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Abstract

Isaac Newton did not invent the gravity constant G, nor did he use it or need it. Newton’s original formula
was F = Mm

r2
and not the formula F = GMm

r2
, which had evolved over time. Newton’s formula can easily

be unified with quantum mechanics, while the modification to his formula can only be unified with quantum
mechanics by introducing a very akward notation as shown in this paper. Modern physics indirectly uses two
di↵erent definitions for mass without knowing it; one for gravity and another for the rest of physics. This, we
will prove, has made it impossible to unify quantum mechanics with gravity. However, once we understand the
cause of the problem, it can be fixed easily by going back to the key insight given by Newton, which leads to
a beautiful simple unified theory, in both conception and notation. Alternatively, one can arrive at the same
theory, but with unattractive notation that hides the beauty at the depth of reality.

We will show a beautiful way to unify gravity and quantum mechanics and also an ugly way. Both are the
essentially the same, but only one way, the Newton inspired way, gives the deep insight on matter, energy, time,
space, and gravity and even quantum mechanics. Modern physics has ignored Newton’s insight on matter and
altered the mass definition, and therefore Newton’s gravity formula was modified as well, such that a unified
theory seemed to become impossible. Newton himself would probably not have approved of the gravity constant;
it is a flaw on the foundation of his theory and his gravity formula. Still, when one understands what the gravity
constant really represents, one can unify standard physics, by adding it in other places, as needed.

As an example of its power, our new quantum gravity theory can predict galaxy rotation based on baryonic
matter only. This strongly indicates that dark matter is an extraneous and awkward factor used in today’s
standard gravity model in order to get an incomplete model to fit observations.
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1 Introduction

In 1686, in his Principia [1] Newton mentions in words the gravitational force formula (see Appendix) that is
equivalent to

F =
Mm
r2

(1)

Yet, Newton does not mention any gravity constant. Based on gravity observations alone, he calculates the
relative masses between planets as well as the Sun and his results were very close to what we can measure today,
see [2]. Newton could also easily find the density of the Earth relative to that of the Sun. In order to find the
density of the Earth relative to a given element, (or in terms of kg), one needs to be able to measure gravity
impact from a small uniform object where the composition is known, whether that is a single element, or several,
in which case the exact proportions of elements is important. In 1798, Cavendish [3] was the first to measure
the density of the Earth accurately using what is now known as a Cavendish apparatus.

However, Cavendish does not mention a gravitational constant either, even though he is credited for being
the first to find it, albeit indirectly. Cavendish determined that the density of the Earth is about 5.48 times that
of the density of water, which is very close to today’s estimate of approximately 5.51 gram per cm3. However,
Cavendish only explains in in relative terms comparing the Earth and water; he does not give the density in
grams, kg, or other specific units of measure. He mentions the weights of the large balls in the Cavendish
apparatus in forms of grains, and the weights of the balls in terms of an equivalent volume of water. What is
important is that Cavendish finds the density of the Earth relative to the density of water without any mention
of a gravity constant. The Cavendish apparatus basically allows one to measure the gravity e↵ects from a certain
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mass, where one has full control of its composition. The impact is then measured on much smaller objects where
one does not necessarily know their elemental composition as long as their masses are much smaller than the
two larger balls in the Cavendish apparatus.

Around 1797, the French standardized the mass measure as the kilogram. The kilogram is arbitrary man-
made chosen quantity of matter that likely had a main focus on trade. For trade, it was naturally important to
have a standard size mass. However, this mass could not be so large that it not was practical to carry, nor could
it be so small that the weighting apparatus was not sensitive enough to weigh it. The standard mass was also
very useful in physics. However, it only makes sense to have arbitrary clump of matter as the mass standard
when we are working with matter in infinite divisible form. If the building blocks of matter at the deepest level
are indivisible, then this indivisible unit would be a more fundamental unit than an arbitrary chosen clump of
matter like the kilogram. We will soon prove that the kg mass definition without modification cannot lead to a
unified theory.

Returning to the original Newton formula, there are two masses divided by the square of the distance between
them. The gravitational constant was first mentioned in a footnote in 1873. The gravity force formula given by
Cornu and Baille [4] was F = f Mm

d2
, where f is the gravity constant. One can ask why it first was introduced

in a footnote, more than 70 years after modern physics claims that Cavendish (indirectly) introduced it. Cornu
and Baille were likely fully aware that they were altering Newton’s formula in a significant way, but they did
not elaborate further on this issue in the main text.

The well know G notation for the gravity constant was introduced in 1894 by Boys [5], who was the first
to mention the gravity formula in the notation most often used today. First by the 1930s, it had become
fairly standard to call the gravity constant G. The specific notation one uses for the gravity constant is not
that important, but it is noteworthy that Newton’s formula was altered in 1873, nearly 200 years after he had
introduced his gravity formula, and oddly enough it became known as Newton’s gravitational constant. To
understand why this change happened, and to evaluate why it was actually not needed, we need to study the
Principia, Newton’s other works, and the kilogram more carefully.

Below we summarize some of the most important developments in gravity, including development that have
caused confusion.

• 1673: Huygens calculates the Pendulum periodicity from gravity.

• 1687, 1713, and 1726: Three versions of the Principia: Isaac Newton introduce his gravity force formula
in words, that is equivalent to F = Mm

r2
. However, be aware that his mass definition is very di↵erent than

the later definition of mass. Newton was clear that he thought mass ultimately consisted of indivisible
particles; he also mentions indivisible time and these are fundamental to the philosophy behind his entire
body of work, yet lie in strong contrast to the modern point particle view.

• 1797: The kilogram mass (kg) is introduced as the standard mass in France. Similar mass standards are
adopted in England.

• 1798: Cavendish has accurately measured the density of the Earth and came up with a figure very close to
what we know the density is today.

• 1873: Cornu and Baille introduce the gravity constant in a footnote. They were well aware this was a
modification of Newton’s formula, and they may have been uncertain about how this would be received in
the scientific communities. However, as the gravity constant clearly was needed when working with mass
as kg (to get it to fit experiments), it soon became the accepted method.

• 1894: Boys is likely the first to refer to the gravity constant with the notation G. (Cornu and Baille had
used notation f .) What notation is used for a single constant is of minimal importance, but it is worth
mentioning that the G notation had become the standard around 1930. Max Planck [6] was still using f
for the gravitational constant as late as 1928, for example.

• 1916: Einstein introduces with his theory of general relativity, where he relies heavily on the so-called
Newton gravitational constant G.

• 2017: Haug [7–9] shows that the Planck length can be measured and found without any knowledge of G,
and even without relying on the Planck constant.

• 2020: Haug [9] shows how to unify gravity with quantum mechanics. This is the theory highlighted in
this paper. One should naturally not take this theory for granted; new theories should be studied in great
detail before drawing any conclusions. In this paper, we explore the ideas further and see that this theory
is also consistent with galaxy rotation without the need for dark matter.

Newton assumed that the ultimate building blocks of nature were indivisible particles. This line of thought
led to the idea that the ultimate time unit was indivisible and Newton expands on this with comments in his
Principia :

Since every particle of space is always and every indivisible moment of duration is everywhere,
certainly the Maker and Lord of all things cannot be never and nowhere. .
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and thence we conclude the least particles of all bodies to be also extended, and hard and movable,
and endowed with their proper vires inertia. And this is the foundation of all philosophy.

In his book Optiks, he is even more clear on the idea that matter consists of fully hard forever-lasting particles,
that is to say, indivisible particles

All these things being consider’d it seems probable to me, that Godin the Beginning form’d Matter in
solid, massy, hard, impenetrable, movable Particles, of such Sizes and Figures, and in such Proportion
to Space, as most conduce to the End for which he form’d them; and that these primitive Particles
being Solids, are incomparably harder than any porous Bodies compounded of them; even so very
hard, as never to wear or break in pieces; no ordinary Power being able to divide what God himself
made one in the first Creation. While the Particles continue entire, they may compose bodies of one
and the same Nature and Texture in all Ages; But should they wear away, or break in pieces, the
Nature of Things depending on them, would be changed. Those minute rondures, swimming in space,
from the stu↵ of the world: the solid, coloured table I write on, no, less than the thin invisible air
I breathe, is constructed out of small colourless corpuscles; the world at close quarters looks like the
night sky – a few dots of stu↵, scattered sporadically through and empty vastness. Such is modern
corpuscularianism.

There are many more quotations that demonstrate how Newton assumed that mass is ultimately composed
of indivisible particles, and that there is also an indivisible time period. The indivisible particles are his building
blocks of light as well. The idea of indivisible particles dates back to Leucippus and Democritus [10, 11] and
their work on atomism. Several physicists in modern times have written on atomism, including Schödinger [12],
but the extent of its influence on their work is not clear. Obviously Newton was working long before relativity
theory and quantum mechanics has been developed, and in his time, accurate instrumentation was also an issue.
Yet, in spite of the challenges in both theoretical and empirical work, looking back at the work of Leucippus and
Democritus, we will claim that Newton was the last great atomist and by bringing his ideas forward in their
original form, we can find a way to unify gravity with quantum mechanics and relativity theory.

Our theory is based on two postulates; that everything (energy and matter) consists of two elements:

• Indivisible particles that are either always moving at the same speed, or are colliding and then standing
still during those collisions relative to the indivisible particles that are simply traveling along.

• Void (empty space) that the indivisible particles can travel in.

Interestingly, Democritus suggested approximately 2,500 years ago that the indivisible particles themselves
had no weight (mass), but at the same time had weight (mass), in particular when mentioned in relation to size
and density, see the Appendix. This controversy that they do not have mass (weight) and at the same time
they have mass in other circumstances has led to confusion for historians. This also has a parallel to modern
discussions concerning whether or not photons have mass, [13, 14]. This paper will show how mass is indeed
linked to indivisible particles that have rest-mass and are also massless. We will also explain the photon mass
and the massless photon, and incorporate these and other observations on the process for unifying gravity with
quantum mechanics.

2 Kg is a Collision Ratio

Mass standards like the kilogram and pound likely have their origin in trade, where it is important to have
a standardized mass measure. This standardized mass (often used to make a weight) could not be too large,
as it would be di�cult to carry around. It also could not be too small, as that would lead to an inaccurate
weight based on the technology of the times. For about 200 years the kg has indeed been an arbitrary clump
of matter stored in Paris, and other countries have calibrated their kg towards that standard. The kg has been
directly linked to the Planck constant through the Watt balance, see [15–18], and in recent years the kg has been
redefined based on this.

Every rest-mass in kg (or pound etc.) can be expressed mathematically as

m =
h̄

�̄

1
c

(2)

That is every rest-mass in the form of kg can be expressed using only the Planck constant, the speed of light,
and the reduced Compton wavelength. Alternatively, the Compton wavelength could be used instead of the
reduced form by using the Planck constant on the non-reduced form. The Planck constant and the speed of light
are constants. This means the only things that distinguish masses of di↵erent sizes are their reduced Compton
wavelengths. And if the Planck constant and the speed of light are known, the we only need to measure the
Compton wavelength of a particle to find its mass in kg. The Compton wavelength can be found by Compton
scattering [19], or alternatively from the hydrogen spectrum (see the Appendix). In order to find the kg mass of
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an electron, for example, we only need to measure its Compton wavelength with Compton scattering, see [20],
then combine it with the Planck constant and the speed of light.

The formula given above for kg mass also holds for all masses, from the smallest to the largest. There may be
some debate on this, as composite masses do not have one Compton wavelength, but consist of many elementary
particles that all must have Compton wavelengths. These Compton wavelengths are additive according to the
formula below

�̄ =
nX

i=1

=
1

1
�̄1

+ 1
�̄2

+ 1
�̄3

+ · · ·+ 1
�̄n

(3)

So, a composite mass does not have an observable or physical Compton wavelength, but rather it has many.
If we add the Compton wavelengths of the elementary particles it consists of, we get an equivalent Compton
wavelength of the composite mass that can be used to calculate its mass.

The Compton wavelength can also be found if we know the mass by the following well-known formula that
holds for a mass at rest

�̄ =
h̄
mc

(4)

This means the Compton wavelength of one kg is

�̄1kg =
h̄

1kg ⇥ c
=

h̄
c
⇡ 3.52⇥ 10�43 m (5)

This means one kg has a reduced Compton frequency of

f1kg =
c

�̄1kg
=

c
h̄

1⇥c

=
c2

h̄
⇡ 8.52⇥ 1050 (6)

The reduced Compton frequency of an electron is

f1kg =
c

�̄e
⇡ 7.76⇥ 1020 (7)

To find the kg mass of an electron, we can simply take its reduced Compton frequency and divide by the
Compton frequency of one kg. This gives

me =
c
�̄e
c
h̄

1⇥c

⇡ 7.76⇥ 1020

8.52⇥ 1050
⇡ 9.1⇥ 10�31 kg (8)

That is the well-known mass of an electron. We will claim that the kg mass is a frequency ratio, or more
precisely a collision ratio. A frequency is observational time dependent. The reduced Compton frequency we
have given for the electron is for a one second observational time window. If we reduce the observational time
window to half a second, this frequency is approximately half of what we calculated. However, the same is the
case for a one kg mass, its Compton frequency will be cut in half. This means in general that masses in kg
are observational time independent. An electron is 9.1 ⇥ 10�31 kg, no matter whether we observe the electron
over one second, half a second, a nano-second or over several days. However, when we have an observational
time window very close to the Compton time, the mass of the electron will be a↵ected by the observational
time window. If we observe an electron in a observational time window of t = 1.5 ⇥ �̄e

c , then it will only have
a frequency of one, while the frequency of one kg in the same observational time window will now only be
me ⇡ 6.07⇥ 10�31 kg

Further will claim the shortest possible frequency we can observe above zero must be one. This means the
smallest possible mass in terms of kg is one divided by the collision frequency in one kg. This gives a minimum
mass above zero of

m� =
1

f1,kg
=

1
c
h̄

1⇥c

=
h̄
c2

(9)

This means that not only is energy coming in units linked to the Planck constant, but also masses. This means
we both have the energy gap and the mass gap, the energy gap is h̄ and the mass gap is h̄

c2
⇡ 1.17⇥ 10�51 kg.

This is very close to the photon mass suggested by several authors, see [13, 14].
However, this mass-gap is observational time dependent. A mass of 1.17 ⇥ 10�51 kg is if we observe this

mass in a one second observational time-window. An important question is if there is a minimum time period.
We have recently shown [9] that the minimum time is indeed the Planck time. The minimum mass above zero

observed inside a one Planck second observational time window is h̄⇥1
c2

lp
c = h̄

lp
1
c ⇡ 2.17 ⇥ 10�8 kg per Planck

second. That is the photon mass is both a very small mass and also a very large mass (compared to the mass
of elementary particles). This is better explained in [9].
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3 Our New Mass Definition/Model

In our new mass definition, we will assume there is an indivisible particle that must be incorporated into the
mass definition. As we have suggested, the indivisible particle itself is massless and always moves at the speed
of light except when it is colliding. The collision between two indivisible particles itself is mass. But how does
one describe a collision? We have already claimed the kg mass is a collision ratio. The collision ratio indirectly
reflects how many collisions there are within a given time interval. However, it does not tell about the duration
of these collisions. Here, we will use a mass definition that says how long the collision lasts for any particle or
chosen quantity of matter. Our mass formula is

m̄ =
lp
c
lp
�̄

(10)

we use the notation m̄ for our collision-time mass to distinguish it from the kg mass. The first part of this is
lp
c , which is the Planck time. Each collision lasts for one Planck second; this is not an assumption, but what we

obtain from measurements, as we will demonstrate soon. The last part,
lp
�̄
, gives the number of Planck masses in

the mass of question. When �̄  lp, this can be seen as the frequency probability of a collision for the given mass

in one Planck second. For masses where �̄ < lp, then
lp
�̄

can be seen as the number of collisions in that mass.
The remaining part above the integer value is a probability. We claim the collision-duration time is what is
lacking in the mass definition of standard physics, which only has the number of collisions in terms of a collision
ratio relative to an arbitrarily chosen clump of matter (the kg) in the mass definition.

Another possible mass definition would be to take the collision-time ratio instead of the collision-time itself.
The reduced Compton wave of one kg is �̄1,kg = h̄

1kg⇥c = h̄
c ⇡ 3.52⇥10�43 m. Assume we want to express masses

as a collision-time ratio relative to the collision-time of one kg. Then the collision-time ratio for an electron is

m̄e

m̄1kg
=

lp
c

lp
�̄e

lp
c

lp
�̄1kg

⇡ 9.1⇥ 10�31

. We can see that the number value here is identical to the kg mass of an electron. The collision-time ratio,
when using the collision time for one kg as a base, is always identical to the standard kg mass. However, the
collision-time ratio has some of the same problems as the kg definition of mass. The collision time ratio is given
by

m̄e

m̄kg
=

lp
c

lp
�̄1

lp
c

lp
�̄2

=
�̄2

�̄1
(11)

and, as we can see, the Planck length cancels out. So, the collision time ratio (end product), like the kg mass,
contains no information about the Planck length, or the duration of collisions. The duration of collisions is what
is important for gravity, as we have demonstrated in a previous paper and will further demonstrate here.

4 Our New Energy Definition

Our energy will be collision-length. That is pure rest-mass energy is given by collision-length and is given by

Ē = lp
lp
�̄

(12)

The relation between rest-mass energy and mass is given by

Ē = m̄c (13)

This is not in conflict with Einstein’s E = mc2, because to go from energy in terms of collision length to
energy in Joule we need to multiply the collision-length energy with h̄c

l2p
. Further, the collision-time mass we need

to multiply with h̄
l2p

to get the kg mass. So, in our theory we have E = mc2. Our new energy mass relation is, in

our view, a deeper relation, but they are both correct. However, E = mc2 cannot be unified with gravity theory
without modifications. This is due to the fact that the kg mass is only a collision ratio, with no information
about the length of the collisions. Still, our new energy mass relation must fit several well-known tests in relative
to moving objects, as we will soon see.

5 Relativistic Energy and Mass Relation

From Einstein’s special relativity theory, we have that kinetic energy is given by
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Ek =
mc2q
1� v2

c2

�mc2 (14)

in the case v << c, this can be approximated by the first term of a Taylor expansion, which gives the well-known
formula

Ek ⇡ 1
2
mv2 (15)

When it comes to collision-space time, we have that the relativistic kinetic energy is

Ēk =
m̄cq
1� v2

c2

� m̄c (16)

in the case v << c, this can be approximated by the first term of a Taylor expansion, which gives

Ēk ⇡ 1
2
m̄

v2

c
(17)

What is important here is that also our new kinetic energy formula is consistent with experiments. It was
historically a discussion of whether the energy of a moving object was related to v or v2. Around 1686, Leibniz
Leibniz [21] was possibly the first to suggest that the energy of a moving object was given by E = mv2 rather
than E = mv. Gravesande Gravesande [22] tested this idea by dropping a brass ball onto a lump of clay. The
indentation in the clay was approximately four times as deep when the brass ball had twice the velocity, so this
o↵ered strong evidence that kinetic energy was a function of v2 and not simply a linear function of v. Today it
is also known that one needs a 1

2 factor in front of the kinetic energy approximation formula, something that
was first pointed out by Bernoulli in 1741, and discussed in more detail by Coriolis [23] and Poncelet Poncelet
[24]. What is important is that any kinetic energy formula, no matter what the units are, must be consistent
with the idea that kinetic energy, when v << c, is a function of v2 and not a function of v alone.

It is first when we write the relativistic energy mass formula in terms of its more elementary components
that we see something more interesting. The standard relativistic energy mass relation is then given by

E =
mc2q
1� v2

c2

=
h̄
�̄

1
c c

2

q
1� v2

c2

=
h̄c

�̄
q

1� v2

c2

(18)

Since c and h̄ are constants, it is only the reduced Compton wavelength that can change. The term �̄
q

1� v2

c2

indicates that it is the reduced Compton wavelength of the mass in question that undergoes length contraction
when moving, and that this gives an increased relativistic mass, that again is linked to increased energy.

When it comes to our new mass definition, we get

Ē =
m̄cq
1� v2

c2

=
lp
c

lp
�̄
c2

q
1� v2

c2

=
l2p

�̄
q

1� v2

c2

(19)

Here lp is a constant, as it is the diameter of the indivisible particle, and c is also a constant. This means that
the reduced Compton wavelength is observed to undergo length contraction when a particle is moving relative
to the laboratory frame. However, in our theory, the reduced Compton wavelength cannot be shorter than the
Planck length. This because the reduced Compton wavelength is the distance between two indivisible particles.
This means we must have

lp  �̄

r
1� v2

c2
(20)

which solved with repect to v gives

v  c

r
1�

l2p
�̄2

(21)

By setting this limit on the maximum velocity of anything with mass, then this means our modified relativity
theory is fully consistent with a minimum length equal to the Planck length, which is basically the same maximum
velocity of mass that has been published by Haug [25, 26].

This is in contrast to unmodified special relativity theory that is inconsistent with a minimum length. It is
easy to see, as any length L in special relativity can be observed as length contracted below the Planck length,
since the length can be as close to zero as one wants, because the only limit on v is that v < c. A length L will
always be below lp if the velocity is above

v > c

r
1�

l2p
L2

< c (22)
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One important aspect of the maximum velocity formula above is that in the special case of a Planck mass
particle, the maximum velocity is actually zero. This is because the reduced Compton wave of a Planck mass
particle is the Planck length, �̄ = h̄

mpc
= lp, and input into the maximum velocity formula, we get

vmax = c

s

1�
l2p
l2p

= 0 (23)

At first it may seem impossible that a particle should always have velocity of zero. However, it makes sense
when we consider the case that the Planck mass, as we have explained, is the collision point between two building
blocks of light, i.e., the indivisible particles. The Planck mass particle is a photon-photon collision, and even
standard physics indirectly agrees that this can create mass, see [27], for example. If the indivisible particles
have a diameter equal to the Planck length, and only stand still in the collision relative to the particle they
collide with for one Planck second, then this can only be observed from the collision itself. So, the velocity must
be zero. This means light has two unique reference frames, and not only one. The unique reference frame is
when light is moving, well that is what is called light. The time stands still as you move with the beam, and
when colliding, it is standing absolutely still, but only for one Planck second.

6 Gravity

As described earlier in this paper, the Newton gravity formula has been modified from the original Newton
formula, and we have

F = G
Mm
R2

(24)

where G is the so-called Newton gravity constant, that Newton himself did not invent, mention, or use in his
work. In this formula, M and m are the kg masses of the two masses. However, the Newton gravity force
has never been measured; only the e↵ects from gravity have been measured. The small mass, m, is only used
in derivations to arrive at predictions related to gravity that can be observed. Actually, m always cancels out
before one comes to things we can observe.

In our gravity theory, using masses rooted in Newton’s philosophy, which was based on atomism, we have
the following gravity formula

F = c3
M̄m̄
R2

(25)

We have the speed of light here cubed instead of the gravity constant G, and our masses are collision-times. If
we switch to measuring both distances, as long as light has moved inside our chosen time unit (something often
done in standard physics), then c = 1 and we have the original Newton formula

F = c3
M̄m̄
R2

= 13
M̄m̄
R2

=
M̄m̄
R2

(26)

All standard gravity predictions can be predicted from this formula. However, since we are used to working in
meters and seconds, we will keep c = 299792458 m/s, and will work with formula 25, even if the original Newton
formula would work just as well.

Table 1 shows that our formula and the modified Newton formula of modern physics give the same output,
and can also be applied to units for anything that can be observed.

However, for the gravity force, which cannot be observed itself, we have di↵erent outputs. We will claim
that standard physics actually uses two di↵erent mass definitions in the Newton formula. If we take G

c3
M , this

is equal to the collision-time of that mass. In other words, we have

G
c3

M =
l2p
h̄
h̄

�̄

1
c
=

lp
c
h̄

�̄
= m̄ (27)

In our view, this means that standard physics is using collision-time mass in all gravity predictions, since all
observable gravity phenomena contains GM . The other mass, m, is a kg mass, and it cannot be used to predict
gravity. It is an incomplete mass, but since we are also using another small kg mass in all derivations to calculate
something observable (such as the escape velocity that is input in gravitational time dilation), then the small
masses cancel out.

We can conclude that standard physics indirectly uses two di↵erent mass definitions in the so-called Newton
gravity formula and use a gravity constant to fix this issue. Thus, in all predictions for observable phenomena,
the correct mass is being used, that is collision-time type mass. However, in other branches of physics such
as special relativity theory and quantum mechanics, a kg mass measure that is not multiplied by the gravity
constant is being used. This means that there is no way to unify quantum mechanics or special relativity theory
with gravity without addressing this issue. One either has to use collision-time mass everywhere directly in
physics, as shown by Haug [9]. The alternative is to retain G and incorporate it in all masses, not merely the
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Modern “Newton” Quantum Gravity

Mass seen as Compton frequency Collision-time
relative to Compton frequency kg per shortest time interval

Mass mathematically m = h̄
�̄

1
c m̄t =

lp
c

lp
�̄

Energy E = mc2 = h̄
�̄
c Ē = m̄tc = lp

lp
�̄

Gravity constant G =
l2pc

3

h̄ c3

Non “observable” predictions:

Gravity force F = GMm
R2 = h̄c

R2
lp
�̄M

lp
�̄m

F̃ = c3 M̄m̄
R2 = c

R2

l2p
�̄M

l2p
�̄m

Observable predictions:

Gravity acceleration g = GM
R2 = c2 lp

R2
lp
�̄

g = c3 M̄
R2 = c2 lp

R2
lp
�̄

Orbital velocity vo =
q

GM
R = c

q
lp
R

lp
�̄

vo =
q

c3M̄
R = c

q
lp
R

lp
�̄

Escape velocity ve =
q

2GM
R = c

q
2 lp
R

lp
�̄

ve =
q

2c3M̄
R = c

q
2 lp
R

lp
�̄

Time dilation Tr = Tf

r

1�
p

2GM
R

2

c2 = Tf

q
1� 2 lp

R
lp
�̄

Tr = Tf

r

1�
q

2c3M̄
r

2

c2 = Tf

q
1� 2 lp

R
lp
�̄

Gravitational red-shift z(r) ⇡ GM
c2R = lp

R
lp
�̄

z(R) ⇡ c3M̄
c2r = lp

R
lp
�̄

Schwarzschild radius rs =
2GM
c3 = 2lp

lp
�̄

rs =
2c3M̄
c2 = 2Ē = 2lp

lp
�̄

Table 1: The table shows the Newton gravitational force in addition to our new quantum gravity theory.

mass used for gravity predictions. In that case, we would have to rewrite all kg masses by multiplying them by
G
c3
. This will give an ugly notation that does not lend itself well to direct intuition, even though its output is

identical to our collision space-time unified gravity theory.

7 Rest-Mass Acceleration or What We Can Call Internal Ac-

celeration

In standard physics and also under collision-space-time, there is both total energy and rest-mass energy. Total
relativistic energy minus rest-mass energy gives us kinetic energy. The rest-mass energy is “hidden” inside the
mass; still, when we calculate kinetic energy, this rest-mass energy must be subtracted from the total relativistic
energy.

When it comes to acceleration, standard physics has no such concepts as rest-mass acceleration. Under
collision-space-time, it becomes clear that there must be a rest-mass acceleration. This is because the building
blocks of mass are indivisible particles traveling back and forth over the Compton wavelength at the speed
of light and then colliding with each other at the Compton periodicity. Each collision lasts for one Planck
second. When the indivisibles particles inside an electron do not collide, they move at speed c, as measured with
Einstein synchronized clocks. That is, the speed is then constant and no acceleration happens. But then at each
Compton time interval, the indivisible particles collide and stand still for one Planck second. This means the
internal acceleration that we also can call rest-mass acceleration in an electron is

ar,e =
c
1s

lp
�̄e

⇡ 1.26⇥ 10�14 s/m2 (28)

where
lp
�̄e

is the fraction of the time the particle undergoes this internal acceleration. This because in the
Compton time interval, except for one Planck second, the indivisibles travel at speed c, and then collide and
stand still for one Planck second.

Most of the mass in the universe likely consist of protons and neutrons, and they have almost the same mass.
A proton must have the following rest-mass acceleration

ar,P =
c
1s

lp
�̄P

⇡ 2.3⇥ 10�11 s/m2 (29)

This does not mean the proton accelerates, just like the rest-mass energy does not mean the particle is moving.
This is an internal acceleration, a rest-mass acceleration. Still, this will be the minimum acceleration in our
model for standard matter consisting of protons (or neutrons). Just like the rest-mass energy is the minimum
total energy of a particle. This means what we can call the kinetic acceleration therefore is

ak = a� ar (30)
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For an electron, the rest-mass acceleration is

ar,e =
c
1s

lp
�̄e

⇡ 1.26⇥ 10�14 s/m2 (31)

but the electron rest-mass acceleration is less relevant for cosmological observations, as the electron mass typically
is only a small fraction of the mass in cosmological objects. Interestingly, this rest-mass acceleration is identical

to

q
Gm
�̄

1s = c
1s

lp
�̄
. The rest-mass acceleration we suggest cannot be aggregated. Two protons do not have twice

the internal acceleration as one proton.

8 Our theory fits galaxy rotation without the need for dark

matter

In collision space-time, [9] all particles are internally created by photon-photon collisions, or basically collisions
between indivisible particles. As we have shown, each collision must last one Planck second, and the collisions
happen at the Compton periodicity. The collision point is the mass standing still for one Planck second, then
the invisibles travel away from each other at the speed of light. This means we have a Planck acceleration at the
Compton periodicity. However, this Planck acceleration only lasts for one Planck second. Actually the Planck
acceleration cannot last for longer than a Planck second, as this would mean one are traveling faster than the

speed of light, since aptp = c2

lp

lp
c = c. Actually standard theory is incompatible with the Planck acceleration, or

at least does not have any good explanation for it.
This means the internal acceleration in a proton, or we could even call it the rest-mass acceleration is

ar =
c
1s

lp
c

�̄P
c

=
c
1s

lp
�̄P

⇡ 2.3⇥ 10�11 m/s2 (32)

where
lp
�̄P

simply is the percentage of total time we have rest-mass acceleration of c internally in the proton
because there is a photon-photon collision happening at the Compton frequency in the particle in the proton.

This can be seen as the minimum acceleration in a proton. And since almost all matter is built from protons
or neutrons (and we assume approximately the same mass and Compton wavelength of the proton), then this is
also the minimum acceleration for large masses, such as planets and stars. This means we likely have

ma�mar = G
Mm
R2

a = G
M
R2

+ ar

a = G
M
R2

+
c
1

lp
�̄P

(33)

This can also be written as

m̄a� m̄ar = c3
M̄m̄
R2

a = c3
M̄
R2

+ ar

a = c3
M̄
R2

+
c
1

lp
�̄P

(34)

To test out our model, we have used 2,793 individual data points from 153 galaxies in the Spitzer Photometry
and Accurate Rotation Curves (SPARC) database. In Figure 1, the black points are the observations and the
green line is standard gravity model predictions from baryonic matter only. As we can see, the standard model
is very far o↵ from observed data and is why they need the hypothesis of dark matter. The red line is our model
predictions from equation 33 (or equation 34 which give identical predictions as equation 33). The blue line is
our predictions if we assume all the galaxies are traveling at a velocity of 0.3c relative to us, this just to illustrate
that the red-line is not our model best-fit, but our approximate prediction. In other words, the model would do
even better than the red-line if we took the velocity of all the galaxies into account as well.

Following this line of thought, the Modified Newton Dynamic theory by Milgrom [28] published in 1983 fits
galaxy rotations very well, as can be seen from the yellow line. Both our collision-space time model and MOND
both have a minimum acceleration. However, MOND has no good explanation for why this is so; the MOND
theory is more of curve fitting model, where the Newton theory is modified, and a new parameter (the unknown
minimum acceleration) is optimized to fit the data as well as possible. Further, MOND does not lead to any
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unification of quantum mechanics and gravity. Our model appears to unify quantum mechanics with gravity
and predicts galaxy rotation very well without assujmign the existence of dark matter should position it well for
further study.

Figure 1: Galactic accelerations from 2,793 individual data points for 153 SPARC galaxies are shown in black dots.
Predictions by standard physics are shown in green. The yellow line is MOND, that we see fits the observations very
well. The red line is from collision space time when we do not take into account any relativistic e↵ects, and the blue
line is collision-space-time when we assume hypothetically that all the galaxies we have data from moves at a speed of
0.3c relative to us. The blue line indicates that our model likely fits even better than shown here by the red line, if we
have the velocity of each galaxy as well. (PS: Log stands for Logarithm with base 10.)

9 The Compton Wave and the de Broglie Wave

In another paper [9], we discussed how the Compton wave is the true matter wave and how the de Broglie wave is
just a mathematical derivative of the Compton wave. The de Broglie wave [29, 30] is derived from the standard
momentum

�b =
h
mvr
1� v2

c2

(35)

this means indirectly that the standard momentum is linked to the de Broglie wave at the quantum level. The
de Broglie wave has a series of strange properties, such as an infinite wave length when a particle is at rest. This
has led to a series of absurd predictions, i.e., an electron exists everywhere in the universe at the same time until
it is observed.

We claim the true matter wave is the Compton wave, which is given by

�c =
h
mcr
1� v2

c2

(36)

Unlike the de Broglie wave, the Compton wave can be measured even for rest-mass particles. It would be strange
indeed if matter had two types of matter waves. One that is very short when a particle stands still and another
that is infinite when the particle stands still.

The de Broglie wave is linked to the Compton wave by the simple function �b = �c
c
v . We can also define a

new momentum based on the Compton wave. In our previous paper, we have defined a rest mass momentum as
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p̄r = m̄c (37)

Further, we have defined a kinetic momentum

p̄k =
m̄cq
1� v2

c2

� m̄c (38)

and a total momentum
p̄t = p̄k + p̄r =

m̄cq
1� v2

c2

� m̄c+ m̄c =
m̄cq
1� v2

c2

(39)

We have also shown in a recent paper [9] that this corresponds to a new way to see energy. In our new theory,
there is actually no need for as distinction between momentum and energy as they are ultimately the same.

10 Gravity Quantum Mechanics the Beautiful Way

In standard physics, we have a relativistic wave equation that one get from the standard relativistic energy
momentum relation; this is the Klein–Gordon equation that is given by

1
c2

@2

@t2
 �r2 +

m2c2

h̄2  = 0 (40)

The Klein–Gordon equation has strange properties, such as energy squared. If we instead use our new
momentum definition and its corresponding relativistic energy–momentum relation, we get

Ē = pk + m̄c

Ē =

0

@ m̄cq
1� v2

c2

� m̄c

1

A+ m̄c

Ē =
m̄cq
1� v2

c2

Ē =
l2p

�̄
q

1� v2

c2

(41)

The re is half of the relativistic Schwarzschild radius, so we must have re = 1
2rs =

l2p

�̄

r
1� v2

c2

. This means that

the relativistic energy momentum relation under our new and deeper understanding of mass can also be written
as

Ē = pk + m̄c

re = m̄c (42)

From this, we get the following relativistic wave equation

� l2p
@ 
@t

= �l2pr · ( c) (43)

where c = (cx, cy, cz) would be the light velocity field. Since the velocity of light is constant and incompressible
then what we can call the light velocity field must satisfy the following

r · c = 0 (44)

Tis means the light velocity field is a solenoidal, which again means we can rewrite the wave equation above as

@ 
@t

� c ·r = 0 (45)

Our new relativistic quantum wave equation has quite a di↵erent plane wave solution than the Klein–Gordon
and Schrödinger [31] equations; our plane wave equation is given by

 = ei(kt�!x) (46)

However, in our theory k = 2⇡
�c

, where �c is the relativistic Compton wavelength and not the de Broglie
wavelength, as in standard wave mechanics. Due to this, we have
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k =
re
l2p

=

rer
1� v2

c2

l2p
=

2⇡
�c

(47)

So, we can also write the plane wave function as

e
i

 
L̃
l2p

t� T̃
l2p

x

!

= e
i

 
Ē
l2p

t� m̄
l2p

x

!

= e
i

 
re
l2p

t� m̄
l2p

x

!

(48)

where re is half the relativistic Schwarzschild radius as defined earlier. Our quantum wave function is rooted in
the Compton wavelength instead of the de Broglie wavelength and it incorporates collision-time that does not
exist in modern physics, except, as we will see indirectly, through gravity. For formality’s sake, we can look at
the Schwarzschild radius operator and mass operators and see that they are correctly specified.

This means the Schwarzschild operator (space with respect to time) must be

@ 
@t

=
ire
l2p

e
i

 
re
l2p

t� m̄
l2p

x

!

(49)

and this gives us a time operator of

re = �il2p
@
@t

(50)

And for mass we have

@ 
@x

=
�im̄
l2p

e
i

 
re
l2p

t� m̄
l2p

x

!

(51)

and this gives us a mass operator of

m̄ = �il2pr (52)

The only di↵erence between the non-relativistic and relativistic wave equations is that in a non-relativistic
equation we can use

k =
re
l2p

=
re
l2p

=
2⇡
�c

(53)

instead of the relativistic form re =
l2p

�̄

r
1� v2

c2

. This is because the first term of a Taylor series expansion is

re ⇡ m̄c when v << c.

11 Gravity Quantum Mechanics: The Ugly Way

Here we retain as much of standard physics as possible: 1) energy must be equal to mass squared, and 2) we keep
G and h̄, even though they are not needed if one understands physics at a deeper level. This will still produce a
correct quantum mechanics that lets us unify gravity, quantum mechanics, and relativity theory. However, the
notation is awkward, as we have to multiply all masses with G

c3
,. This also helps to explain why it has been so

di�cult to unify gravity and quantum mechanics and shows how our collision space-time theory contributes to
this understanding.

Our relativistic energy momentum relation is

Ē = p̄tc (54)

bearing in mind that we use the Compton momentum rather than the de Broglie momentum. Now we can
substitute Ē and p̄t with corresponding energy and momentum operators and get a new relativistic quantum
mechanical wave equation

� ih̄
G
c3
@ 
@t

= �ih̄
G
c3

r · ( c) (55)

where c = (cx, cy, cz) would be the light velocity field. Interestingly, the equation has the same structural form
as the advection equation, but here for quantum wave mechanics. Dividing both sides by ih̄ G

c3
, we can rewrite

this as

� @ 
@t

= �r · ( c) (56)
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The light velocity field should satisfy

r · c = 0 (57)

since the velocity of light is constant and incompressible; that is, the light velocity field is a solenoidal, which
means we can rewrite our wave equation as

@ 
@t

� c ·r = 0 (58)

Even if we call it the ugly way, the result is beautiful and directly linked to our more beautiful way of arriving
at this result. However, the derivations are indeed awkward, as the G

c3
factor gives little or no intuition if not

understanding the deeper meaning of it, namely that G
c3

=
l2p
h̄ . This factor is used simply to eliminate the Planck

constant and put the Planck length into the mass. That is, to get rid of the incomplete kg mass and to replace
it with collision-time.

In the expanded form, we have

@ 
@t

� cx
@ 
@x

� cy
@ 
@y

� cz
@ 
@z

= 0 (59)

Our new relativistic quantum equation has quite a di↵erent plane wave solution than the Klein–Gordon and
Schrödinger equations

 = ei(kx�!t) (60)

In our theory, k = 2⇡
�c

, where �c is the relativistic Compton wavelength and not the de Broglie wavelength,
as in standard wave mechanics. Due to this, we have

k =
pt
h̄ G

c3

=
2⇡
�c

(61)

So, we can also write the plane wave solution as

e
i

 
pt

h̄ G
c3

x� E

h̄ G
c3

t

!

(62)

Our quantum wave function is rooted in the Compton wavelength instead of the de Broglie wavelength. Next
let us look at the energy and momentum operators and see that they are correctly specified

@ 
@x

=
ipt
h̄ G

c3

e
i

 
pt

h̄ G
c3

t� Ē

h̄ G
c3

x

!

(63)

This means the momentum operator must be

p̂t = �ih̄
G
c3

r (64)

and for energy we have

@ 
@t

=
�iĒ

h̄ G
c3

e
i

 
pt

h̄ G
c3

t� Ē

h̄ G
c3

x

!

(65)

and this gives us energy operator of

Ê = �ih̄
G
c3

@
@t

(66)

The only di↵erence between the non-relativistic and relativistic wave equation is that in a non-relativistic
equation we can use

k =
pt
h̄ G

c3

=

m G
c3

c
r

1� v2

c2

h̄ G
c3

=
2⇡
�c

(67)

instead of the relativistic form p̄t =
m G

c3
c

r
1� v2

c2

. This is because the first term of a Taylor series expansion is

pt ⇡ m G
c3
c = m G

c2
when v << c.
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12 Gravity Quantum Mechanics: The Ugly Way 2

This is almost the same as above, except that instead of holding on to the idea that energy must be mass squared,
we have instead energy just as mass times c. However, we still need to multiply the mass by G

c3
to get a quantum

mechanics that is consistent with gravity. Our relativistic energy momentum relation is

Ē = p̄t (68)

(Remember we are using the Compton momentum rather than the de Broglie momentum). Now we can
substitute Ē and p̄t with corresponding energy and momentum operators and get a new relativistic quantum
mechanical wave equation

� ih̄
G
c3
@ 
@t

= �ih̄
G
c3

r · ( ) (69)

where c = (cx, cy, cz) would be the light velocity field. Interestingly, the equation has the same structural form
as the advection equation, but here for quantum wave mechanics. Dividing both sides by ih̄ G

c3
, we can rewrite

this as

� @ 
@t

= �r · ( ) (70)

Our new relativistic quantum equation has quite a di↵erent plane wave solution than the Klein–Gordon and
Schrödinger equations

 = ei(kx�!t) (71)

In our theory, k = 2⇡
�c

, where �c is the relativistic Compton wavelength and not the de Broglie wavelength,
as in standard wave mechanics. Due to this, we have

k =
pt
h̄ G

c3

=
2⇡
�c

(72)

So, we can also write the plane wave solution as

e
i

 
pt

h̄ G
c3

x� E

h̄ G
c3

t

!

(73)

Our quantum wave function is rooted in the Compton wavelength instead of the de Broglie wavelength. Next
let us look at the energy and momentum operators and see that they are correctly specified

@ 
@x

=
ipt
h̄ G

c3

e
i

 
pt

h̄ G
c3

t� Ē

h̄ G
c3

x

!

(74)

This means the momentum operator must be

p̂t = �ih̄
G
c3

r (75)

and for energy we have

@ 
@t

=
�iĒ

h̄ G
c3

e
i

 
pt

h̄ G
c3

t� Ē

h̄ G
c3

x

!

(76)

and this gives us energy operator of

Ê = �ih̄
G
c3

@
@t

(77)

The only di↵erence between the non-relativistic and relativistic wave equation is that in a non-relativistic
equation we can use

k =
pt
h̄ G

c3

=

m G
c3

c
r

1� v2

c2

h̄ G
c3

=
2⇡
�c

(78)

instead of the relativistic form p̄t =
m G

c3
c

r
1� v2

c2

. This is because the first term of a Taylor series expansion is

pt ⇡ m G
c3
c = m G

c2
when v << c.
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13 The Beauty and The Beast

Table 2 shows how standard physics formulas must be altered if one wants to hold on to the gravity constant
G and the kg definition of mass, and at the same time get a unified theory. On the other hand, if one truly
understands what G represents, then this is not needed, and one can then write the unified theory with much
nicer notation that o↵ers beauty and simplicity. Both approaches give exactly the same results and are one and
the same theory at the deepest level. We can call the two approaches the Beauty and the Beast. The Beauty is
the theory derived from truly understanding what mass is and why G was added to the Newton formula, while
eliminating that constant. The Beast is how we can get to the same unified theory by holding on to G and the
kg definition of mass.

The last table shows the deepest level, which is identical for the two notations of a unified quantum gravity
theory.

14 Occam’s Razor Means Collision-Time Wins over Standard

Physics

We have recently introduced a unified quantum gravity theory [9]. In short, we have replaced the standard mass
definition that we claim is incomplete with our new mass definition that is collision-time. We also maintain that
all energy can be described as collision length. We no longer need the gravity constant G. Newton himself never
described such a constant; his gravity formula was F = M̄m̄

r2
, which is the gravity formula we also obtain, and

still we generate the same output as standard physics for all observable gravity phenomena. We also do not need
the Planck constant; instead, we need the Planck length, which can be found with no knowledge of G or h̄. Our
theory needs fewer constants than standard physics and is therefore more compact. Further, we no longer need
momentum and energy, as they are the same in our theory. In addition, we address the definition of mass and
energy. In our theory, energy is collision length.

15 Conclusion

In this paper, we have summarized how we can unify quantum gravity with quantum mechanics and relativity
theory. We also illustrate the challenges involved in developing a unified theory over the past 100 years. Modern
physics has used an incomplete mass measure and in addition has viewed the de Broglie wave is the true matter
wave, while in reality the Compton wave is the better choice. Our model also fits galaxy rotations very well
without the need for dark matter, but based on baryonic matter only.

In our new theory, the gravity constant G is no longer needed and in eliminating it, we arrive at a theory
that is more consistent with Newton’s original theory. Modern physics has, in fact, disregarded an essential
element of Newton’s philosophy behind his theory, i.e., that mass ultimately consisted of indivisible particles. In
this paper, we have shown how one can also reach a unified theory by holding on to G and the Planck constant,
although neither of these constants are needed in our theory. Instead, the Planck length plays an important
role, and we have shown in previous publications how it can be extracted from gravity observations with no
knowledge of G or h̄. If we hold on to G and h̄ as constants and work with the kg definition of mass that is
directly linked to these two constants, we can still get a unified theory that is the same as our previous theory.
However, this comes with ugly notation that gives minimal intuition and the deeper meaning is hidden because
the kg mass definition is incomplete, and also because G is a composite constant. Without understanding what
G, the Planck constant h̄, and the kg definition of mass truly represent, it is indeed challenging, if not impossible
to reach either form of a unified theory of quantum gravity.
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[4] A. Cornu and J. B. Baille. Détermination nouvelle de la constante de l’attraction et de la densité moyenne
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[6] M. Planck. Einführung in die allgemeine Mechanik. Verlag von Hirtzel, Leipzig, 1928.

[7] E. G. Haug. Can the planck length be found independent of big g ? Applied Physics Research, 9(6), 2017.

[8] E. G. Haug. Finding the planck length independent of newton’s gravitational constant and the planck
constant: The compton clock model of matter. https://www.preprints.org/manuscript/201809.0396/v1,
2018.

[9] E. G. Haug. Collision space-time: Unified quantum gravity. Physics Essays, 33(1), 2020.

[10] W. K. C. Guthrie. The Presocratic Tradition from Parmenides to Democritus. Cambridge University Press,
1965.

[11] C.C.W. Taylor. The Atomists: Leucippus and Democritus, Fragments and Translation with Commentary.
University of Toronto Press, 1999.

[12] E. Schrödinger. Nature and the Greeks and Science and Humanism. Cambridge University Press, 1954.

[13] G.T. Gillies, Luo J., and L. C. Tu. The mass of the photon. Reports on Progress in Physics, 6, 2005.

[14] Quintero J. Gillies G.T. Spavieri, G. and Rodriguez M. A survey of existing and proposed classical and
quantum approaches to the photon mass. The European Physical Journal D, 61, 2011.

[15] B. P. Kibble, J. H. Sanders, and A. H. Wapstra. A measurement of the gyromagnetic ratio of the proton
by the strong field method. Atomic Masses and Fundamental Constants, 5, 1975.

[16] M. Stock. The watt balance: determination of the planck constant and redefinition of the kilogram. Philo-
sophical Transactions of the Royal Society, 369:3936–3953, 2011.

[17] I. A. Robinson and S. Schlamminger. First determination of the planck constant using the lne watt balance.
Metrologia, 51(2), 2016.

[18] D. Haddad, F. Seifert, L. S. Chao, S. Li, D. B. Newell, J. R. Pratt, C. Williams, and S. Schlamminger.
Precisely measuring the planck constant by electromechanical balances. Review of Scientific Instruments,
87(6), 2016.

[19] A. H. Compton. A quantum theory of the scattering of x-rays by light elements. Physical Review. 21 (5):,
21(5), 1923.

[20] S. Prasannakumar, S. Krishnaveni, and T. K. Umesh. Determination of rest mass energy of the electron by
a compton scattering experiment. European Journal of Physics, 33(1), 2012.

[21] G. W. Leibniz. Brief demonstration of a notable error of descartes?s and others concerning a natural law.
1686.

[22] Jacob Gravesande, Willem. Mathematical Elements of Physicks, prov’d by Experiments: Being an Introduc-
tion to Sir Isaac Newton’s Philosophy... Made English, and illustrated with 33 copper-plates, Revis’d and
corrected, by Dr. John Keill. London, 1720.

[23] G. G. Coriolis. Du Calcul de l’E↵et des Machines. Carilian-Goeury, Paris, 1829.
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Appendix: Newton

I say, that the whole force with which one of these spheres attracts the other will be reciprocally
proportional to the square of the distance of the centres. The force with which one of these attracts the
other will be still, by the former reasoning, in the same ratio of the square of the distance inversely.
Cor. 3. The motive attractions, or the weights of the spheres towards one another, will be at equal
distances of the centres as the attracting and attracted spheres conjunctly; that is, as the products
arising from multiplying the spheres into each other. p. 223.

Appendix

Some citations from or about Democritus

Democritus says the primary bodies, or solids, have no weight but move accordingly as they strike
one another in the infinitie, [10]

Democritus distinguished heavy and light by size. Nevertheless in compound bodies the lighter is
that which contains more void, the heavier that which contain less. Sometimes he expressed it thus,
but elsewhere he says simply that the fine is light. [32]

Democritus says that each of the indivisibles is heavier in proportion to its excess [i.e., size]
https://philpapers.org/archive/AUGWIG-3.pdf

Democritus said that the primary bodies (those he called the solids) had no weight, but were moved
by mutual impact in the infinite [i.e., void].

The properties of the bodies are these three: shape, size and weight. Democritus, on the one hand,
said there are two: size and shape; and on the other hand, Epicurus added to these a third, weight.
For it is necessary, he said, that the bodies be moved by the impact of weight. Or else they would not
move.

Epicurus said that the bodies are ungraspably many and the primary bodies are simple, and all
things compounded of them have weight. And that the atoms sometimes move in a plumbline, and
sometimes swerving, and some of them are sent upwards by an impact and vibration.

Appendix: Finding the Electron Mass from the Compton Wave-

length of the Electron

There are several ways to find the Compton wavelength of the electron; one way is to use Compton scattering.
The Compton scattering method has the advantage that it requires no knowledge of the Planck constant to find
the Compton wave. Another method to find the Compton wavelength of the electron is to watch the Hydrogen
spectral lines. The Compton wave length of the electron is linked to the spectral lines with the following formula

�e = �

 
1p

1� ↵2/n2
1

� 1p
1� ↵2/n2

2

!
(79)

This method also requires that we know the fine structure constant, that again likely means we also need
to know the Planck constant. For hydrogen-like atoms with element above z > 1, the following formula can be
used to find the Compton wavelength

�e = �

 
1p

1� (z↵/n1)2
� 1p

1� (z↵/n2)2

!
(80)
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.
Unified with G Unified the Newton Way

If wants to hold on to G and kg Mass rooted in atomism

The Beast The Beauty

Mass kg mass introduced 1800 Atomism mass: indivisibles
Newton’s philosophy behind everything

Democritus and Leucippus
Time ?? Newton’s indivisible time

Mass m = h̄
�̄

1
c T̃ = m̄ = lp

c
lp
�̄

kg Collision-time

Energy Ē =
�
mG

c3

�
c2 = mG

c L̃ = Ē = m̄c = lp
lp
�̄

Collision-length times c Collision-length
Ē = Ēc

Speed of light c = Ē
m G

c2
c = Ē

m̄ = L̃
T̃

Maximum velocity mass vmax = c
q
1� Gm2

h̄c c = c
q

1� l2p
�̄2

Relativistic energy Ē =
mG

cq
1� v2

c2

Ē = m̄cq
1� v2

c2

Kinetic energy Ēk =
mG

cq
1� v2

c

�mG
c Ēk = m̄cq

1� v2

c2

� m̄c

Kinetic energy Ēk ⇡ 1
2Gm v2

c3 Ēk ⇡ 1
2m̄

v2

c

Relativistic Compton wave �̄ = h̄
mcr
1� v2

c2

�̄ =
l2p
m̄cr
1� v2

c2

Relativistic de Broglie wave �̄ = h̄
mvr
1� v2

c2

�̄ =
l2p
m̄vr
1� v2

c2

Rest mass Compton momentum p̄r = mG
c2 p̄r = m̄c

Total Compton momentum p̄t =
m G

c2q
1� v2

c2

p̄t =
m̄cq
1� v2

c2

Kinetic Compton momentum p̄k =
m G

c2q
1� v2

c2

�mG
c2 p̄k = m̄cq

1� v2

c2

� m̄c

de Broglie momentum p̄b =
m G

c3
v

q
1� v2

c2

p̄b =
m̄vq
1� v2

c2

Gravity F = c3
M G

c3
m G

c3

r2 = G
Mm G

c3

r2 F = c3 m̄m̄
r2

Orbital velocity vo ⇡
q

GM
r vo ⇡

q
c3m̄
r

Escape velocity ve =
q

2GM
r � G2M2

c2r2 ve =
q

2c3m̄
r � c4m̄2

r2

Schwarzschild radius rs =
2GM
c2 rs = 2m̄c = 2Ē

Gravity acceleration g = GM
r2 g = c3m̄

r2

Energy momentum relation Ē = p̄kc+ p̄rc Ē = p̄k + m̄c
Relativistic wave equation �iGc3 h̄

@ 
@t + ih̄G

c3 cr = 0 �il2p
@ 
@t + il2pcr = 0

Compact form @ 
@t � cr = 0 @ 

@t � cr = 0

Wave equation when v << c i@ @t ⇡
⇣

��̄
2 r2 + 1

�̄

⌘
 i@ @t ⇡

⇣
��̄
2 r2 + 1

�̄

⌘
 

Lorenz symmetry break down
at the Planck scale Yes Yes

Heisenberg uncertainty
break down at the Planck scale Yes Yes

Hidden? Secrets hidden in G and h̄ Nothing hidden

G ? G =
l2pc

3

h̄ No need
h̄ Only partly understood h̄ = 1

fc,1kg
, No need

Table 2: The table shows two unified theories of physics; the only di↵erence is notation. If one wants to hold on to G
and the kg definition of mass, then one gets an ugly notation where the deeper logic is hard to see (hidden inside G and
the kg definition of mass). If, on the other hand, one switches to a mass definition rooted in atomism and in Newton’s
philosophy, then one gets a beautiful notation and simplicity.
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.
Unified with G Unified the Newton Way

If wants to hold on to G and kg Mass rooted in atomism

The Beast The Beauty

Mass kg mass introduced 1800 Atomism mass: indivisibles
Newton’s philosophy behind everything

Democritus and Leucippus
Time ?? Newton’s indivisible time

Mass m = h̄
�̄

1
c T̃ = m̄ = lp

c
lp
�̄

kg Collision-time

Energy Ē = mG
c3 c = mG

c2 L̃ = Ē = m̄c = lp
lp
�̄

Collision-length Collision-length

Speed of light c = Ē
m G

c3
c = Ē

m̄ = L̃
T̃

Maximum velocity mass vmax = c
q
1� Gm2

h̄c c = c
q

1� l2p
�̄2

Relativistic energy Ē =
m G

c2q
1� v2

c2

Ē = m̄cq
1� v2

c2

Kinetic energy Ēk =
m G

c2q
1� v2

c2

�mG
c2 Ēk = m̄cq

1� v2

c2

� m̄c

Kinetic energy Ēk ⇡ 1
2Gm v2

c4 Ēk ⇡ 1
2m̄

v2

c

Relativistic Compton wave �̄ = h̄
mcr
1� v2

c2

�̄ =
l2p
m̄cr
1� v2

c2

Relativistic de Broglie wave �̄ = h̄
mvr
1� v2

c2

�̄ =
l2p
m̄vr
1� v2

c2

Rest mass Compton momentum p̄r = mG
c2 p̄r = m̄c

Total Compton momentum p̄t =
m G

c2q
1� v2

c2

p̄t =
m̄cq
1� v2

c2

Kinetic Compton momentum p̄k =
m G

c2q
1� v2

c2

�mG
c2 p̄k = m̄cq

1� v2

c2

� m̄c

de Broglie momentum p̄b =
m G

c3
v

q
1� v2

c2

p̄b =
m̄vq
1� v2

c2

Gravity F = c3
M G

c3
m G

c3

r2 = G
Mm G

c3

r2 F = c3 m̄m̄
r2

Orbital velocity vo ⇡
q

GM
r vo ⇡

q
c3m̄
r

Escape velocity ve =
q

2GM
r � G2M2

c2r2 ve =
q

2c3m̄
r � c4m̄2

r2

Schwarzschild radius rs =
2GM
c2 rs = 2m̄c = 2Ē

Gravity acceleration g = GM
r2 g = c3m̄

r2

Energy momentum relation Ē = p̄k + p̄r Ē = p̄k + m̄c
Relativistic wave equation �iGc3 h̄

@ 
@t + ih̄G

c3r = 0 �il2p
@ 
@t + il2pcr = 0

Compact form @ 
@t �r = 0 @ 

@t � cr = 0

Wave equation when v << c i@ @t ⇡
⇣

��̄
2 r2 + 1

�̄

⌘
 i@ @t ⇡

⇣
��̄
2 r2 + 1

�̄

⌘
 

Lorenz symmetry break down
at the Planck scale Yes Yes

Heisenberg uncertainty
break down at the Planck scale Yes Yes

Hidden? Secrets hidden in G and h̄ Nothing hidden

G ? G =
l2pc

3

h̄ No need
h̄ Only partly understood h̄ = 1

fc,1kg
, No need

Table 3: This table is almost the same as Table 2. The last column is the same. In the second column, we use Ē,
rather than Ē as in the previous table. The two approaches then have identical outputs. In one way, we hold on to
G and the Planck constant, even if they embedded in the theory and cancel out. In the last column, we see what the
theory really is, a beautiful simple unified theory.
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Unified

deepest level

Mass T̃ = m̄ = lp
c

lp
�̄

Collision time

Energy L̃ = Ē = m̄c = lp
lp
�̄

Collision-length

Speed of light c = Ē
m̄ = L̃

T̃
=

lp
lp
�̄

lp
c

lp
�̄

Max velocity mass vmax = c
q
1� l2p

�̄2

Relativistic energy Ē = m̄cq
1� v2

c2

= lp
lp

�̄
q

1� v2

c2

Kinetic energy Ē = m̄cq
1� v2

c2

� m̄c = lp
lp

�̄
q

1� v2

c2

� lp
lp
�̄

Kinetic energy Ē = 1
2

l2p
�̄

v2

c2

Relativistic Compton wave �̄r = �̄
q
1� v2

c2

Relativistic de Broglie wave �̄b,r = �̄b

q
1� v2

c2 A derivative of Compton

Relativistic Compton momentum Ē = p̄t =
m̄cq
1� v2

c2

= lp
lp

�̄
q

1� v2

c2

True momentum

Relativistic kinetic Compton momentum Ēk = p̄k = m̄cq
1� v2

c2

� m̄c = lp
lp

�̄
q

1� v2

c2

� lp
lp
�̄

True momentum

Relativistic de Broglie momentum p̄b =
m̄vq
1� v2

c2

= lp
v
c

lp

�̄
q

1� v2

c2

Derivative, not needed

Gravity F = c3 m̄m̄
r2 =

l4pc

�̄2r2

Orbital velocity vo ⇡
q

c3m̄
r =

q
c2 l̃2p
�̄r

Escape velocity ve =
q

2c3m̄
r � c4m̄2

r2 =
q

2c2l2p
�̄r

� c2l4p
�̄2r2

Schwarzschild radius rs = 2cm̄ = 2
l2p
�̄

Gravity acceleration g = c3m̄
r2 =

c2l2p
�̄r2

Energy momentum relation Ē =
l2p

�̄
q

1� v2

c2

� l2p
�̄2 +

l2p
�̄2 =

l2p

�̄
q

1� v2

c2

Wave equation @ 
@t � cr = 0

Lorenz symmetry break down Detected as gravity
at the Planck scale Yes

Heisenberg uncertainty Detected as gravity
break down at the Planck scale Yes

G G =
l2pc

3

h̄ G is not needed

Table 4: Here we have just simplified the two unified quantum gravity theories in Table 1 to their deepest level; they
are then identical. It is only notation that distinguishes the two theories in Table 1


