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Abstract 

Objective: Sometimes there are circumstances where it is necessary to calculate the P Value of 

extremely events xt like p(xt) = 1 while reliable methods are rare. 

Methods: A systematic approach to the problem of the P Values of extremely events is provided.  

Results: New theorems for calculating P Values of extremely likely events are developed. 

Conclusions: It is possible to calculate the P Values even of extreme events. 

Keywords: P Value, likely events, cause, effect, causal relationship. 

1. Introduction 

Assume a binomial experiment while each experiment is called a Bernoulli trial t with repeated 

trials yielding only two possible outcomes: success, S = +1 or failure, F = +0 while the values 

of p(xt) and q(xt) = (1- p(xt)) may remain unchanged throughout each trial. The probability of 

success in the population is p and the probability of failure in the population is q(xt) = (1- p(xt)). 

The binomial distribution was derived by the prominent Suisse mathematician Jacob Bernoulli 

(1655 - 1705) in his work Ars Conjectandi (Bernoulli, 1713) as  

 p(𝑋 = 𝑥) = '
𝑛!

𝑥! × (𝑛 − 𝑥)!
, 𝜋(𝑥.)/ × 01 − 𝜋(𝑥.)2

34/ (1) 

where x is the number of successes in a sequence of n independent experiments or Bernoulli 
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(Uspensky, 1937, p. 45) trials. In particular, what is the P Value (Ronald Aylmer Fisher, 1926) 

under conditions where n=x? 

2. Material and methods 

2.1. Material 

2.1.1. Definitions 

Definition 1. (The Binomial distribution) 

Let the binomial random variable X denote the number of successes in n such Bernoulli trials, 

where X = 0, 1, 2, 3, ... , n. The expected value of the binomial random variable X is  

 𝐸(𝑋 ) = 𝐸(𝑥6 +⋯+ 𝑥3) = 𝐸(𝑥6) +⋯+ 𝐸(𝑥3) = (1 +⋯+ 1) × 𝜋(𝑥.)9:::::;:::::< = 𝑛 × 𝜋(𝑥.)

𝑛	𝑡𝑖𝑚𝑒𝑠
 (2) 

The variance of the binomial random variable X is s(X)2 = n´p(xt)´(1 − p(xt)). 

Proof.  

Since s(xt)2 = p(xt)´(1 − p(xt)), we get: 

 𝜎(𝑋 )D = 𝜎(𝑥6 +⋯+ 𝑥3)D = 𝜎(𝑥6)D +⋯+ 𝜎(𝑥3)D9::::::;::::::< = 𝑛 × 𝜎(𝑥.)D = 𝑛 × 𝜋(𝑥.) × 01 − 𝜋(𝑥.)2
𝑛	𝑡𝑖𝑚𝑒𝑠

 (3) 

Q. e. d. 

The sample proportion or the relative frequency of an event p(xt) = (x / n) is the number x of 

times the event occurred in an experiment or study of the sample size n while x = x1 + ⋯ + xn 

where all xt are independently distributed Bernoulli random variables. 

 𝐸 E
𝑥
𝑛F

= 𝐸0𝑝(𝑥.)2 =
𝐸(𝑋)
𝑛

=
1
𝑛
× 𝑛 × 𝜋(𝑥.) = 𝜋(𝑥.)   (4) 

and the sample variance is defined as 

 𝜎 E
𝑥
𝑛F

D
= 𝜎0𝑝(𝑥.)2

D =
𝜎(𝑥)D

𝑛D =
𝑛 × 𝜋(𝑥.) × 01 − 𝜋(𝑥.)2

𝑛 × 𝑛 =
𝜋(𝑥.) × 01 − 𝜋(𝑥.)2

𝑛
 (5) 

Let p(X = x) denote the probability mass function of observing exactly x successes in n trials, 

with the probability of success on a single trial denoted by p(xt) and q(xt) = 1- p(xt) is defined 

as 

 p(𝑋 = 𝑥) = '
𝑛!

𝑥! × (𝑛 − 𝑥)!
, 𝜋(𝑥.)/ × 01 − 𝜋(𝑥.)2

34/ (6) 

In a slightly different way, the definition of binomial distribution does not rule out another 

distribution derived from the same. Facts taken together suggest the following form derived 

from the Bernoulli distribution as  
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p(𝑋 = 𝑥) = H

𝑛!
(𝑥 + 1)! × 0𝑛 − (𝑥 + 1)2!

I 0𝜋(𝑥.)2
/
× 01 − 𝜋(𝑥.)2

34/
 (7) 

A binomial distribution with parameters p(xt) and n = 1 is called the Bernoulli distribution too 

while x can take the values either +0 or +1. It is  

 p(𝑋 = 𝑥) = 01 − 𝑞(𝑥.)2
/
× 01 − 𝜋(𝑥.)2

64/ (8) 

Even if it is some evidence that 0!=1! (Barukčić, 2019b, p. 195) is not correct, today’s rules 

demand that 0!=1. Thus far, under conditions where X = 0 the binomial distribution changes to 

 p(𝑋 = 0) = '
𝑛!

𝑥! × (𝑛 − 𝑥)!
, 01 − 𝑞(𝑥.)2

/ × 01 − 𝜋(𝑥.)2
34/

= '
𝑛!

0! × (𝑛 − 0)!, 01 − 𝑞
(𝑥.)2

L × 01 − 𝜋(𝑥.)2
34L

= 01 − 𝜋(𝑥.)2
3 

(9) 

 

3. Results 

THEOREM 1. THE PROBABILITY OR PROPORTION OF A LIKELY EVENT 

CLAIM. 

Under some circumstances, the proportion or the probability p(xt) is given approximately by 

the formula  

 
𝜋(𝑥.) = 𝑒

4H
M0NO2
3 I	 (10) 

PROOF. 

In general, it is 

 𝜋(𝑥.) = 𝜋(𝑥.) (11) 

where p(xt) denotes the probability of an event x at the Bernoulli (Uspensky, 1937, p. 45) trial 

(period of time) t. Equally likely events are those events which have an equal probability or 

have the same chance of occurring. Thus far, under conditions where the probability of an event 

is constant from Bernoulli trial to Bernoulli trial, we obtain 

 𝜋(𝑥.) = 𝜋(𝑥.)
𝒏
𝟏×

𝟏
𝒏 (12) 

In particular, it is p(xt) = 1 − q(xt). Substituting, we obtain 
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 𝜋(𝑥.) = 0𝟏 − 𝒒(𝒙𝒕)2
3×63 (13) 

or 

 
𝜋(𝑥.) = H1 −

𝒏 × 𝑞(𝑥.)
𝒏 I

3×63 (14) 

We define E(X) = n´q(xt). The equation before simplifies as 

 
𝜋(𝑥.) = H1 −

𝑬0𝑿 2
𝑛

I
3×63

 (15) 

Increasing the number of randomly generated variables (sample size n grows) enable us to take 

the limit. In point of fact, taking the limit of the term  

 

W1 − H
𝐸0𝑋 2
𝑛

IX

3

 (16) 

as the number of (Bernoulli) trials or the sample size n goes to positive infinity (n ® +¥),  

 

lim
3→]^

WW1 − H
𝐸0𝑋 2
𝑛

IX

3

X (17) 

we obtain according to the known elementary calculus (DeGroot, Schervish, Fang, Lu, & Li, 

2005)  

 

lim
3→]^

WW1 − H
𝐸0𝑋 2
𝑛

IX

3

X = 𝑒
4H

M0N 2
6 I

 (18) 

Thus far, as the sample size increases or as the number of trials n goes to positive infinity (n ® 

+¥) the equation above simplifies as 

 

 
𝜋(𝑥.) = 𝑒

4H
M0N 2
3 I (19) 

QUOD ERAT DEMONSTRANDUM. 

 

Under some circumstances, the P Value of (X < n-1) can be calculated as 

 
𝑝(𝑋 ≤ n − 1) ≡ 1 − 𝑒

4H
M0N 2
3 I (20) 
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THEOREM 2. THE PROBABILITY OR PROPORTION OF X=N EVENT 

CLAIM. 

The proportion of X=n events is given by the function:  

 𝑝 (𝑋 = 𝑛) = 13	 = +1 (21) 

PROOF. 

The binomial distribution is defined as 

 p(𝑋 = 𝑥) = '
𝑛!

𝑥! × (𝑛 − 𝑥)!
, 0𝜋(𝑥.)2

/ × 01 − 𝜋(𝑥.)2
34/ (22) 

Under circumstances where X = n, we obtain 

 p(𝑋 = n) = '
𝑛!

n! × (𝑛 − 𝑛)!
, 0𝜋(𝑥.)2

3 × 01 − 𝜋(𝑥.)2
34b (23) 

or 

 p(𝑋 = n) = 0𝜋(𝑥.)2
3 (24) 

or in other words 

 p(𝑋 = n) = 𝜋(𝑥.) × …× 𝜋(𝑥.)9:::::;:::::< = 𝜋(𝑥.)3

𝑛 − 𝑡𝑖𝑚𝑒𝑠
 (25) 

However, the probability of an event with p(xt) =1 (the conditio per quam relationship, the 

exclusion relationship, the necessary and sufficient condition relationship, the conditio sine qua 

non relationship et cetera) is 

 p(𝑋 = n) = 𝜋(𝑥.) × …× 𝜋(𝑥.)9:::::;:::::< = 𝜋(𝑥.)3 = 13 = +1

𝑛 − 𝑡𝑖𝑚𝑒𝑠
 (26) 

 

QUOD ERAT DEMONSTRANDUM. 

THEOREM 3. THE ONE-SIDED LEFT TAILED P VALUE  

The following figure may illustrate the one-sided left tailed test for likely events. 

 
Figure 1. One-sided left tailed test. 
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A left tailed P value which is greater than or equal to alpha (α) or P value > α, provides some 

evidence (Yamane, 1964) to accept the null hypothesis (X < n-1) otherwise not. Simplifying, 

under these circumstances, there is no significant difference between the sample proportion and 

the population proportion and it is thought that the difference is due to the chance. In other 

words, the population proportion does not deviate significantly from the sample proportion 

which itself is less then 1. Thus far, the sample data do not support the claim that there is a 

significant conditio sine qua non relationship or conditio per quam relationship or exclusion 

relationship et cetera.  

CLAIM. 

The one-sided left tailed P value follows as 

 
𝑝(𝑋 ≤ n − 1) ≡ 1 − 𝑒4

M0N 2
3  (27) 

PROOF. 

In general, it is 

 𝑝(𝑋 ≤ n − 1) + 𝑝(𝑋 > n − 1) ≡ 1 (28) 

However, we should consider that the only value where (X > n-1) is the value (X=n) with the 

consequence that the probabilities are equal or it is p(X > n-1) = p(X=n). The equation before 

changes to 

 𝑝(𝑋 ≤ n − 1)9:::;:::< + 𝑝(𝑋 > n − 1)9:::;:::< ≡ +1
𝑝(𝑋 = 0) + 𝑝(𝑋 = 1) +⋯+ 𝑝(𝑋 = n − 1) + 𝑝(𝑋 = 𝑛) ≡ +1

 (29) 

Therefore, the equation before simplifies as 

 𝑝(𝑋 ≤ n − 1) + 𝑝(𝑋 = n) ≡ 1  (30) 

Considering the equations before, we obtain 

 𝑝(𝑋 ≤ n − 1) = 1 − 𝑝(𝑋 = n) = 1 − 𝑝(𝑋 > n − 1)  (31) 

As proofed before, it is 

 
𝑝(𝑋 = n) = 𝜋(𝑥.) = 𝑒

4H
M0N 2
3 I   (32) 

Under these conditions, the left tailed one sided P value for likely events (p = 1) follows as 

 
𝑝(𝑋 ≤ n − 1) ≡ 1 − 𝑝(𝑋 > n − 1) ≡ 1 − 𝑒4

M0N 2
3    (33) 
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QUOD ERAT DEMONSTRANDUM. 

 

Remark. 

For likely but equally extreme value p(xt) = 1 it is E(x) = n, the following probability density 

function p(X=x) could be of use too.  

 
𝑝(𝑋 = 𝑥) =

2
√2 × 𝜋 × 𝜎Dg × 𝑒

4h6D×H
0/4M(/)2

i I
g
j   (34) 

In other words, only one half of the Gauss distribution is considered. The following figure may 

illustrate this distribution. 

 
Figure 2. “Normal” distribution for extreme values. 

 

THEOREM 4. EXPONENTIAL DISTRIBUTION AND THE PROBABILITY OF AN EVENT 

Let xt denote a Bernoulli distributed random variable with its own boolean-valued outcome each asking a yes–no question of either (success 

or yes or true or +1) with probability p(xt) or (failure or no or false or +0) with probability q(xt) = 1 − p(xt). Let the probability or the proportion 

of an event within the population denoted as p(xt). Let a single success/failure experiment call a Bernoulli trial t or Bernoulli experiment and 

a sequence of outcomes is a Bernoulli process and at the end the sample size n.  

CLAIM. 

The probability of an event or the proportion of an event within the population denoted as p(xt) 

for E(X) < E(X) is determined by the number of missed successes E(X) = n - E(X) = 0, 1, ..., n  

in n trials and can be calculated by the formula  

 
𝜋(𝑥.) = 1 − H

𝐸0𝑋 2
𝐸(𝑋 )I × 𝑒

4H
M0N 2
3 I	

 (35) 

PROOF. 
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In general, we expect the probability or the population proportion of a binomial distributed 

random variable in the population, p(xt), is constant from trail to trial and independent of the 

number of trials performed or it is  

 𝜋(𝑥.) = 𝜋(𝑥.) (36) 

Thus far it is equally valid that 

 𝜋(𝑥.) = 𝜋(𝑥.) −1 +1 (37) 

or at the end 

 𝜋(𝑥.) = 1 − 01 − 𝜋(𝑥.)2 (38) 

Rearranging, we obtain 

 
𝜋(𝑥.) = 1 −

𝒏 × 𝝅(𝒙𝒕) × 01 − 𝜋(𝑥.)2
𝒏 × 𝝅(𝒙𝒕)

 (39) 

or 

 
𝜋(𝑥.) = 1 −

𝑛 × 01 − 𝜋(𝑥.)2
𝑛 × 𝜋(𝑥.)

× 𝜋(𝑥.) (40) 

With respect to the population, it is E(X) = n´p(xt) and E(X) = n´(1-p(xt))= n´q(xt). The 

equation before changes to 

 
𝜋(𝑥.) = +1 −

𝐸0𝑋 2
𝐸(𝑋 )

× 𝜋(𝑥.) (41) 

Mathematically, this equation is equivalent with 

 
𝜋(𝑥.) = +1 −

𝐸0𝑋 2
𝐸(𝑋 ) × 𝜋(𝑥.)

𝒏
𝟏×

𝟏
𝒏 (42) 

In general, it is p(xt)= 1 − q(xt). Substituting, we obtain 

 
𝜋(𝑥.) = +1 − H

𝐸0𝑋 2
𝐸(𝑋 )I × H0𝟏 − 𝒒(𝒙𝒕)2

3
6×

6
3I (43) 

or 

 
𝜋(𝑥.) = +1 − H

𝐸0𝑋 2
𝐸(𝑋 )I × WH1 −

𝒏 × 𝑞(𝑥.)
𝒏

I

3
6×

6
3
X (44) 

or 
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𝜋(𝑥.) = +1 − H

𝐸0𝑋 2
𝐸(𝑋 )I × WH1 −

𝐸0𝑋 2
𝑛 I

3
6×

6
3
X (45) 

Taking the limit as the sample size n or the number of (Bernoulli) trials goes to positive infinity 

(n ® +¥), we obtain 

 
W1 − H

𝐸0𝑋 2
𝑛 IX

3

= lim
3→]^

WW1 − H
𝐸0𝑋 2
𝑛 IX

3

X (46) 

According to the known elementary calculus (DeGroot et al., 2005) it is  

 
lim
3→]^

WW1 − H
𝐸0𝑋 2
𝑛 IX

3

X = 𝑒4l0N 2 (47) 

Thus far, as the sample size increases or as the number of trials n goes to positive infinity (n ® 

+¥) the equation above simplifies for E(X) < E(X) as 

 𝜋(𝑥.) = +1 − WH
𝐸0𝑋 2
𝐸(𝑋 )I × H𝑒

4
M0N 2
3 IX (48) 

QUOD ERAT DEMONSTRANDUM. 

 

 

 

 

 

 

 

Figure 3. Example exponential distribution 

 

 

 

 

 

 

Figure 4. Cumulative distribution function  
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THEOREM 5. LEFT TAILED ONE-SIDED P VALUE ACCORDING TO EXPONENTIAL DISTRIBUTION 

Increasing sample size, it is possible to detect small effects, even though they are not existent 

in population. The chi square distribution finds its own limits if the sample size is to large or 

too small. Fisher's exact test (Agresti, 1992; R. A. Fisher, 1922; Ronald A. Fisher, 1925) is valid 

for all sample sizes although in practice it is used when sample sizes are small. The Chi-square 

(Pearson, 1900) itself is very sensitive (Bergh, 2015) to sample size and an extremely large 

sample is one of the limitations (McHugh, 2013) of a Chi-square test. Alternatives to the Chi-

Square Test for extremely large samples like the G-square test (Sokal & Rohlf, 1995) have been 

developed to handle large samples in test of fit analysis. However, Chi-square is still reliable 

with sample size between roughly 100 to 2500 subjects. An exact binomial test can be used 

when an experiment has two possible outcomes (i.e. success/failure) instead of the chi-square 

distribution to compare the observed distribution to the expected distribution. The null 

hypothesis for the binomial test is that the results observed (p(sample proportion)) do not differ 

significantly from what is expected to be in the population (p = 1). The (left tailed) one-sided 

null and alternative hypotheses may be as follows: 

  𝐻L : 𝜋(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) ≤ 𝑝(𝑠𝑎𝑚𝑝𝑙𝑒	𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛) (𝑖. 𝑒.		𝑆𝐼𝑁𝐸	𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝: NO)

𝐻{ : 𝜋(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) > 𝑝(𝑠𝑎𝑚𝑝𝑙𝑒	𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛) (𝑖. 𝑒.		𝑆𝐼𝑁𝐸	𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝: YES)
 (49) 

How likely is it that an observed difference from what is expected to be is only due to chance? 

Folowing the Fisherian and Neyman-Pearsonian schools of hypothesis testing the calculation 

of the P value (Arbuthnott, 1710; Ronald A. Fisher, 1925; Heyde & Seneta, 2001; LaPlace, 

Pierre Simon de, 1812; Pearson, 1900) can answer questions like these. Since Fisher's statement 

years ago, it has become ritualistic by medical researchers worldwide to use 0.05 as cut-off for 

a P value. However, after the advent of computers and statistical software, calculating exact P 

values is easy now and so the researcher can report exact P values and leave it to a reader to 

determine the significance of the same. In point of fact, P value being a probability can take any 

value between 0 and 1. Thus far, P values close to 1 suggests no difference between what is 

observed from what is expected to be due to chance whereas P values close to 0 indicate that a 

difference observed is unlikely to be due to chance. However, like the test of hypothesis, the P 

value itself is associated with several fallacies (Dahiru, 2008) and depends on several factors, 
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among other on the distribution used. P values alone can completely misrepresent (Bertolaccini, 

Viti, & Terzi, 2016; Dixon, 2003) the evidence provided by sample data and an alternative 

analytical technique is necessary to be developed. In general, the P value is the probability of 

an outcome, when the null hypothesis is true, which is at least as extreme as the observed.  

CLAIM. 

Under certain circumstances (i.e. for E(X) < E(X)), the (left-tailed one-sided) P value can be 

calculated as 

 
𝑝0𝑋 ≤ (n − 1)2 ≡ WH

𝐸0𝑋 2
𝐸(𝑋 )I × H𝑒

4
M0N 2
3 IX (50) 

PROOF. 

In general, it is 

 +1 ≡ 𝑝0𝑋 < (n − 1)2 + 𝑝0𝑋 = (n − 1)2 + 𝑝0𝑋 > (n − 1)2 (51) 

or 

 +1 ≡ 𝑝0𝑋 ≤ (n − 1)2 + 𝑝0𝑋 > (n − 1)2 (52) 

or 

 𝑝 E0𝑋 ≤ (n − 1)2F ≡ 1 − 𝑝 E0𝑋 > (n − 1)2F (53) 

Mathematically, the only value where (X > (n-1)) is X = x = n.  Under these conditions, the 

probabilities are equal or it is p(X>(n-1))= p(X=n). The equation before changes to 

 𝑝 E0𝑋 ≤ (n − 1)2F ≡ 1 − 𝑝 E0𝑋 = (n)2F (54) 

As proofed before, in this case we obtain for E(X) < E(X) 

 
𝑝(𝑋 = n) = +1 − WH

𝐸0𝑋 2
𝐸(𝑋 )I × H𝑒

4
M0N 2
3 IX (55) 

This formula derived before is valid even for random variables where X =n. Substituting this 

relationship into the equation before, we obtain 

 
𝑝 E0𝑋 ≤ (n − 1)2F ≡ 1 − �1 − WH

𝐸0𝑋 2
𝐸(𝑋 )I × H𝑒

4
M0N 2
3 IX� (56) 

The P value can be calculated according to the equation before (for very large samples too) 
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were p is expected to be 1. A left tailed P value which is greater than or equal to α (P value > 

α) provides some evidence (Yamane, 1964) to accept the null hypothesis otherwise not. 

Simplifying equation, the left tailed P value follows for E(X) < E(X) as 

 
𝑝 E0𝑋 ≤ (n − 1)2F ≡ WH

𝐸0𝑋 2
𝐸(𝑋 )I × H𝑒

4
M0N 2
3 IX (57) 

  

QUOD ERAT DEMONSTRANDUM. 

Example. 

To perform a hypothesis test with the distribution before, we must calculate the probability, p, 

of the observed event and any more extreme event happening. We compare this degree of 

evidence to the level of significance α. Thus far, if the calculate p is p > α then we do accept 

the null hypothesis and reject the alternative hypothesis. Under circumstances where p < α we 

do reject the null hypothesis and accept the alternative hypothesis. In other words, the (left 

tailed) one-sided null and alternative hypotheses are 

  𝐻L : 𝜋(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) ≤ 𝑝(𝑠𝑎𝑚𝑝𝑙𝑒	𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛) (𝑖. 𝑒.		𝑆𝐼𝑁𝐸	𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝: NO)

𝐻{ : 𝜋(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) > 𝑝(𝑠𝑎𝑚𝑝𝑙𝑒	𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛) (𝑖. 𝑒.		𝑆𝐼𝑁𝐸	𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝: YES)
 (58) 

while the probability can be calculated as 

 𝑝(𝑋 ≤ n − 1) + 𝑝(𝑋 > n − 1) ≡ 1 (59) 

Mathematically, if X > n-1 then it is X = n. The equation before changes to  

 𝑝(𝑋 ≤ n − 1) + 𝑝(𝑋 = n) ≡ 1 (60) 

and at the end to 

 
𝑝(𝑋 ≤ n − 1) ≡ � 𝑝(𝑋 = 𝑡)

346

.�]L

≡ 1 − 𝑝(𝑋 = n) (61) 

Thus far, we obtain for E(X) < E(X)   

 
𝑝(𝑋 ≤ n − 1) ≡ WH

𝐸0𝑋 2
𝐸(𝑋 )I × H𝑒

4
M0N 2
3 IX (62) 

as the left-tailed P Value for likely events. A P value which is less than a chosen significance 

level a (P value < a), suggests that the observed data are potentially inconsistent with the null 

hypothesis (p(population) < p(sample proportion)) and implicate the conclusion that the null 
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hypothesis should be rejected and we do accept the alternative hypothesis which claims that 

p(population) > p(sample proportion). If the P value is greater than or equal to the significance 

level a (P value > a), we fail to reject the null hypothesis. Under these circumstance it is 

necessary to accept that the null-hypothesis: p(population) < p(sample proportion). The (left 

tailed) one-sided null and alternative hypotheses may again be as follows: 

  𝐻L : 𝜋 ≤ 𝑝(𝑠𝑎𝑚𝑝𝑙𝑒	𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛) (𝑖. 𝑒.		𝑆𝐼𝑁𝐸	𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝: NO)

𝐻{ : 𝜋 > 𝑝(𝑠𝑎𝑚𝑝𝑙𝑒	𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛) (𝑖. 𝑒.		𝑆𝐼𝑁𝐸	𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝: YES)
 (63) 

Under some assumptions, the equation above is just a special case of the exponential 

distribution. In this context let us define the following. Let  

 
𝜆 ≡ H

𝐸0𝑋 2
𝐸(𝑋 )I 𝑎𝑛𝑑 𝑝 ≡

𝐸(𝑋 )
𝑛

 (64) 

while l is the parameter of the distribution, often called the rate parameter. From this follows 

that  

 𝐸0𝑋 2 = 𝜆 × 𝐸(𝑋 ) (65) 

Substituting these relationships into the equation above it is 

 
1 − 𝜋(𝑥.) = H

𝐸0𝑋 2
𝐸(𝑋 )I × H𝑒

4
M0N 2
3 I = 𝜆 × '𝑒4

�×M(N )
3 , (66) 

The probability density function (pdf) of an exponential distribution for l > 1follows as 

 
1 − 𝜋(𝑥.) = H

𝐸0𝑋 2
𝐸(𝑋 )I × H𝑒

4
M0N 2
3 I = 𝜆 × 0𝑒4�×�2 (67) 

 

THEOREM 6. THE APPROXIMATE CRITICAL VALUE DUE TO NORMAL DISTRIBUTION 

Under certain conditions (Barukčić, 2019a), the critical P value i. e. of the conditio sine qua 

non relationship pCritical can be calculated as 

 𝑝���.����0𝐴. ← 𝐵. 2 ≡ 𝑒4	{���� (68) 

where Alpha denotes the level of significance i. e. Alpha = 0,05 and e denotes Euler's number 

(Euler, 1736), the base of the natural logarithm. The rule of three (Hanley, 1983; Jovanovic & 

Levy, 1997; Louis, 1981; Rumke, 1975), defined as 
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 𝑝���.����0𝐴. ← 𝐵. 2 ≡ 1 − '
3
𝑛,

 (69) 

where n denotes the sample size is another way to calculate approximately the critical value for 

n > 50 (Sachs, 1992).  In this context, interval estimation of binomial proportions is one of the 

most basic problems in statistics. The Wald interval is more or less the standard interval for the 

binomial proportion. The Wald method itself is based on the asymptotically normal 

approximation to the distribution of the observed sample proportion. However, the standard 

Wald interval has a very poor performance (Agresti & Coull, 1998; DasGupta, Cai, & Brown, 

2001), even for a very large sample size. Even an ‘exact’ confidence interval for the binomial 

proportion as proposed by Clopper & Pearson 1934 (Clopper & Pearson, 1934) are of a 

restricted (Blyth & Still, 1983) value due to the very wide interval length. In the following we 

will demonstrate how the population proportion of the conditio sine qua non relationship with 

some limits can be estimated through the usage of a confidence interval known as a one-sample 

proportion in the Z-interval. Let Z denote the critical value of the standard normal distribution 

for a level of confidence C = 0,95. Thus far, it is 

 𝑍 0𝐴. ← 𝐵. 2 ≡
1 − 𝐶
2

≡
1 − 0,95

2
= 0,025 (70) 

The value for Z of a standard normal bell curve gives an upper tail area of 0.0250 or an area of 

1 - 0.0250 = 0.9750.  Thus far, for α = 0,05 the (1–(α/2)) quantile of a standard normal 

distribution is (1– (0,05/2)) or equal to Z = 1,959963985.  

CLAIM. 

The approximate critical lower value of the necessary condition can be calculated as  

 

 

𝑝�����0𝐴. ← 𝐵. 2 ≡ 1 − ��
(4) × E14F

𝑛

g

� ≡ 1 − W�
1
𝑛

g
X (71) 

PROOF. 

Hence, based on the formula for the one-sample proportion in the Z-interval, the upper critical 

value of a (1- α) confidence interval of the sample proportion without continuity correction can 

be calculated according to Wald’s method (Wald, 1943) as 
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𝑝�����0𝐴. ← 𝐵. 2 ≡ 𝑝�� ���0𝐴. ← 𝐵. 2 + ��

0𝑍(¡/D)D 2 × 0𝑝�� ���2 × 01 − 𝑝�� ���2
𝑛

g

� (72) 

where n denotes the sample size, pSample(At ¬ Bt) denotes the sample proportion of the conditio 

sine qua non relationship determined by the number of successes in n Bernoulli trials, Z is the 

(1–(α/2)) quantile of a standard normal distribution and α is the level of significance. The lower 

confidence bound can be calculated as  

 
𝑝�����0𝐴. ← 𝐵. 2 ≡ 𝑝�� ���0𝐴. ← 𝐵. 2 − ��

0𝑍(¡/D)D 2 × E𝑝�� ���0𝐴. ← 𝐵. 2F × E1 − 𝑝�� ���0𝐴. ← 𝐵. 2F
𝑛

g

� (73) 

In general, the maximum value is (pSample(At ¬ Bt)´(1- pSample(At ¬ Bt))) £ (1/4). Let Z2 = 4, 

and let pSample(At ¬ Bt) = 1. A more simple and robust form of the equation before simplifies 

in contrast to Barukčić (Barukčić, 2018) as  

 

𝑝�����0𝐴. ← 𝐵. 2 ≡ 1 − ��
(4) × E14F

𝑛

g

� ≡ 1 − W�
1
𝑛

g
X (74) 

and provides an approximate value even for events with pSample(At ¬ Bt) = 1.  

QUOD ERAT DEMONSTRANDUM. 

 

 

 

THEOREM 7. THE APPROXIMATE CRITICAL VALUE DUE TO THE STANDARD SCORE Z 

A distribution of sample means even if same is drawn from a non-normal distribution follows 

under some circumstances more or less the normal distribution. In this context, the z-score is 

defined as 

 

𝑍0𝐴. ← 𝐵. 2 ≡
'𝑋0𝐴. ← 𝐵. 2 − E𝐸0𝐴. ← 𝐵. 2F,

𝜎0𝐴. ← 𝐵. 2
 (75) 

where E(At ¬ Bt) is the mean or the expected value of the population and σ is the standard 

deviation of the population. Under circumstances where the population mean and the population 

standard deviation are unknown, the standard score Z may be calculated while using the sample 
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mean and sample standard deviation as estimates of the population values. 

CLAIM. 

The value of the proportion of an event within the population denoted as p(xt) can be calculated 

approximately from the number of missed successes in n trials E(Xt) = n - E(Xt) = 0, 1, 2, ..., n  

by the function:  

 
𝜋(𝑥.) = +1 −

0𝑋2D

𝑍0𝑥. 2
D
× 𝑛

 (76) 

PROOF. 

In general, it is 

 𝜋(𝑥.) = 𝜋(𝑥.) (77) 

or equally 

 𝜋(𝑥.) = 𝜋(𝑥.) + 0 (78) 

or equally 

 𝜋(𝑥.) = 𝜋(𝑥.) + 1 − 1 (79) 

or equally 

 𝜋(𝑥.) = +1 − 01 − 𝜋(𝑥.)2 (80) 

Rearranging equation, it is 

 
𝜋(𝑥.) = +1 −

01 − 𝜋(𝑥.)2 × 𝒏 × 𝝅(𝒙𝒕)
𝒏 × 𝝅(𝒙𝒕)

 (81) 

A binomial random variable regarded; the variance is s(xt)2 = n´p(xt)´(1- p(xt)) while the 

expectation value E(xt) is defined as E(xt) = n´p(xt). The equation before simplifies as 

 
𝜋(𝑥.) = +1 −

𝝈(𝒙𝒕)𝟐

𝑬(𝒙𝒕)
 (82) 

From the definition of the z score, we obtain 

 

𝜎0𝐴. ← 𝐵. 2
D

≡
'𝑋 − E𝐸0𝑥. 2F,

D

𝑍0𝑥. 2
D

 (83) 

The equation before can be rearranged as 
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𝜋(𝑥.) = +1 −
'𝑿 − E𝑬0𝒙𝒕 2F,

𝟐

𝒁0𝒙𝒕 2
𝟐
× 𝐸(𝑥.)

 (84) 

Under conditions where the expectation value is E(xt) = n´p(xt) = n´1 = n, the equation before 

simplifies as 

 
𝜋(𝑥.) = +1 −

(𝑋 − 𝑛)D

𝑍0𝑥. 2
D
× 𝑛

 (85) 

Let X = N-X denote the number of failures in n Bernoulli trials. The value of the proportion of 

an event within the population denoted as p(xt) follows approximately for values X2 < Z(xt)2´n 

as  

 
𝜋(𝑥.) = +1 −

0𝑋2D

𝑍0𝑥. 2
D
× 𝑛

 (86) 

while Z(xt) is the known Z score. 

QUOD ERAT DEMONSTRANDUM. 

 

THEOREM 8. THE APPROXIMATE CRITICAL VALUE 

CLAIM. 

The proportion of an event within the population denoted as p(xt) can be calculated 

approximately from the number of missed successes in n trials E(Xt) = n - E(Xt) = 0, 1, 2, ..., n  

by the function:  

 
𝜋(𝑥.) = +1 −

𝜒D(𝑥.)
𝐸0𝑋 2

 (87) 

PROOF. 

In general, we expect that the observed value of the probability or of the sample proportion p(xt) 

of a binomial distributed random variable is not significantly different from the expected value 

of the probability or of the population proportion of a binomial distributed random variable in 

the population, p(xt). In other words, it is 

 𝜋(𝑥.) = 𝜋(𝑥.) (88) 

or equally 
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 𝜋(𝑥.) = 𝜋(𝑥.) + 0 (89) 

or equally 

 𝜋(𝑥.) = 𝜋(𝑥.) + 1 − 1 (90) 

or equally 

 𝜋(𝑥.) = +1 − 01 − 𝜋(𝑥.)2 (91) 

Rearranging equation, it is 

 
𝜋(𝑥.) = +1 −

01 − 𝜋(𝑥.)2 × 0𝟏 − 𝝅(𝒙𝒕)2 × 𝒏 × 𝒏
0𝟏 − 𝝅(𝒙𝒕)2 × 𝒏 × 𝒏

 (92) 

The sample proportion p(xt)=(Xt/n) is the number of successes Xt over the number of trials n. 

The expected value E(p(xt)) of the sample proportion is an unbiased estimator of the population 

proportion p(xt). The variance s(Xt/n)2 of the sample proportion p(xt) = Xt/n is equal to the 

variance of Xt divided by n², or s(Xt/n)2 = (n´p(xt)´(1-p(xt)))/n² or s(Xt/n)2 = (p(xt)´(1-p(xt)))/n. 

Thus far, while the size of the sample n increases, the variance of the sample proportion s(Xt/n)2 

decreases. The value of the Chi-Square of goodness fit test is defined as 

 

𝜒D(𝑥.) =
E𝑛 × 01 − 𝜋(𝑥.)2F

D

𝑛 =
𝑛 × E1 − 𝐸0𝑝(𝑥.)2F × 𝑛 × E1 − 𝐸0𝑝(𝑥.)2F

𝑛
 (93) 

Substituting into the equation before, we obtain  

 
𝜋(𝑥.) = +1 −

𝝌𝟐(𝒙𝒕)
0𝟏 − 𝝅(𝒙𝒕)2 × 𝒏

 (94) 

Let E(X) =n´(1-E(p(xt))), it is 

 
𝜋(𝑥.) = +1 −

𝝌𝟐(𝒙𝒕)
𝑬0𝑿 2

 (95) 

QUOD ERAT DEMONSTRANDUM. 

Under these assumptions, the Chi-square follows as 

 𝝌𝟐(𝒙𝒕) = 01 − 𝜋(𝑥.)2 × 𝐸0𝑋 2 (96) 

The critical value of the conditio sine qua non relationship can be estimated by the rule of three 

(Hanley, 1983; Jovanovic & Levy, 1997; Louis, 1981; Rumke, 1975) too. 

4. Discussion 
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The P Value as a kind of threshold probability is commonly used as one among other factors 

which indicate statistical significance especially of clinical investigations. The P Value can help 

the researcher to better understand the evidence generated by research studies and whether data 

do not conform to a null hypothesis and whether a clinical research investigation is trustworthy 

from a scientific perspective. Importantly, and in the historical context, it was difficult to 

calculate the P Value of events which are assumed to be sure (p(xt) = 1). This publication has 

solved this problem. 

5. Conclusion 

It is possible to calculate the P Values even of extremely likely events like p(xt) = 1. 
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