Natural Numbers and their Square Roots expressed by constant Phi and 1

\author{

- Harry K. Hahn -
}

Germany
22. June 2019

Abstract:

All natural numbers ($1,2,3, \ldots$.) can be calculated only by using constant Phi (φ) and 1.
I have found a way to express all natural numbers and their square roots with simple algebraic terms, which are only based on $\operatorname{Phi}(\varphi)$ and 1. Further I have found a rule to calculate all natural numbers >10 and their square roots with the help of a general algebraic term. The constant $\mathrm{Pi}(\pi)$ can also be expressed only by using the constant φ and 1 !

Introduction :

The asymptotic ratio of successive Fibonacci numbers leads to the golden ratio constant $\boldsymbol{\varphi}$ (or Φ)

Fibonacci Sequences describe morphological patterns in a wide range of living organisms. This is one of the most remarkable organizing principles mathematically describing natural phenomena.

The Fibonacci Numbers
The constant φ is the positive solution of the following quadratic equation:

$$
\begin{aligned}
& x+1=x^{2} \\
& \rightarrow \quad \varphi=\frac{1+\sqrt{ }(5)}{2}=1.618034 \ldots
\end{aligned}
$$

defined by $\boldsymbol{\varphi}$:

$1 / 1$	$=1$		
$2 / 1$	$=2$		
$3 / 2$	$=1.5$		
$5 / 3$	$=1.667$		
$8 / 5$	$=1.6$		
$13 / 8$	$=1.625$		
$21 / 13$	$=1.615$		
$34 / 21$	$=1.619$	$\boldsymbol{\varphi}$	
$55 / 34$	$=1.618$		

 \(2 / 1=2\)
 \(3 / 2=1.5\)
 \(5 / 3=1.667\)
 \(8 / 5=1.6\)
 \(13 / 8=1.625\)
 \(21 / 13=1.615\)
 \(34 / 21=1.619\)
 φ

Because the value of constant φ is close to the square root of $\mathbf{2}$ and the square root of $\mathbf{3}$, I have drawn φ into the start section of the Square Root Spiral in order to find a way to calculate the short cathetus \mathbf{u} of the right triangle φ, square root of $\mathbf{2}$ and \mathbf{u}, and to see which relation the cathetus \mathbf{u} has to the other triangles of the Square Root Spiral :

The start of the Square Root Spiral is shown with the constant φ drawn in :

Now I calculated the numerical value of chatetus \mathbf{u} with the help of the Pythagorean Theorem :

From the right triangle φ, square root of $\mathbf{2} \& \mathbf{u}$ follows :
$\varphi^{2}=(\sqrt{2})^{2}+u^{2} \quad ;$ application of the Pythagorean Theorem

$$
\rightarrow \mathbf{u}=\sqrt{\varphi^{2}-2}=0,786151377 \ldots . . \quad ; \text { we can calculate this value of } \mathbf{u} \text { with the calculator }
$$

But because this numerical value doesn't say much, I did some research in the internet with Google, and I actually found an algebraic term which obviously has the same numerical value!

This is the following term :
$\frac{\sqrt{2 \sqrt{5}-2}}{2}=0,786151377 \ldots=u$
This value is shown in equation 4.10. on page 11 of the following study:

Title of this study : „PHASE SPACES IN SPECIAL RELATIVITY : TOWARDS ELIMINATING GRAVITATIONALSINGULARITIES" by Peter Danenhower - weblink : https://arxiv.org/pdf/0706.2043.pdf

Also read this study ! : The Black Hole in M87 (EHT2017) may provide evidence for a Poincare Dodecahedral Space Universe

With the help of the found algebraic term I carried out the following algebraic calculations :

$$
\begin{aligned}
& \sqrt{\varphi^{2}-2}=\frac{\sqrt{2 \sqrt{5}-2}}{2} ; \text { I equated the two algebraic terms which obviously represent the same constant ! } \\
& \rightarrow 4 \varphi^{2}-8=2 \sqrt{5}-2 ; \text { I squared both sides and transformed }
\end{aligned}
$$

$$
\begin{array}{ll}
\varphi^{2}=\frac{\sqrt{5}+3}{2} ; & \text { (1) } \quad \text { I solved for } \varphi^{2} \\
\sqrt{5}=2 \varphi^{2}-3 & ; \quad \text { (2) } \quad \text { I solved for } \sqrt{5}
\end{array}
$$

Now I went back to the Square Root Spiral and used the following right triangle :

$$
\begin{aligned}
(\sqrt{6})^{2} & =(\sqrt{5})^{2}+1^{2} \\
6 & =\left(2 \varphi^{2}-3\right)^{2}+1 \quad ; \quad \text { application of the Pythagorean theorem } \\
\rightarrow \quad 3 & =\frac{\varphi^{4}+1}{\varphi^{2}}(3) \quad \rightarrow \quad \sqrt{3}=\sqrt{\frac{\varphi^{4}+1}{\varphi^{2}}} \quad(4) \quad ; \text { replaced } \sqrt{5} \text { by equation (2) and transformed root } 3 \text { expressed by } \varphi \text { and } 1!
\end{aligned}
$$

Now I used the following right triangle :

$$
\begin{align*}
&(\sqrt{3})^{2}=(\sqrt{2})^{2}+1^{2} \quad ; \text { application of the Pythagorean theorem and inserting equation (3) } \\
& \rightarrow \quad 2=\frac{\varphi^{4}+1}{\varphi^{2}}-1 \quad \rightarrow \quad 2=\frac{\varphi^{4}-\varphi^{2}+1}{\varphi^{2}} \quad(5) \text { and } \sqrt{2}=\sqrt{\frac{\varphi^{4}-\varphi^{2}+1}{\varphi^{2}}} \tag{6}
\end{align*}
$$

Then I inserted equation (3) in equation (2):

$$
\begin{equation*}
\rightarrow \quad \sqrt{5}=2 \varphi^{2}-\frac{\varphi^{4}+1}{\varphi^{2}} \rightarrow \sqrt{5}=\frac{\varphi^{4}-1}{\varphi^{2}} ;(7.0) \quad \rightarrow \quad 5=\left(\frac{\varphi^{4}-1}{\varphi^{2}}\right)^{2} \tag{7.1}
\end{equation*}
$$

And I used the following right triangle :

$$
\begin{align*}
& (\sqrt{6})^{2}=(\sqrt{5})^{2}+1^{2} \\
\rightarrow & ; \text { application of the Pythagorean theorem and inserting equation (7.1) } \tag{9}\\
\rightarrow & 6=\left(\frac{\varphi^{4}-1}{\varphi^{2}}\right)^{2}+1 \quad \rightarrow \quad 6=\frac{\varphi^{8}-\varphi^{4}+1}{\varphi^{4}} \quad(8) \text { and } \sqrt{6}=\sqrt{\frac{\varphi^{8}-\varphi^{4}+1}{\varphi^{4}}}
\end{align*}
$$

I continued and used the following right triangles of the Square Root Spiral (SRS) to calculate the next square roots :

$$
\begin{align*}
(\sqrt{7})^{2} & =(\sqrt{6})^{2}+1^{2} \quad ; \text { application of the Pythagorean theorem and inserting equation (8) } \\
\rightarrow \quad 7 & =\frac{\varphi^{8}+1}{\varphi^{4}}(10) \quad \rightarrow \quad \sqrt{7}=\sqrt{\frac{\varphi^{8}+1}{\varphi^{4}}} \quad \text { (11) } \tag{11}
\end{align*}
$$

In the same way I calculated the following square roots and natural numbers with the next right triangles of the SRS :

$$
\begin{align*}
& \rightarrow \quad 8=\frac{\varphi^{8}+\varphi^{4}+1}{\varphi^{4}} \text { (12) and } \sqrt{8}=\sqrt{\frac{\varphi^{8}+\varphi^{4}+1}{\varphi^{4}}} \tag{13}\\
& \rightarrow \quad 10=\frac{\varphi^{8}+3 \varphi^{4}+1}{\varphi^{4}}(14) \text { and } \sqrt{10}=\sqrt{\frac{\varphi^{8}+3 \varphi^{4}+1}{\varphi^{4}}} \tag{15}\\
& \rightarrow \quad 11=\frac{\varphi^{8}+4 \varphi^{4}+1}{\varphi^{4}}(16) \text { and } \sqrt{11}=\sqrt{\frac{\varphi^{8}+4 \varphi^{4}+1}{\varphi^{4}}} \tag{17}\\
& \rightarrow \quad 12=\frac{\varphi^{8}+5 \varphi^{4}+1}{\varphi^{4}}(18) \text { and } \sqrt{12}=\sqrt{\frac{\varphi^{8}+5 \varphi^{4}+1}{\varphi^{4}}} \tag{19}
\end{align*}
$$

From the above shown formulas (equations 12 to 19), I realized a general rule for all Natural Numbers >10:

$$
\begin{equation*}
\rightarrow \underset{\text { For } n \rightarrow \infty}{(10+n)}=\frac{\varphi^{8}+(3+n) \varphi^{4}+1}{\varphi^{4}}(20) \text { and } \sqrt{(10+n)}=\sqrt{\frac{\varphi^{8}+(3+n) \varphi^{4}+1}{\varphi^{4}}} \tag{30}
\end{equation*}
$$

with $n \in N=\{0,1,2,3,4, \ldots\}$

Note : \rightarrow The expression (3+n) in the rule can be replaced by products and/or sums, of the equations (3) to (13) and number 1 , in order to have final expressions only based on φ and 1 !

With these general equations (20) and (30) all natural numbers and their square roots can be expressed by only using constant φ and 1 !

The constant $\mathrm{Pi}(\pi)$ can also be expressed by only using the constant φ and $1!:$

I use Viete's formula from the year 1593: $\quad \rightarrow$ It is also possible to derive from Viète's formula a related formula for π that involves nested square roots of two, but uses only one multiplication :

$$
\pi=\frac{2}{\sqrt{2}} \frac{2}{\sqrt{2+\sqrt{2}}} \frac{2}{\sqrt{2+\sqrt{2+\sqrt{2}}}} \cdots
$$

$$
\pi=\lim _{k \rightarrow \infty} 2^{k} \underbrace{\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\cdots+\sqrt{2}}}}}}}_{k \text { square roots }}
$$

I replace the number $\mathbf{2}$ in the above shown formulas by the found equation (5) where number $\mathbf{2}$ can be expressed by constant $\boldsymbol{\varphi}$ and $\mathbf{1}$. Then the constant $\mathbf{P i}(\boldsymbol{\pi})$ can be expressed by only using the constant $\boldsymbol{\varphi}$ and $\mathbf{1}$!

I replaced Number 2 in the above shown formula on the righthand side, with equation (5) :

$$
\begin{equation*}
\pi=\lim _{k \rightarrow \infty}\left[\frac{\varphi^{4}-\varphi^{2}+1}{\varphi^{2}}\right] \sqrt{k} \underbrace{\frac{\varphi^{4}-\varphi^{2}+1}{\varphi^{2}}-\sqrt{\frac{\varphi^{4}-\varphi^{2}+1}{\varphi^{2}}+\sqrt{\frac{\varphi^{4}-\varphi^{2}+1}{\varphi^{2}}+\cdots+\sqrt{\frac{\varphi^{4}-\varphi^{2}+1}{\varphi^{2}}}}}}_{k \text { square roots }} \tag{40}
\end{equation*}
$$

It seems that the irrationality of $\mathrm{Pi}(\pi)$ is fundamentally based on the constant φ and 1 , in the same way as the irrationality of all irrational square roots, and all natural numbers seems to be based on constant φ \& 1 !

This is an interesting discovery because it allows to describe many basic geometrical objects like the Platonic Solids only with $\varphi \& 1$!

Constant φ and Number 1 (the base unit) may represent something like fundamental „space structure constants" !

References:

Phase spaces in Special Relativity : Towards eliminating gravitational singularities - by Peter Danenhower see weblink: https://arxiv.org/pdf/0706.2043.pdf

further interesting References to the subject :

The Black Hole in M87 (EHT2017) may provide evidence for a Poincare Dodecahedral Space Universe - by Harry K. Hahn https://archive.org/details/TheBlackHolelnM87EHT2017MayProvideEvidenceForAPoincareDodecahedralSpaceUniverse/page/n1

The Ordered Distribution of Natural Numbers on the Square Root Spiral - by Harry K. Hahn http://front.math.ucdavis.edu/0712.2184 PDF: http://arxiv.org/pdf/0712.2184

The Distribution of Prime Numbers on the Square Root Spiral - by Harry K. Hahn http://front.math.ucdavis.edu/0801.1441 PDF : http://arxiv.org/pdf/0801.1441

The golden ratio Phi (φ) in Platonic Solids: http://www.sacred-geometry.es/?q=en/content/phi-sacred-solids

Number Theory as the Ultimate Physical Theory - by I. V. Volovich / Steklov Mathematical Institute Study : http://cdsweb.cern.ch/record/179558/files/198708102.pdf

Letters of Albert Einstein, including his letter to natural constants from 13th October 1945 (in german language) http://docplayer.org/69639849-Ilse-rosenthal-schneider-begegnungen-mit-einstein-von-laue-und-planck.html description of the book contents in english : http://blog.alexander-unzicker.com/?p=27

