http://www.TheoryOfEverything.org

Unimodular rotation of E_8 to H_4 600-cells

J Gregory Moxness* TheoryOfEverything.org (Dated: October 19, 2019)

We introduce a unimodular Determinant= 1.8×8 rotation matrix to produce four 4 dimensional copies of H_4 600-cells from the 240 vertices of the Split Real Even E_8 Lie group. Unimodularity in the rotation matrix provides for the preservation of the 8 dimensional volume after rotation, which is useful in the application of the matrix in various fields, from theoretical particle physics to 3D visualization algorithm optimization.

PACS numbers: 02.20.-a, 02.10.Yn Keywords: Coxeter groups, root systems, E8

I. INTRODUCTION

Fig. 1 is the Petrie projection of the largest of the exceptional simple Lie algebras, groups and lattices called E_8 . The Split Real Even (SRE) form has 240 vertices and 6720 edges of 8 dimensional (8D) length $\sqrt{2}$. Interestingly, E_8 has been shown to fold to the 4D polychora of H_4 (aka. the 120 vertex 720 edge 600-cell) and a scaled copy $H_4\Phi[1][2]$, where $\Phi = \frac{1}{2}(1+\sqrt{5}) = 1.618...$ is the big golden ratio and $\varphi = \frac{1}{2}(\sqrt{5}-1) = 1/\Phi = \Phi - 1 = 0.618...$ is the small golden ratio.

FIG. 1: E_8 Petrie projection

In my previous papers on the topic [3][4], a specific matrix for performing the rotation of the SRE E_8 group of root vertices to the vertices of H_4 (a.k.a. the 600-cell) was shown to be that of (1).

$$\mathrm{H4}_{\mathrm{fold}} = \begin{pmatrix} \varphi^2 & 0 & 0 & 0 & \Phi & 0 & 0 & 0 \\ 0 & -\varphi & 1 & 0 & 0 & \varphi & 1 & 0 \\ 0 & 1 & 0 & -\varphi & 0 & 1 & 0 & \varphi \\ 0 & 0 & -\varphi & 1 & 0 & 0 & \varphi & 1 \\ \Phi & 0 & 0 & 0 & \varphi^2 & 0 & 0 & 0 \\ 0 & \varphi & 1 & 0 & 0 & -\varphi & 1 & 0 \\ 0 & 1 & 0 & \varphi & 0 & 1 & 0 & -\varphi \\ 0 & 0 & \varphi & 1 & 0 & 0 & -\varphi & 1 \end{pmatrix}$$
(1)

The convex hull of two opposite edges of a regular icosahedron forms a golden rectangle (as shown in Fig. 2). The twelve vertices of the icosahedron can be decomposed in this way into three mutually-perpendicular golden rectangles, whose boundaries are linked in the pattern of the Borromean rings. Columns 2-4 of H4_{fold} contains 6 of the 12 vertices of this icosahedron, including 2 at the origin (with the other 6 of 12 icosahedron vertices being the reflection of these through the origin).

FIG. 2: The Icosahedron formed from 3 mutuallyperpendicular golden rectangles

The trace of this matrix is $2(\phi^2 - \phi + 1) = 1.527$ and its determinant $Det = (2\sqrt{\phi})^8 = 37.349$.

^{*}URL: http://www.TheoryOfEverything.org/TOE/JGM; mailto:jgmoxness@TheoryOfEverything.org

Notice that $H4_{fold} = H4_{fold}^T$ such that it is symmetric with a quaternion-octonion Cayley-Dickson-like structure.

Only the first 4 rows are needed for folding E_8 to H_4 by dot product with each vertex. This results in two copies of H_4 scaled by Φ . Using the full matrix to rotate E_8 results in not two, but four copies of H_4 600-cell with the left (L) 4 dimensions associated with the two scaled copies (H_4 and $H_4\Phi$) and the right (R) 4 dimensions associated with another two copies (H_4 and $H_4\Phi$). Rotation back to E_8 is achieved with a rotation matrix of $H_{4\text{fold}}^{-1}$.

II. THE UNIMODULARITY FACTOR

The Platonic solid icosahedral symmetry establishes some valuable utility in this particular construction of H4_{fold}. Yet, the non-unimodularity of the determinant causes the resulting 8D volume of the objects involved in a rotation (or projection) between $E_8 \leftrightarrow H_4$ to vary. In order to correct this, while keeping the general structure of the matrix the same, we simply divide the matrix by a factor of $2\sqrt{\phi}$, giving a Det = 1. This gives:

 $\mathrm{H4}_{\mathrm{uni}} =$

$$\begin{pmatrix} \sqrt{\varphi^3} & 0 & 0 & 0 & \frac{1}{\sqrt{\varphi^3}} & 0 & 0 & 0 \\ 0 & -\sqrt{\varphi} & \frac{1}{\sqrt{\varphi}} & 0 & 0 & \sqrt{\varphi} & \frac{1}{\sqrt{\varphi}} & 0 \\ 0 & \frac{1}{\sqrt{\varphi}} & 0 & -\sqrt{\varphi} & 0 & \frac{1}{\sqrt{\varphi}} & 0 & \sqrt{\varphi} \\ 0 & 0 & -\sqrt{\varphi} & \frac{1}{\sqrt{\varphi}} & 0 & 0 & \sqrt{\varphi} & \frac{1}{\sqrt{\varphi}} \\ \frac{1}{\sqrt{\varphi^3}} & 0 & 0 & 0 & \sqrt{\varphi^3} & 0 & 0 \\ 0 & \sqrt{\varphi} & \frac{1}{\sqrt{\varphi}} & 0 & 0 & -\sqrt{\varphi} & \frac{1}{\sqrt{\varphi}} & 0 \\ 0 & \frac{1}{\sqrt{\varphi}} & 0 & \sqrt{\varphi} & 0 & \frac{1}{\sqrt{\varphi}} & 0 & -\sqrt{\varphi} \\ 0 & 0 & \sqrt{\varphi} & \frac{1}{\sqrt{\varphi}} & 0 & 0 & -\sqrt{\varphi} & \frac{1}{\sqrt{\varphi}} \end{pmatrix}$$

III. H4_{fold} FROM 2 QUBIT QUANTUM COMPUTING CNOT AND SWAP GATES

Looking at the four quadrants of $H4_{fold}$ and $H4_{uni}$, we see that they resemble a combination of the unitary Hermitian matrices commonly used for Quantum Computing (QC) qubit logic, namely those of the 2 qubit CNOT (3) and SWAP (4) gates. Taking these patterns, combined with the recursive functions that build Φ from the Fibonacci sequence, it is straightforward to derive both H4_{fold} and H4_{uni} from scaled QC logic gates.

$$CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
(3)

$$SWAP = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(4)

The code to establish CNOT and SWAP implementations of $H4_{fold}$ is naively done (in *Mathematica*TM code) as shown in Fig. 3.

> SWAP + # CNOT & /@ {- φ , φ }; Flatten /@ Transpose@Join[{Flatten[%, 1]}, {Flatten[Reverse@%, 1]}] $\begin{pmatrix} 1-\varphi & 0 & 0 & \varphi + 1 & 0 & 0 & 0 \\ 0 & -\varphi & 1 & 0 & 0 & \varphi & 1 & 0 \\ 0 & 1 & 0 & -\varphi & 0 & 1 & 0 & \varphi \\ 0 & 0 & -\varphi & 1 & 0 & 0 & \varphi & 1 \\ \varphi+1 & 0 & 0 & 0 & 1-\varphi & 0 & 0 & 0 \\ 0 & \varphi & 1 & 0 & 0 & -\varphi & 1 & 0 \\ 0 & 1 & 0 & \varphi & 0 & 1 & 0 & -\varphi \\ 0 & 0 & \varphi & 1 & 0 & 0 & -\varphi & 1 \end{pmatrix}$

FIG. 3: Producing H4_{fold} from 2 Qubit CNOT and SWAP QC Gates

More interestingly, we can produce a similar result using a recursive function for Φ using the Fibonacci sequence. This is shown in Figs. 5-6 in Appendix A, where we iterate the *Mathematica*TM Fibonacci function n = 10times. As $n \to \infty$, the matrix resolves to H4_{fold} or H4_{uni}. The numerical result for the first 4 rows of H4_{fold} is shown in Fig. 4 at n = 10.

rndMat@mat

(0.382	0.	0.	0.	1.618	0.	0.	0.	١
	0.	-0.618	1.	0.	0.	0.618	1.	0.	l
	0.	1.	0.	-0.618	0.	1.	0.	0.618	l
l	0.	0.	-0.618	0. 0. -0.618 1.	0.	0.	0.618	1.)	l

FIG. 4: Numerical result for the first 4 rows of H4_{fold} from the 2 Qubit CNOT and SWAP QC gates and an integer Fibonacci series function output after n = 10 iterations

IV. CONCLUSION

Instead of simply folding the 8D E_8 vertices into 4D pairs of H_4 and $H_4\Phi$ vertices, we rotate them using an 8×8 matrix. This transforms E_8 into a fourfold H_4 600cell structure. We show that bringing unimodularity to the folding matrix with a Det = 1 is a simple modification. We also show that the folding matrix can easily be generated using 2 qubit QC matrices and recursive functions related to the Fibonacci sequence.

Acknowledgments

I would like to thank my wife for her love and patience and those in academia who have taken the time to review this work.

^[1] M. Koca and N. Koca, Turkish Journal of Physics 22, 421 (1998).

^[2] D. A. Richter, ArXiv e-prints math.GM/0704.3091 (2007), 0704.3091.

^[3] J. G. Moxness, www.vixra.org/abs/1411.0130 (2014).
[4] J. G. Moxness, www.vixra.org/abs/1804.0065 (2018).

Producing the first 4 rows of H4_{fold} from 2 Qubit CNOT and SWAP QC gates and an integer Fibonacci series function

FIG. 6: Integer Fibonacci series function output for each of n = 10 iterations