`(y|θ, σ) =
1

(2πσ2)K/2
exp

(
− 1

2σ2
||y − f(θ)||2

)
, (4)

=
1

(2πσ2)K/2
exp

(
− 1

2σ2

K∑
k=1

(yk − fk(θ))2

)
. (5)

Note that we have two types of variables of interest: the vector θ contains the parameters of
the nonlinear mapping f(θ), whereas σ is a scale parameter of the likelihood function.

Goal. Given the vector of measurements y, we desire to make infer regarding the hidden
parameters θ and the noise power σ2, obtaining at least a point estimators θ̂ and σ̂2. Note also
that the vector

r = f(θ) ∈ RK , (6)

is a multivariate random variable obtained by the transformation of the random vector θ trough
the nonlinear mapping f . Hence, an additional possible outcome is to obtain an smoothing ver-
sion of the given observation vector y ∈ RK , i.e., r̂ ∈ RK (as well as uncertainty and correlation
analysis between different yk’s). Finally, we are also interested in design efficient schemes in
order to perform model selection, i.e., to compare, select or properly average different models.

Bayesian inference. We consider prior densities p(θ) and p(σ) over the unknowns. Hence,
the complete posterior density is

π̄(θ, σ|y) =
1

Z(y)
π(θ, σ|y), (7)

where π(θ, σ|y) = Z(y|θ, σ)p(θ)p(σ) and note that π̄(θ, σ|y) ∝ π(θ, σ|y). The marginal likeli-
hood Z(y) is

Z(y) =

∫
R+

∫
Θ

π(θ, σ|y)dθdσ, (8)

This quantity is often needed for model selection. Since Z(y) is generally unknown, we can
usually evaluate pointwise the unnormalized posterior π(θ, σ|y). From now on, we remove the
dependence on y to simplify the notation, using π̄(θ, σ), π̄(θ, σ), and Z. More generally, the
computation of integrals of the form

I =

∫
R+

∫
Θ

g(θ, σ)π̄(θ, σ)dθdσ, (9)

where g(·) is an integrable function, is usually required. We consider a Monte Carlo quadrature
approach for approximating the integral above and, more generally, provide a particle approxi-
mation of the posterior π̄(θ, σ|y).
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Problem. Generally, generating efficiently samples from a complicated posterior in Eq. (7)
and computing efficiently the integrals as in Eqs. (8)-(9) is an hard task. Moreover, this task
becomes often more difficult when we try to perform a joint inference where are involved scale
parameters, i.e., σ, and parameters of the nonlinearity, i.e., θ. Indeed, “wrong choices” of σ
values can easily jeopardize the sampling of θ. Below, we describe the strategy that we propose
to tackle this problem.

3 Generic suggested approach

The idea underlying the proposed scheme is to split the space [θ, σ], restricting the sampling
problem only with respect to θ and considering an optimization problem for with respect to σ.
The proposed scheme described in the next section obtains the following three aims:

1. MAP estimation. We provide an approximation of the maximum a-posteriori estimator

[θ̂MAP, σ̂MAP] = arg max
θ,σ

p(θ, σ|y). (10)

More specifically, in the proposed algorithms that we describe below, we use a “coordinate
ascent” approach (a.k.a., alternating optimization) considering the conditional posteriors,
i.e.,

θ̂
(t)
MAP = arg max

σ
p(θ|σ̂(t−1)

MAP ,y), (11)

σ̂
(t)
MAP = arg max

σ
p(σ|θ̂(t)

MAP,y). (12)

where t ∈ N is the iteration index of the algorithm.

2. Particle approximation. We generate (weighted or unweighted) samples θ(1), ...,θ(N)

from approximating the measure of the conditional posterior density

π̄(θ|σ̂MAP) = p(θ|y, σ̂MAP) ∝ π(θ|σ̂MAP) = p(y|θ, σ̂MAP)p(θ)p(σ̂MAP). (13)

3. Marginal likelihood estimator. We provide an estimator of the conditional marginal
likelihood,

Ẑ ≈ p(y|σ̂MAP). (14)

These three objectives are obtained by an iterative computational procedure. Thus, the resulting
schemes are adaptive Monte Carlo algorithms which combines sampling schemes ad stochastic
optimization. However, some part the conditional posterior of σ can be analytically maximized
as shown below (jointly with some important considerations).
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3.1 Analysis of the Conditional Posterior of σ2

For the sake of simplicity, let us consider uniform improper priors p(σ) ∝ 1 and p(θ) ∝ 1. Note
that the conditional marginal posterior with respect to σ2 is

p(σ2|θ,y) ∝ 1

σK
exp

(
−||y − f(θ)||2

2σ2

)
(15)

∝
(

1

σ2

)K
2

exp

(
−||y − f(θ)||2

2σ2

)
, (16)

that has the form of an Inverse Gamma density,

p(σ2|θ,y) = IG(σ2|α, β) ∝
(

1

σ2

)α+1

exp

(
− β

σ2

)
, (17)

where α = K
2
− 1 and β = 1

2
||y − f(θ)||2. The Inverse Gamma density has expected value β

α−1

(for α > 1) and has a unique mode

σ2
MAP|θ =

β

α + 1
=

1

K
||y − f(θ)||2, (18)

σMAP|θ =

√
1

K
||y − f(θ)||2, (19)

where we have remarked that the expression above represents a MAP estimator conditioned to
a specific value of θ. For α > 2, the variance can be written as

var(σ2|θ) =
β2

(α− 1)2(α− 2)
≤ β2

(α− 2)3
(20)

Note that α = K
2
− 1 depends only on the number of data K. If we fix the number of data K,

we can see that

var(σ2|θ) ∝ β2 =
1

K2
||y − f(θ)||4 = (MSE-in-Obs-Space)2.

The expression above shows that if Monte Carlo methods (MCMC or IS) is exploring a region
where θ does not provide a good fit with the data y (through the model f) then the variance is
proportional to the square of the MSE, i.e., it can be huge. This intuitively explains the issue
of dealing with the joint sampling of θ and σ.

4 Automatic Tempering Adaptive Importance Sampling

(ATAIS)

In this section, we describe an adaptive importance sampler with an automatic tempering ap-
proach which follows the suggestions previously described. At each iteration t of the algorithm,

4



we have an approximation of the conditioned MAP of σ, i.e., σ̂
(t−1)
MAP . Let us define the tempered

conditional posterior at the t-th iteration,

πt(θ) = π(θ|σ̂(t−1)
MAP ) = `(y|θ, σ̂(t−1)

MAP )p(θ)p(σ̂
(t−1)
MAP ). (21)

At each iteration, we consider πt(θ) as a target distribution. A set of N samples {θ(n)
t }Nn=1

are drawn from a proposal density q(θ|µt,Σt) with mean µt and a covariance matrix Σt. An

importance weight w
(n)
t =

πt(θ
(n)
t )

q(θ
(n)
t |µt,Σt)

is assigned to each sample. A particle approximation of

the conditional MAP estimator of θ is given by θ̂t = arg max
n

πt(θ
(n)
t ). Then, the conditional

MAP estimator of σ can be obtained analytically,

σ̂t =

√
1

K
||y − r̂t||2, (22)

where r̂t = f(θ̂t) (some alternatives are given in Table 2). The value of current MAP approx-

imation πt(θ̂t) is then compared with the global MAP estimator obtained so far denoted as

π
(t−1)
MAP . If πt(θ̂t) ≥ π

(t−1)
MAP , all the global MAP estimators are updated, i.e., we set

θ̂
(t)
MAP = θ̂t, σ̂

(t)
MAP = σ̂t, π

(t)
MAP = πt(θ̂t). (23)

Otherwise, we keep the previous values θ̂
(t)
MAP = θ̂

(t−1)
MAP , σ̂

(t)
MAP = σ̂

(t−1)
MAP , and π

(t)
MAP = π

(t−1)
MAP . Finally,

the parameters of the proposal density q are updated according to the global MAP estimator
θ̂

(t)
MAP and the empirical covariance of the weighted samples. Note that, we set µt = θ̂

(t)
MAP instead

of using the empirical mean of the samples. This is due to we have notice that this choice
provide better and more robust results, specially as the dimension of the problem grows. The
ATAIS algorithm is completely described in Table 1. Table 2 contains further details. After T
iterations, a final correction of the weights is needed, i.e.,

w̃
(n)
t = w

(n)
t

πT+1(θ
(n)
t )

πt(θ
(n)
t )

= w
(n)
t

π(θ
(n)
t |σ̂

(T )
MAP)

π(θ
(n)
t |σ̂

(t−1)
MAP )

, (24)

in order to obtain a particle approximation of the measure of the final conditional posterior
π̄(θ|σ̂(T )

MAP).

5 Numerical Simulations

UNDER CONSTRUCTION

6 Conclusions

UNDER CONSTRUCTION
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Table 1: ATAIS: AIS with automatic tempering

1. Initializations: Choose N , µ1, Σ1, and obtain an initialization for σ̂MAP, πMAP (it can
be done using a particle approximation at step t = 0).

2. For t = 1, . . . , T :

(a) Sampling:

i. Draw θ
(1)
t , ...,θ

(N)
t ∼ q(θ|µt,Σt).

ii. Assign to each samples the weights

w
(n)
t =

πt(θ
(n)
t )

q(θ
(n)
t |µt,Σt)

=
π(θ

(n)
t |σ̂MAP)

q(θ
(n)
t |µt,Σt)

, n = 1, ..., N. (25)

(b) Current MAP estimation:

i. Obtain θ̂t = arg max
n

πt(θ
(n)
t ), and compute r̂t = f(θ̂t) (for alternatives see

Table 2).

ii. Compute σ̂t =
√

1
K
||y − r̂t||2.

(c) Global MAP estimation:

i. If σ̂t ≤ σ̂MAP, then set σ̂MAP = σ̂t.

ii. If πt(θ̂t) ≥ πMAP, then set θ̂MAP = θ̂t and πMAP = πt(θ̂t).

(d) Adaptation: Set

µt = θ̂MAP, (26)

Σt =
N∑
n=1

w̄
(n)
t (θ

(n)
t − θ̄t)

>(θ
(n)
t − θ̄t) + δIM , (27)

where w̄
(n)
t

w
(n)
tPN

i=1 w
(i)
t

are the normalized weights, θ̄t =
∑N

n=1 w̄
(n)
t θ

(n)
t and δ > 0.

3. Output: Return the MAP estimators, and all the weighted samples {θ(n)
t , w̃

(n)
t } with

the corrected weights

w̃
(n)
t = w

(n)
t

πT+1(θ
(n)
t )

πt(θ
(n)
t )

. (28)
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Table 2: Possible model approximations

1. MAP: Given θ̂t = arg max
n

πt(θ
(n)
t ), then set

r̂t = f(θ̂t), (29)

2. MMSE: Given w̄
(n)
t

w
(n)
tPN

i=1 w
(i)
t

and θ̄t =
∑N

n=1 w̄
(n)
t θ

(n)
t , then set

r̂t = f(θ̄t), (30)

3. Fully-Bayesian solution: Given w̄
(n)
t

w
(n)
tPN

i=1 w
(i)
t

, then set

r̂t =
N∑
n=1

w̄
(n)
t f(θ

(n)
t ). (31)
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