Unimodular rotation of E_{8} to $H_{4} 600$-cells

J Gregory Moxness*
TheoryOfEverything.org
(Dated: October 19, 2019)

Abstract

We introduce a unimodular Determinant $=18 \times 8$ rotation matrix to produce four 4 dimensional copies of $H_{4} 600$-cells from the 240 vertices of the Split Real Even E_{8} Lie group. Unimodularity in the rotation matrix provides for the preservation of the 8 dimensional volume after rotation, which is useful in the application of the matrix in various fields, from theoretical particle physics to 3D visualization algorithm optimization.

PACS numbers: 02.20.-a, 02.10.Yn
Keywords: Coxeter groups, root systems, E8

I. INTRODUCTION

Fig. 1 is the Petrie projection of the largest of the exceptional simple Lie algebras, groups and lattices called E_{8}. The Split Real Even (SRE) form has 240 vertices and 6720 edges of 8 dimensional (8D) length $\sqrt{2}$. Interestingly, E_{8} has been shown to fold to the 4D polychora of H_{4} (aka. the 120 vertex 720 edge 600 -cell) and a scaled copy $H_{4} \Phi[1][2]$, where $\Phi=\frac{1}{2}(1+\sqrt{5})=1.618 \ldots$ is the big golden ratio and $\varphi=\frac{1}{2}(\sqrt{5}-1)=1 / \Phi=\Phi-1=$ $0.618 \ldots$ is the small golden ratio.

FIG. 1: E_{8} Petrie projection

In my previous papers on the topic [3][4], a specific matrix for performing the rotation of the SRE E_{8} group of root vertices to the vertices of H_{4} (a.k.a. the 600-cell) was shown to be that of (1).

* URL:
http://www.TheoryOfEverything.org/TOE/JGM; mailto:jgmoxness@TheoryOfEverything.org

$$
\mathrm{H} 4_{\text {fold }}=\left(\begin{array}{cccccccc}
\varphi^{2} & 0 & 0 & 0 & \Phi & 0 & 0 & 0 \tag{1}\\
0 & -\varphi & 1 & 0 & 0 & \varphi & 1 & 0 \\
0 & 1 & 0 & -\varphi & 0 & 1 & 0 & \varphi \\
0 & 0 & -\varphi & 1 & 0 & 0 & \varphi & 1 \\
\Phi & 0 & 0 & 0 & \varphi^{2} & 0 & 0 & 0 \\
0 & \varphi & 1 & 0 & 0 & -\varphi & 1 & 0 \\
0 & 1 & 0 & \varphi & 0 & 1 & 0 & -\varphi \\
0 & 0 & \varphi & 1 & 0 & 0 & -\varphi & 1
\end{array}\right)
$$

The convex hull of two opposite edges of a regular icosahedron forms a golden rectangle (as shown in Fig. 2). The twelve vertices of the icosahedron can be decomposed in this way into three mutually-perpendicular golden rectangles, whose boundaries are linked in the pattern of the Borromean rings. Columns 2-4 of $\mathrm{H}_{\text {fold }}$ contains 6 of the 12 vertices of this icosahedron, including 2 at the origin (with the other 6 of 12 icosahedron vertices being the reflection of these through the origin).

FIG. 2: The Icosahedron formed from 3 mutuallyperpendicular golden rectangles

The trace of this matrix is $2\left(\phi^{2}-\phi+1\right)=1.527$ and its determinant $\operatorname{Det}=(2 \sqrt{\phi})^{8}=37.349$.

Notice that $\mathrm{H} 4_{\text {fold }}=\mathrm{H} 4_{\text {fold }}^{T}$ such that it is symmetric with a quaternion-octonion Cayley-Dickson-like structure.

Only the first 4 rows are needed for folding E_{8} to H_{4} by dot product with each vertex. This results in two copies of H_{4} scaled by Φ. Using the full matrix to rotate E_{8} results in not two, but four copies of $H_{4} 600$-cell with the left (L) 4 dimensions associated with the two scaled copies $\left(H_{4}\right.$ and $\left.H_{4} \Phi\right)$ and the right (R) 4 dimensions associated with another two copies (H_{4} and $\left.H_{4} \Phi\right)$. Rotation back to E_{8} is achieved with a rotation matrix of $\mathrm{H} 4_{\text {fold }}^{-1}$.

II. THE UNIMODULARITY FACTOR

The Platonic solid icosahedral symmetry establishes some valuable utility in this particular construction of $\mathrm{H} 4_{\text {fold }}$. Yet, the non-unimodularity of the determinant causes the resulting 8 D volume of the objects involved in a rotation (or projection) between $E_{8} \leftrightarrow H_{4}$ to vary. In order to correct this, while keeping the general structure of the matrix the same, we simply divide the matrix by a factor of $2 \sqrt{\phi}$, giving a $D e t=1$. This gives:

$$
\begin{align*}
& \mathrm{H}_{\mathrm{uni}}= \\
& \left(\begin{array}{cccccccc}
\sqrt{\varphi^{3}} & 0 & 0 & 0 & \frac{1}{\sqrt{\varphi^{3}}} & 0 & 0 & 0 \\
0 & -\sqrt{\varphi} & \frac{1}{\sqrt{\varphi}} & 0 & 0 & \sqrt{\varphi} & \frac{1}{\sqrt{\varphi}} & 0 \\
0 & \frac{1}{\sqrt{\varphi}} & 0 & -\sqrt{\varphi} & 0 & \frac{1}{\sqrt{\varphi}} & 0 & \sqrt{\varphi} \\
0 & 0 & -\sqrt{\varphi} & \frac{1}{\sqrt{\varphi}} & 0 & 0 & \sqrt{\varphi} & \frac{1}{\sqrt{\varphi}} \\
\frac{1}{\sqrt{\varphi^{3}}} & 0 & 0 & 0 & \sqrt{\varphi^{3}} & 0 & 0 & 0 \\
0 & \sqrt{\varphi} & \frac{1}{\sqrt{\varphi}} & 0 & 0 & -\sqrt{\varphi} & \frac{1}{\sqrt{\varphi}} & 0 \\
0 & \frac{1}{\sqrt{\varphi}} & 0 & \sqrt{\varphi} & 0 & \frac{1}{\sqrt{\varphi}} & 0 & -\sqrt{\varphi} \\
0 & 0 & \sqrt{\varphi} & \frac{1}{\sqrt{\varphi}} & 0 & 0 & -\sqrt{\varphi} & \frac{1}{\sqrt{\varphi}}
\end{array}\right) \tag{2}
\end{align*}
$$

III. H4 fold FROM 2 QUBIT QUANTUM COMPUTING CNOT AND SWAP GATES

Looking at the four quadrants of $\mathrm{H} 4_{\text {fold }}$ and $\mathrm{H} 4_{\text {uni }}$, we see that they resemble a combination of the unitary Hermitian matrices commonly used for Quantum Computing (QC) qubit logic, namely those of the 2 qubit CNOT (3) and SWAP (4) gates. Taking these patterns, combined with the recursive functions that build Φ from the Fibonacci sequence, it is straightforward to derive both $\mathrm{H} 4_{\text {fold }}$ and $\mathrm{H} 4_{\text {uni }}$ from scaled QC logic gates.

$$
\mathrm{CNOT}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \tag{3}\\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

$$
S W A P=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \tag{4}\\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

The code to establish CNOT and SWAP implementations of $\mathrm{H}_{\text {fold }}$ is naively done (in Mathematica ${ }^{\text {TM }}$ code) as shown in Fig. 3.

$$
\begin{aligned}
& \text { SWAP + \# CNOT \& / @ }\{-\varphi, \varphi \text { \}; } \\
& \text { Flatten /@ Transpose@ Join [} \\
& \text { \{Flatten [\%, 1] \}, } \\
& \left.\begin{array}{ccccccccc}
1-\varphi & 0 & 0 & 0 & \varphi+1 & 0 & 0 & 0 \\
0 & -\varphi & 1 & 0 & 0 & \varphi & 1 & 0 \\
0 & 1 & 0 & -\varphi & 0 & 1 & 0 & \varphi \\
0 & 0 & -\varphi & 1 & 0 & 0 & \varphi & 1 \\
\varphi+1 & 0 & 0 & 0 & 1-\varphi & 0 & 0 & 0 \\
0 & \varphi & 1 & 0 & 0 & -\varphi & 1 & 0 \\
0 & 1 & 0 & \varphi & 0 & 1 & 0 & -\varphi \\
0 & 0 & \varphi & 1 & 0 & 0 & -\varphi & 1
\end{array}\right)
\end{aligned}
$$

FIG. 3: Producing $\mathrm{H}_{\text {fold }}$ from 2 Qubit CNOT and SWAP QC Gates

More interestingly, we can produce a similar result using a recursive function for Φ using the Fibonacci sequence. This is shown in Figs. 5-6 in Appendix A, where we iterate the Mathematica ${ }^{\text {TM }}$ Fibonacci function $n=10$ times. As $n \rightarrow \infty$, the matrix resolves to $\mathrm{H} 4_{\text {fold }}$ or $\mathrm{H} 4_{\text {uni }}$. The numerical result for the first 4 rows of H 4 fold is shown in Fig. 4 at $n=10$.
rndMat@mat
$\left(\begin{array}{cccccccc}0.382 & 0 . & 0 . & 0 . & 1.618 & 0 . & 0 . & 0 . \\ 0 . & -0.618 & 1 . & 0 . & 0 . & 0.618 & 1 . & 0 . \\ 0 . & 1 . & 0 . & -0.618 & 0 . & 1 . & 0 . & 0.618 \\ 0 . & 0 . & -0.618 & 1 . & 0 . & 0 . & 0.618 & 1 .\end{array}\right)$

FIG. 4: Numerical result for the first 4 rows of H 4 fold from the 2 Qubit CNOT and SWAP QC gates and an integer Fibonacci series function output after $n=10$ iterations

IV. CONCLUSION

Instead of simply folding the $8 \mathrm{D} E_{8}$ vertices into 4D pairs of H_{4} and $H_{4} \Phi$ vertices, we rotate them using an 8×8 matrix. This transforms E_{8} into a fourfold $H_{4} 600-$ cell structure. We show that bringing unimodularity to the folding matrix with a $\operatorname{Det}=1$ is a simple modification. We also show that the folding matrix can easily be generated using 2 qubit QC matrices and recursive functions related to the Fibonacci sequence.

Acknowledgments

I would like to thank my wife for her love and patience and those in academia who have taken the time to review this work.
[1] M. Koca and N. Koca, Turkish Journal of Physics 22, 421 (1998).
[2] D. A. Richter, ArXiv e-prints math.GM/0704.3091 (2007), 0704.3091.
[3] J. G. Moxness, www.vixra.org/abs/1411.0130 (2014).
[4] J. G. Moxness, www.vixra.org/abs/1804.0065 (2018).

Producing the first 4 rows of $\mathrm{H}_{\text {fold }}$ from 2 Qubit CNOT and SWAP QC gates and an integer Fibonacci series function

```
fb = Fibonacci;
im = IdentityMatrix;
nC@0 := CNOT.SWAP;
nC@1 := nC[0]';
nC@i_ := nC[i-2] + nC[i-1];
nCInv := Inverse@nC[#]'&;
{mat = Join[
    fb[#+1]
    fb[#-1]
    } & /@ Range@10
```

FIG. 6: Integer Fibonacci series function output for each of $n=10$ iterations

