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1 Overview and Previous Work

The prediction of a player’s future results on batted balls is often cited as one of the most

challenging problems in baseball analytics [2]. Traditional outcome-based statistics for rep-

resenting player skill on batted balls have been shown to have a low degree of repeatability [6]

due to the effects of multiple confounding variables such as the defense, weather [1] [11], and

ballpark. Sensor systems have created the opportunity to define batted-ball descriptors that

are invariant to these variables [9]. MLB’s Statcast system [10] measures several parameters

of batted balls including the initial speed, vertical launch angle, and horizontal spray angle.

The wOBA cube representation uses these measurements to compute intrinsic batted ball

values and has been shown to provide more reliable estimates of batter performance than

traditional outcome-based statistics [8]. This work also showed [7] that running speed is an

important determinant of batter performance that is not captured by hit-tracking data. In

this work, we build a model that combines Statcast batted ball and time-to-first physical

measurements. The result is offensive statistics that provide a more accurate measure of

performance and that support more accurate forecasts. This approach also promises to

improve the accuracy of defensive metrics by allowing batter running speed to be included

in quantifying the difficulty of a play.

2 Methodology

Radar and optical sensors collect seven terabytes of data during every Major League Baseball

(MLB) game [10]. This data can be used to estimate parameters that describe the physical

1



properties of batted balls and player running speed. We might expect that statistics that

are derived from these parameters will provide a more accurate measure of offensive skill

than traditional statistics that are derived from outcomes. In order to test this hypothesis,

we build a model for a batted ball’s value as a function of contact parameters and batter

running speed. The model uses a Bayesian framework that employs a kernel method to

generate probability density estimates using a large set of sensor data. A cross-validation

scheme allows the algorithm to adapt to the data by learning the optimal vector of smoothing

bandwidths for each density. The result is a learning algorithm that generates a continuous

mapping from batted-ball and running speed measurements to intrinsic values defined using

a linear weights representation for run value. Separate mappings are built to accommodate

the effects of batter handedness.

2.1 Sensor Data

Technologies such as Trackman’s component of the Statcast system [10] use sensors to

estimate the initial speed s and direction of batted balls in three dimensions. The direction

is specified by two angles. The vertical launch angle v shown in figure 1 is the angle that

the batted ball’s initial velocity vector makes with the plane of the playing field where a

vertical angle of −90◦ is straight down and a vertical angle of +90◦ is straight up. The

horizontal spray angle h shown in figure 2 specifies the direction of the projection of the

batted ball’s initial velocity vector onto the plane of the playing field. The three rays in

figure 2 intersect at home plate. The horizontal spray angles of h = −45◦, 0◦, and 45◦ define

the directions toward third base, second base, and first base respectively. The configuration

of the infielders and outfielders causes the expected outcome of a batted ball to have a

strong dependence on the (s, v, h) vector. The Statcast system also measures the time from

batted ball contact until the batter reaches first base. The success of a batter also depends

on his running speed as measured by this time to first data.

Data acquired by Statcast is used for this study and includes measurements from every

regular-season MLB game during 2018. The data set includes (s, v, h) data for batted balls

and associated time to first running speed measurements. For each batter with at least 20

ground balls, we use the average of his three fastest times to first to represent the batter’s
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Figure 1: Vertical launch angle v

Figure 2: Horizontal spray angle h

time to first speed r. For switch-hitters a separate r value is computed for plate appearances

from the right and left side.

2.2 Learning Algorithm

2.2.1 Bayesian Foundation

Given a set of observed batted balls and their outcomes, we develop a method for learning

the dependence of a batted ball’s value on a measured d−dimensional vector x that can

include the (s, v, h) contact parameters and the r speed parameter. Using Bayes theorem,

the posterior probability of an outcome Rj given the vector x is given by

P (Rj |x) =
p(x|Rj)P (Rj)

p(x)
(1)

where p(x|Rj) is the conditional probability density function for x given outcome Rj, P (Rj)

3



is the prior probability of outcome Rj, and p(x) is the probability density function for x. We

will show in section 2.2.5 that a weighted sum of the P (Rj|x) values over outcomes provides

a measure of the value of a batted ball.

2.2.2 Kernel Density Estimation

The goal of density estimation for our application is to recover the conditional probability

density functions p(x|Rj) and p(x) in equation (1) from the x vectors and their outcomes.

Given the typical positioning of fielders and the various ways that an outcome can occur,

we expect a conditional density p(x|Rj) to have a complicated multimodal structure. Thus,

we use a nonparametric technique for density estimation.

Let xi for i = 1, 2, . . . , n be a set of n observed x vectors. We first consider the task of

estimating p(x) from the vectors xi. Kernel methods [14] which are also known as Parzen-

Rosenblatt [12] [13] window methods are widely used for nonparametric density estimation.

A kernel density estimate for p(x) is given by

p̂(x) =
1

n

n∑

i=1

K(x− xi) (2)

where K(·) is a kernel probability density function that is typically unimodal and centered

at zero. A standard kernel for approximating a d−dimensional density is the zero-mean

Gaussian

K(x) =
1

(2π)d/2|Σ|1/2
exp

[
−
1

2
xTΣ−1x

]
(3)

where Σ is the d×d covariance matrix. For this kernel, p̂(x) at any x is the average of a sum

of Gaussians centered at the sample points xi and the covariance matrix Σ determines the

amount and orientation of the smoothing. Σ is often chosen to be the product of a scalar

and an identity matrix which results in equal smoothing in every direction. To recover a

more accurate approximation p̂(x) the covariance matrix should allow different amounts of

smoothing in different directions. We enable this goal while also reducing the number of

unknown parameters by adopting a diagonal model for Σ. This allows K(x) to be written

as a product of one-dimensional Gaussians which depends on the d unknown bandwidth

parameters.
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2.2.3 Bandwidth Selection

The accuracy of the kernel density estimate p̂(x) is highly dependent on the choice of

the bandwidth parameters [3]. The recovered p̂(x) will be spiky for small values of the

parameters and, in the limit, will tend to a sum of Dirac delta functions centered at the xi

data points as the bandwidths approach zero. Large bandwidths, on the other hand, can

induce excessive smoothing which causes the loss of important structure in the estimate

of p(x). A number of bandwidth selection techniques have been proposed and a survey of

methods and software is given in [5]. Many of these techniques are based on maximum

likelihood estimates for p(x) which select the bandwidth vector so that p̂(x) maximizes

the likelihood of the observed xi data samples. Applying these techniques to the full set

of observed data, however, yields a maximum with all bandwidth parameters set to zero

which corresponds to the sum of delta functions result. To avoid this difficulty, maximum

likelihood methods for bandwidth selection have been developed that are based on leave-

one-out cross-validation [14].

The computational demands of leave-one-out cross-validation techniques are excessive

for our data set. Therefore, we have adopted a cross-validation method which requires less

computation. From the full set of n observed xi vectors, we generate disjoint subsets Sj

of fixed size nv to be used for validation. For each validation set Sj, we construct the

estimate p̂(x) using the n − nv vectors that are not in Sj as a function of the bandwidth

parameters. The optimal bandwidth vector σ∗

j for Sj is the choice that maximizes the

pseudolikelihood [4] [5] according to

σ∗

j = argmax
σ

∏

xi∈Sj

p̂(xi) (4)

where the product is over the nv vectors in the validation set Sj. The overall optimized

bandwidth vector σ∗ is obtained by averaging the σ∗

j vectors.

For this project, two validation sets S1 and S2 are used to select the optimized bandwidth

vector σ∗. Let O be the number of batted balls in the data set that were hit in games starting

on an odd day of the month and let E be the number of batted balls in the data set that

were hit in games starting on an even day of the month. Set S1 contains the first nv batted
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balls from games starting on an odd day and set S2 contains the first nv batted balls from

games starting on an even day where nv is the smaller of O and E. For each validation set,

a d-dimensional search is conducted to find the optimized σ∗

j vector in equation (4).

2.2.4 Constructing the Estimate for P (Rj|x)

An estimate for P (Rj|x) can be derived from estimates of the quantities on the right side

of equation (1). The density estimate p̂(x) for p(x) is obtained using the kernel method

defined by equations (2) and (3) with the optimized bandwidth vector σ∗ learned using the

process described in section 2.2.3. Each conditional probability density function p(x|Rj) is

estimated in the same way except that the training set is defined by the subset of the xi

vectors with outcome Rj . We use the σ∗ derived for p(x) for each case. This approach has

the desirable effect of providing the same smoothing to a xi vector in the numerator and

denominator of (1) which prevents a probability P (Rj|x) from exceeding one. Each prior

probability P (Rj) is estimated by the fraction of the n batted balls in the full training set

with outcome Rj . The estimate for P (Rj|x) is then constructed by combining the estimates

for p(x|Rj), P (Rj), and p(x) according to Bayes theorem.

2.2.5 Intrinsic Value using wOBA

The posterior probabilities P (Rj|x) can be combined into a measure of value. In 2007,

Tango and his collaborators [15] defined weighted on base average (wOBA) as a weighted

sum of the probability of outcomes where the weights are determined by the average run

value of each outcome. The resulting formula for batted balls is

wOBA(x) =
5∑

j=0

wjP (Rj|x) (5)

where the wj are the weights for the six outcomes R0 = out, R1 = single, R2 = double,

R3 = triple, R4 = home run, and R5 = batter reaches on error (ROE). Thus, wOBA(x)

is a measure of run value that depends on the measured x vector but does not depend on

a batted ball’s outcome. We will refer to wOBA(x) as an intrinsic value. The weights wj

in equation (5) can change from year-to-year. For the 2018 data we use the coefficients
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w0 = 0.000, w1 = 0.880, w2 = 1.247, w3 = 1.578, w4 = 2.031, and w5 = 0.920 which were

obtained from [16].

2.3 wOBA(x) Function

If x is the three-dimensional vector x = (s, v, h) of batted ball parameters then the wOBA(x)

function in equation (5) is known as the wOBA cube depicted in Figure 3. If x is the four-

dimensional vector x = (s, v, h, r) of batted ball and running speed parameters, then the

wOBA(x) function in equation (5) is called the wOBA tesseract. A depiction of a tesseract

is shown in Figure 4. We will provide examples of the wOBA cube in this section and will

analyze the wOBA tesseract in detail in Section 3.

Figure 3: wOBA Cube

Figure 4: The Tesseract
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Figure 5: wOBA for an initial speed of 93 mph with angles in degrees

The wOBA cube defines the mapping from (s, v, h) to intrinsic value. As a specific

example, Figure 5 displays wOBA(x) on the plane corresponding to a fixed initial speed s

of ninety-three miles per hour. For this value of s, the best results for batters occur for balls

hit with vertical angles between twenty-five and forty degrees with horizontal angles near

the boundaries of fair territory h ∈ [−45◦,−35◦] or h ∈ [35◦, 45◦] where the field dimensions

are typically the shortest. These batted balls often result in home runs. Batted balls hit

at the same speed with the same vertical angle are less valuable at horizontal angles near

zero degrees which correspond to larger field dimensions. For this initial speed, batted balls

with vertical angles near twelve degrees tend to carry over the infielders and land in front

of the outfielders and have a high value for all horizontal angles. Typical horizontal angle

positions for the three outfielders are evident from the three cold zones for balls hit in the

air to the outfield with v ∈ [15◦, 20◦]. Typical horizontal positions for the four infielders are

evident from the four cold zones for balls hit on the ground (v < 0) for which infielders are

often able to record an out.

Batter handedness affects the positioning of fielders which leads to significant wOBA(x)
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Figure 6: wOBA for speed 93 mph and vertical angle −2◦
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Figure 7: wOBA for speed 93 mph and vertical angle +15◦

differences between left-handed and right-handed batters. Thus, we generate separate func-

tions wOBAl(x) for left-handed batters (LHB) and wOBAr(x) for right-handed batters

(RHB). Figures 6 and 7 illustrate differences between wOBAl(x) and wOBAr(x) for batted

balls hit at 93 miles per hour for two vertical angles. Figure 6 considers balls hit on the

ground with a vertical angle of −2◦. We observe four minima in each curve that corre-

spond to the typical position of the four infielders. We see, however, that the minima for
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right-handed batters are shifted about seven degrees toward the third base line (h = −45◦)

compared to the corresponding minima for left-handed batters. This shift corresponds to

the difference in fielder positioning as a function of batter handedness. Figure 7 examines

the impact of batter handedness on balls hit in the air at 93 miles per hour with a vertical

angle of +15◦. The three minima in each curve correspond to the typical positions of the

three outfielders. We see that the minima are shifted about three degrees toward the third

base line (h = −45◦) for right-handed batters. We also see that right-handed batters have

an advantage for batted balls hit in the direction of the outfielder positioned near h = −20◦

since this outfielder is typically positioned at a greater distance from home plate for right-

handed batters which allows additional batted balls hit at this speed to land safely. We

observe the opposite effect for batted balls hit in the direction of the outfielder positioned

near h = 20◦ since this outfielder is typically positioned at a greater distance from home

plate for left-handed batters.

2.4 Intrinsic Batted-Ball Statistics

Using the learning algorithm developed in Section 2.2, a vector x can be assigned an intrinsic

value given by either wOBAl(x) or wOBAr(x) depending on the handedness of the batter.

A batted ball may also be assigned an outcome-based value given by the wOBA coefficient

for its result. The outcome-based value depends on several factors that are beyond the

control of the batter such as the fielders, the weather, the ballpark, and random luck.

Analysts traditionally attempt to quantify the value of an offensive player’s batted balls by

using the average of his outcome-based values over a period of time. This average, O, is

referred to as wOBA on contact or wOBAcon. Since outcome-based values depend on a

number of contextual variables that are independent of the batter’s quality of contact, the

O statistic also depends on these variables. We use the average of a batter’s intrinsic values

as a more appropriate statistic for representing his offensive skill. We refer to the average

of a batter’s intrinsic values computed using the three-dimensional vector x = (s, v, h) of

batted ball parameters as I3 and we refer to the average of a batter’s intrinsic values using

the four-dimensional vector x = (s, v, h, r) that also includes his time to first estimate r

as I4.
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3 Results

In previous work [7] we showed that many players who outperform their I3 wOBAcon

estimate tend to be faster runners while many players who underperform their I3 tend to

be slower runners. This motivates augmenting the wOBA cube with batter running speed

to generate the wOBA tesseract.

3.1 Running Speed Measurements

The Statcast system generates multiple measurements of running speed. Statcast measures

sprint speed which is derived from a runner’s fastest one second window on individual

plays and time to first which measures the time from batted ball contact to when the

batter touches first base. For our application we use time to first which includes factors

such as a batter’s time to recover from the swing and start initial acceleration which affects

his ability to beat out a hit.

Table 1: Fastest Time to First for LHB, 2018

LHB r

Dee Gordon 3.807
Billy Hamilton 3.814
Roman Quinn 3.824

Magneuris Sierra 3.836
Cody Bellinger 3.879
J.B. Shuck 3.882

Brett Gardener 3.909
Mallex Smith 3.929

As described in Section 2.1, we define the running speed parameter r for batters with at

least 20 ground balls as the average of the player’s three fastest measured times to first. For

switch-hitters a separate r value is computed for plate appearances as a right-handed and

as a left-handed batter. For the 2018 season, the average r value over 207 qualifying left-

handed batters was 4.245 seconds and the average r value over 319 qualifying right-handed

batters was 4.305 seconds. Tables 1 and 2 present the left-handed and right-handed batters

with the fastest r values for 2018. Figure 8 plots wOBA as a function of r for right-handed
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Table 2: Fastest Time to First for RHB, 2018

RHB r

Delino DeShields 3.855
Dansby Swanson 3.884

Trea Turner 3.896
Jose Altuve 3.896

Harrison Bader 3.899
Starling Marte 3.904
Scott Kingery 3.923
Adam Engel 3.929
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Figure 8: wOBA with r over all batted balls with v < 10◦ in 2018

and left-handed batters for all batted balls with a vertical angle of less than 10 degrees in

2018. We see that there is a strong dependence of batted ball value on running speed as

wOBA decreases as r increases. We also see that right-handed batters have a higher wOBA

for a given r since a higher fraction of ground balls from RHB are hit to the left side of the

infield which requires a longer throw to first base .

3.2 wOBA Tesseract

The wOBA tesseract defines the mapping from (s, v, h, r) to intrinsic value. A separate

wOBA tesseract is generated for right-handed and left-handed batters using the process

described in Section 2. Figures 9 and 10 provide examples of slices through the tesseract.
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Figure 9: wOBA for RHB batted balls with s = 87, v = −9◦ for two r values
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Figure 10: wOBA for LHB batted balls with s = 97, v = −12◦ for two r values

Figure 9 plots wOBA(x) for right-handed batters for two different values of r as a

function of the horizontal spray angle h with the initial batted ball speed and vertical

launch angle fixed at s = 87 mph and v = −9◦. The red curve corresponds to a faster than

average time of r = 4.0 seconds and the black curve corresponds a slower than average time

of r = 4.4 seconds. The four minima in the curves correspond to the typical position of the

four infielders against right-handed batters. Near these minima we have a ground ball hit

directly at an infielder and the wOBA values are similar for the different values of r. As

we move away from the minima we see that a faster runner (red curve) tends to produce a
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higher wOBA. We see that the largest wOBA values are observed for ground balls hit near

the first base line as this horizontal angle is often undefended against right-handed batters

and balls down the line may go for extra bases.

Figure 10 plots wOBA(x) for left-handed batters for two different values of r as a function

of the horizontal spray angle h with the initial batted ball speed and vertical launch angle

fixed at s = 97 mph and v = −12◦. The red curve corresponds to a faster than average

time of r = 4.0 seconds and the black curve corresponds a slower than average time of

r = 4.4 seconds. The four minima in the curves correspond to the typical position of the

four infielders against left-handed batters. We see that the minima are shifted to the right

compared to the minima for right-handed batters shown in Figure 9. Near three of these

minima the wOBA values are similar for the different values of r. For a ground ball hit

directly at the third baseman near h = −28◦, a faster runner enjoys an advantage since the

third baseman will often be playing shallower to defend against a bunt for the faster runner

and a 97 mph ground ball has a better chance of resulting in a hit. As we move away from

the minima we see that a faster runner (red curve) tends to produce a higher wOBA. We

see that the largest wOBA values are observed for ground balls hit near the third base line

as this horizontal angle is often undefended against left-handed batters and balls down the

line may go for extra bases.

3.3 Comparing I3 and I4

We computed the I3 (wOBA cube) and I4 (wOBA tesseract) estimates of wOBAcon for all

batters in 2018 with at least 250 balls in play. Table 3 is a list of the I3 leaders. These

batters are known for their high quality of contact. Table 4 is a list of the I4 leaders which

factors running speed in addition to quality of contact into the value of each batted ball. We

see that several of the slower runners (Gallo, Martinez, Judge, Goldschmidt) have a lower

I4 than I3 while several of the faster runners (Trout, Story, Yelich, Betts) have a higher I4

than I3. The value of I4 − I3 depends on both the batter’s running speed parameter r and

his particular collection of batted balls.

Table 5 is a list of the batters with the highest I4−I3 for 2018. These are the batters that

would be expected to have the largest gain in wOBAcon due to their running speed given
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Table 3: I3 leaders for 2018

Batter I3
Joey Gallo .597
Aaron Judge .544
J.D. Martinez .544
Mike Trout .541

Paul Goldschmidt .531
Matt Carpenter .527

Giancarlo Stanton .524
Christian Yelich .522

Table 4: I4 leaders for 2018

Batter I4 I4 − I3 r
Joey Gallo .589 -.008 4.319
Mike Trout .542 +.001 4.062

J.D. Martinez .535 -.009 4.340
Aaron Judge .534 -.010 4.487
Trevor Story .529 +.015 3.955

Christian Yelich .527 +.005 4.080
Mookie Betts .526 +.007 4.055

Paul Goldschmidt .522 -.009 4.309

Table 5: Highest I4 − I3 for 2018

Batter I4 − I3 r

Cody Bellinger .025 3.879
Ozzie Albies .022 3.936/3.942

Niko Goodrum .019 4.08/4.022
Rougned Odor .018 3.984
Dansby Swanson .018 3.884
Odubel Herrera .017 3.969
Scott Kingery .017 3.923

Brandon Nimmo .017 4.113
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Table 6: Lowest I4 − I3 for 2018

Batter I4 − I3 r

Yasmani Grandal -.035 4.663/4.966
Victor Martinez -.034 4.634/4.965
Kendrys Morales -.031 4.788/4.816

Justin Bour -.029 4.498
Chris Davis -.027 4.491
Albert Pujols -.025 4.839

Yangervis Solarte -.022 4.556/4.649
Joey Votto -.022 4.575

their collection of batted balls. We see that all of these players have better than average

values of the running speed parameter r. Note that for switch hitters two values (L/R) of r

are used.

Table 6 is a list of the batters with the lowest I4 − I3 for 2018. These are the batters

that would be expected to have the largest loss in wOBAcon due to their running speed

parameter r given their collection of batted balls. We see that all of these players have

worse than average values of r.

3.4 Variance Reduction

Differences between a batter’s observed wOBAcon O and his I3 are due to several factors

including running speed, susceptibility to shifts, the ballpark, the weather, and random

noise. By developing the I4 statistic we improve the accuracy of the estimate by explicitly

modeling the dependence of each batted ball on the running speed parameter r.

Table 7 is a list of the batters with at least 250 batted balls with the highest O− I3. We

see that each of these batters had a faster than average running speed r. In addition, several

of these batters such as Carlos Gonzalez and Trevor Story in Colorado benefited from their

home ballpark. We see that in each case the use of the wOBA tesseract to generate I4

improved the accuracy of the model as O − I4 is less than O − I3.

Table 8 is a list of the batters with at least 250 batted balls with the lowest O− I3. We

see that each of these batters had a slower than average running speed r except Joe Panik

who was slightly better than average. Several of these players (Morales, Moreland, Calhoun,
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Martinez, Carpenter) were shifted on during a large fraction of their plate appearances. We

see that in each case the use of the wOBA tesseract to generate I4 improved the accuracy

of the model as |O − I4| is less than |O − I3|.

Table 7: Highest O − I3 for 2018

Batter O − I3 O − I4 r

Carlos Gonzalez .063 .054 4.150
Ronald Acuna .051 .039 3.945
Mallex Smith .050 .039 3.929

Brandon Nimmo .049 .033 4.113
Chris Taylor .048 .039 4.017
Trevor Story .045 .030 3.955
Eddie Rosario .045 .029 3.969
Yoan Moncada .045 .029 4.094/4.175

Table 8: Lowest O − I3 for 2018

Batter O − I3 O − I4 r

Kendrys Morales -.064 -.033 4.788/4.816
Mitch Moreland -.063 -.052 4.262
Kole Calhoun -.058 -.045 4.315
Nelson Cruz -.055 -.049 4.395
Albert Pujols -.054 -.029 4.839

Victor Martinez -.052 -.018 4.634/4.965
Matt Carpenter -.048 -.037 4.281

Joe Panik -.047 -.046 4.241

If we consider all of the players with at least 250 batted balls in 2018, the R-squared

for the set of points (O, I3) is 0.79 and the R-squared for the set of points (O, I4) is 0.85.

Therefore, the model that includes running speed using the r parameter has increased

accuracy for representing a batter’s wOBAcon. We therefore expect that I4 is a better

estimate of true talent wOBAcon and provides more value for projection [8].
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4 Contributions to Baseball Analytics

This work makes several important contributions to baseball analytics. We have generalized

the 3-D wOBA cube to the 4-D wOBA tesseract to include the impact of batter running

speed. This enables the computation of offensive statistics that provide a more accurate

assessment of talent level on batted balls and support more accurate projections. This

approach also allows separation of the impact of batted ball skill and running speed on

offensive value. An important advantage of this separation is that each skill can be regressed

and projected using individual reliability and aging curves before conversion to projected

offensive value during forecasting. The wOBA tesseract also has the potential to improve

defensive metrics by quantifying the relationship between the batter’s running speed and the

difficulty of a play. The model also allows quantification of the loss of offensive value due to

susceptibility to defensive shifts. The wOBA tesseract representation enables visualizations

that provide insight into the mapping between batted-ball and running speed parameters

and intrinsic value. The new method can also be used to monitor batters over time and to

improve our understanding of how offensive value varies with age. The overall process of

combining sensor data and machine learning techniques to generate new statistics can be

readily adapted to support other areas of baseball analytics.
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