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Introduction 

 
A simple relation between two quantities a, b is proportionality. Two quantities a and b (say, 

weight and volume) are said to be directly proportional to each other, if their ratio (ai / bi) is a 

constant. Graphical representation of this relation gives a straight line between a and b. These 
facts are familiar to students even at high school level. However, when it comes to mean 

proportionals, the familiarity is not high. They are very important in understanding uniformly 

accelerated motion. We can have more than one mean proportional between two given quantities, 
a and b. The first mean proportional is the simplest as it is simply the square root of the product 

of a and b.  The more familiar name for the first mean proportional is, ‘geometric mean’1. The 

second, third, fourth etc., mean proportionals are not as simple and are not as useful as the first 
mean proportional. Descartes gives2 a simple method of obtaining them. He also constructed a 

simple and elegant instrument that gives those values. 

  

Galileo uses, proportionals and mean proportionals extensively, in his analysis of uniformly 
accelerated motion3. We concern here, mainly with his analysis of motion of two types. One - that 

on inclined planes3, and that includes vertical planes (free fall) – and the other - that of projectile 

motion4. In the analysis of both these types of motion, proportionals and mean proportionals play 
an important role. In particular, mean proportionals are of great significance since they are 

directly related to relative times of motion. Therefore, it is important to understand clearly, the 

concept, the definition, their representation and use of mean proportionals to follow Galileo’s 

analysis of uniformly accelerated motion. 
 

We discuss in this article, the above mentioned attributes of mean proportionals through their 

geometric representation. We also illustrate their use by giving, two examples: one for motion on 
inclined planes and one for projectile motion. These examples highlight the role played by mean 

proportionals in appreciating Galileo’s conceptual framework of time and motion. We hope this 

article would be useful to general reader, senior high school, college students, teachers and 
researchers studying Galileo’s works.  

 

Definition and geometric representation of mean proportionals 
 

If quantities a, b, c are related such that  
 

 
 

then, by definition, b is said to be the mean proportional between a and c. 

From the above definition, it follows that 
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From equation (2) it is evident that, finding mean proportional involves taking square root of the 

product of two quantities1. It is same as finding the side of a square having equal area as that of a 

reactance of given sides. 

 

 
 
Finding mean proportionals using geometric method is much simpler than using other methods1,2. 

It also gives a feel for the concept and offers a visual display of the quantity. We give this method 

below. 
 

Let a line segment LM be divided by a point N lying between L and M (internal division), into 

two parts in an arbitrarily chosen ratio, a : c (see Fig. 1). Draw a semicircle with LM as diameter.  
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Draw a perpendicular NP to LM at N to meet the semicircle at P. NP (= b) gives the square root 
of the product of a and c. Therefore, b is the mean proportional of a and c. 

 

Proof: Join LP and MP. Right triangles LPN, PMN and LMP are similar. Therefore, their sides 

are proportional and give, 

 

 
 

 
 

 

 
 
The corresponding case for external division was recently discussed by the author7. 

 

Relative times, distances and mean proportional 
 

To highlight the importance of the mean proportionals we quote from Galileo’s ‘The two New 

Sciences’8, the following. 
 

“… starting from any initial point, if we take any two distances, travelled in any time intervals 

whatsoever, these time intervals bear to one another the same ratio as one of the distances to the 

mean proportional of the two distances.”  
 

We elucidate the above by using a diagram (Fig. 4). Let LN, LM be two distances measured from 

the initial point L. Let the mean proportional of LN and LM be LP. Then starting from rest, the 
time of fall with uniform acceleration through the distance LN is to the time of fall through the 

distance LM is as LN is to LP. Equally valid is the statement that the time of free fall through the 

distance LM is to the time of free fall through the distance LN is as LM is to LP.  
 

Since the times of fall and the respective distances are related as tLN : tLP = LN : LM, it becomes 

very important for us to understand how to locate the position of the point P on LM.  
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This task of locating P on LM, that is, obtaining the mean proportional of LN and LM, becomes 
very easy by the geometrical method given by Galileo9. 

 

If the body falls through the distance LN in a time tLN, then LP gives the time of fall (tLM) through 
the distance LM. That is, the distances of fall and the times of fall are related as tLN : tLM = LN : 

LP. Since this is the crucial concept that is to be understood, we elaborate this further. 

 

If the body falls through the distance LN in unit time, then it falls through the distance LM in LP 
units of time. On the other hand, if the body falls through the distance LM in unit time, then it 

falls through the distance LN in LP units of time. 

 
Similarly, if the body falls through the distance MN in unit time, then it falls through the distance 

ML in MP (the mean proportional of MN and ML) units of time. On the other hand, if the body 

falls through the distance ML in unit time, then it falls through the distance MN in MP units of 

time. 

 

Applications of mean proportional in Galileo’s concept of time and motion 
 

Application 1: Motion on inclined plane. The times of descent along two inclined planes of the 

same length but different inclinations5. 

 
From a single point, L, draw inclined planes LK and LJ having the same length but different 

inclinations (see Fig. 5). Draw the vertical through L and horizontals through K and J. Let the 

horizontals through K and J meet the vertical at N and M respectively. LN represents the height 

of the plane LK and LM represents the height of the plane LJ. Let LP be the mean proportional of 
LN and LM. Then, the ratio of LM to LP is equal to the ratio of LM to LN. 
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Now, the proposition7 says, the ratio of times of descent along LK and LJ is equal to the square 

root of the inverse ratio of the heights LN to LM, so that the time of descent along LK is related 

to the height LM of the other plane LJ, as the time of descent along LJ is related to the height LN 
of the other plane LK. We must prove that the time of descent along LK is to that along LJ as the 

square root of the inverse ratio of LN to LM. 

 

Proof 

 

Draw PS parallel to MJ. We know that the time of fall along LK is to that along the 

vertical LN is as the length LK is to the height LN.  We also know that time of fall along 

LN is that along LM is as LN is to LP. Similarly, the time of fall along LM is to that 

along LJ is as the length LM is to LJ or as LP is to LS. Therefore, it follows that the time 

along LK is to that along LJ is as LK is to LS or LJ is to LS. However, LJ is to LS is as 

LM is to LP.  

 

 
 

  

 

 
 

 
 

 
 
From equations (7) and (8) we get 
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Therefore, it follows that the times of fall along two inclined planes of equal length are 

proportional to the square root of the inverse ratio of their heights. 

 

Application 2: Projectile motion6, 

 
Given a parabola in the vertical plane, find out the point on the axis extended upwards, from 

which a particle must be dropped, so that when reflected at the apex to move along the horizontal, 

traces the parabola. 

 
We note that, when the particle on reaching the apex is reflected by an elastic collision with a 

mirror located at the apex at an angle of 450 to the horizontal. There afterwards, it moves with a 

constant speed (acquired in falling to the apex) along the horizontal and uniformly accelerated 
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along the vertical. The composition of these two independent motions gives the parabolic motion. 
 

Proof 

 

Let PJ be the given semi parabola in the vertical plane (see Fig. 6). Let JM be its amplitude and 
LM its axis extended. The problem is to find the location of the point L, from which the particle 

is to be dropped to trace the given parabola.  

 
Draw the horizontal through the apex P. Mark N such that NP is equal to PM. Join NJ. It is also 

the tangent to the parabola at J. Let it cut the horizontal through P at S. Locate L such that PS is 

the mean proportional between LN and NM. L gives the point we are seeking.  
 

We give a geometric method that gives the location of L. 

 

Geometric Method to obtain the point of start from rest 
 
Semi parabola through PJ is given (see Fig. 7). Draw the horizontal PS and the vertical MP (axis) 

through P. Draw the horizontal JM and, the tangent at J, to the parabola. Let the horizontal 

through P and the tangent intersect at S. Join SM. Draw perpendicular to SM at S. Let it intersect 
the axis extended upwards, at L. L is the point that we are seeking. Draw a semi-circle through 

MSL. We can immediately recognize that PS is the mean proportional between MP and PL by 

comparing this figure to Fig. 2, confirming the result. 
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Before ending the discussion, we merely quote, but not discuss (since it does not directly involve 
time and motion) another very interesting result involving mean proportional10. It is this: 

 

The area of the circle is a mean proportional between any two regular and similar polygons of 

which one circumscribes it and the other is isoperimetric with it (the circle). In addition, the area 
of the circle is less than that of any circumscribed polygon and greater than that of any 

isoperimetric polygon. And further, of these circumscribed polygons, the one which has the 

greater number of sides is smaller than the one which has a less number of sides, but on the other 
hand, that isoperimetric polygon which has the greater number of sides is the larger. 
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