an electron in a precessing magnetic field: a tutorial
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In this pedagogical article, we elucidate on direct derivation of wave function of an electron in a
precessing magnetic field of constant magnitude.
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I. INTRODUCTION

Apparently, this problem was first considered by Julian Schwinger,|1] and was solved by rotaing coordinated method,
[1],]2].Eighty years have passed since then. But what is missing uniformly in all quantum mechanics books is a
straightforward derivation of the wavefunction. David Griffiths poses it as a problem for two special cases in his
quantum mechanics book,[3]. We could not locate a paper in which it is done. Quite likely it has been done. Still to
assist students, we have worked it out and in this pedagogical article, are presenting one straightforward derivation.
This problem has played important role in the development of Berry phase, [4],]5], research.

II. EIGENVALUES OF PAULI HAMILTONIAN AND EIGENFUNCTIONS

Pauli equation, [6], for an electron with charge -e, mass my, is

ox eh _ =
hX — “ 3 By.
ot T 2mg X

If the magnetic field is along z-direction: B= Bok, then hamiltonian H = 2?20 &.B = % (é _01)
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Eigenvalues of the hamiltonian are £y = + T

=2, where, wp is

Corresponding eigenfunctions of the Hamiltonian are ((1)> and <(1)) .

III. TIME-DEPENDENT WAVEFUNCTION OF PAULI EQUATION/SCHRSDINGER EQUATION

If the magnetic field is precessing about z-direction, making a constant angle «, with angular frequency w, then B=
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of the hamiltonian are E4 = :l:% where, wy is % ie. wp is equal to %. (Here, we differ from Griffiths,[3],

a
in notation. our w; is -€; in Griffiths.) Corresponding eigenfunctions of the Hamiltonian are ( cos 2 ) and
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Eigenfunctions do not satisfy the schrodinger equation: ih%x = Hyx. Wavefunction x(¢) which satisfies the
schrodinger equation: ih% x =Hy is
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which is the same as
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where, A(t) and B(t) are determined as a consequence.

IV. EQUATIONS OF A(T) AND B(T)

A(t) and B(t) are required to satisfy the following equations
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The two equations cannot be decoupled by differentiation.
Moreover,

AP + B =1
as xTx = 1.

A. putting in matrix form

We put in the matrix form the two differential equations as
i % B hw sin® & — B gin et (A(t)
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B. eigenvalue of rhs matrix

Solving
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we obtain the eigenvalues i.e. values of A as zero and one.
Normalised eigenvector corresponding to eigenvalue zero is

cos Zelwit/2
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Normalised eigenvector corresponding to eigenvalue one is
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C. spectral value decomposition

We verify that the spectral value decomposition is correct i.e.
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D. time-dependent orthogonal transformation

Hence the time-dependent orthogonal transformation diagonalising the R.H.S matrix is
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as required for O to be an orthogonal matrix.



V. EQUATIONS OF a(t) AND b(t)

Multiplying the eq.(2) from the left by Of, we obtain
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which is the same as

It is easily verifiable,
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A. putting in matrix form
We obtain,
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The square matrix in the R.H.S is time-independent. Hence, we can diagonalise it using time-independent orthogonal

transformation.

B. eigenvalue of rhs matrix

Solving
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one obtains eigenvalues Ay = 2 =+ \/ (Z)?+ 1 -2 cosa. Normalised eigenvector corresponding to the eigenvalue,
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Normalised eigenvector corresponding to the eigenvalue, A_ is
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C. spectral value decomposition

One can verify the spectral value decomposition i.e. show that
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by using A, — A_ = 2\/(0%)2 +1—-27cosaand AyA_ +1 =2 cosa.

D. time-independent orthogonal transformation

Hence the time-independent orthogonal transformation, O; diagonalising the square matrix in the R.H.S of the
eq.(4) is
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E. equations of linear combinations of a(t) and b(t)in diagonal form
Multiplying the eq.(4) from the left by OI, we obtain
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F. linear combinations of a(t) and b(t) as a function of time

As a result,
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which is the same as
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From the eq.(3), we get

which is the same as

Multiplying eq.(5) by O(t), from left we get
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which is the same as
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VI. INITIAL CONDITION CORRESPONDING TO EXAMPLE 10.1.3: WAVEFUNCTION

which is the same as

Statement of the example 10.1.3 in Griffiths,[3]: Suppose the electron starts out wirth spin up, along E(O), the exact
solution to the time-dependent Schrodinger equation is
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where, A = \/w? + w? + 2ww; cos a.

Solution: From eq.(1), we get A(0)=1, B(0)=0. Putting in the eq.(6), we get after several matrix multiplications,
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and
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As a result, we obtain
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Combining eq.(7) with eq.(1) we obtain
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By changing w; to -w; and I' to A\, we obtain the asked solution.

VII.

INITIAL CONDITION CORRESPONDING TO PROBLEM 9.19: WAVEFUNCTION
Statement of the problem 9.19 in Griffiths,[3]: Suppose the electron starts out wirth spin up, along the z-direction,
the exact solution to the time-dependent Schrédinger equation is
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where, A = \/w? + w? + 2ww; cos a
Solution: From eq.(1), we get
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which implies in association with eq.(6),
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which after several matrix multiplications followed by simplification using eq.(8), yields to
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By changing w; to -w; and I to A, we obtain the asked solution.
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