The Ordered Distribution of Natural Numbers on the Square Root Spiral

- Hary K. Hahn -

Germany mathematical a nalysis by

- Kay Schoenberger -

Humboldt-University
Berlin

20. J une 2007

Abstract

: Natural numbers divisible by the same prime factor lie on defined spiral graphs which are running through the "Square Root Spiral" (also named as "Spiral of Theodorus" or "Wurzel Spirale" or "Einstein Spiral"). Prime Numbers also clearly accumulate on such spiral graphs. And the square numbers $4,9,16,25,36 \ldots$ form a highly three-symmetrical system of three spiral graphs, which divide the square-root-spiral into three equal areas. A mathematical a nalysis shows that these spiral graphs are defined by quadratic polynomials. The Square Root Spiral is a geometrical structure which is based on the three basic constants: 1 , sqit2 and π (pi) , a nd the continuous application of the Pytha gorean Theorem of the right angled triangle. Fibonacci number sequences also play a part in the structure of the Square Root Spiral. Fibonacci Numbers divide the Square Root Spiral into areas and angle sectors with constant proportions. These proportions are linked to the "golden mean" (golden section), which behaves as a self-avoiding-walkconstant in the lattice-like structure of the square root spiral.

Contents of the general section
1 Introduction to the Square Root Spiral 2
2 Mathematical desc ription of the Square Root Spiral 4
3 The distribution of the square numbers $4,9,16,25,36, \ldots$ on the Square Root Spiral 6
3.1 Listing of important properties of the three spiral graphs containing the square numbers 6
4 The distribution of natural numbers divisible by the prime factors $2,3,5,7,11,13,17, \ldots$ 9
4.1 The distribution of natural numbers divisible by the prime factor 11 9
4.11 Properties of the spiral graph systems containing the numbers divisible by 11 10
4.12 Calculation of the quadratic polynomial belonging to an exemplary spiral arm of the N 1 -system 10
4.2 The distribution of natural numbers divisible by the prime factor 7 11
4.21 Properties of the spiral graph systems containing the numbers divisible by 7 11
4.3 The distribution of natural numbers divisible by the prime factors 13 and 17 (diagrams only) 12
4.4 The distribution of natural numbers divisible by the prime factors $2,3,5,13$ and 17 13
5 What causes the decsnibed Spiral Graph Systems? 14
5.1 Overall view of the distribution of the natural numbers on the Square Root Spiral 14
5.2 The general rule which determines the existence of the described Spiral Graph Systems 15
5.3 Listing of differences of the number of Spiral Graph Systems with an opposite 15
rotation direction per numbergroup
6 The distribution of Prime Numbers on the Square Root Spiral 16
7 The distribution of Fibonacci Numbers on the square root spiral 17
8 Final comment / References 19/20
Contents of the mathematical section
$1 \quad$ The Correlation to π 21
2 The Spiral Arms 24
3 Area Equality 28
Appendix: FIG.15/16/17 Tables 1 / 2 / 3-A / 3-B 30

General Section

1 Introduction to the Square Root Spiral :

The Square Root Spiral (or "Wheel of Theodorus" or "Einstein Spiral" or "Wurzel Spirale") is a very interesting geometrical structure, in which the square roots of all natural numbers have a clear defined spatial orientation to each other. This enables the attentive viewer to find many interdependencies between natural numbers, by applying graphical analysis techniques. Therefore, the square root spiral should be an important research object for all professionals working in the field of numbertheory !

Here is a first impressive image of the Square Root Spiral :
HG. 1:

The most amazing property of the square root spiral is surely the fact that the distance between two suc cessive winds of the Square Root Spiral quickly strives for the well known geometrical constant π !! Mathematical proof that this statement is corect is shown in Chapter 1 " The corelation with π " in the mathematic al section.
\rightarrow Table 1 in the Appendix shows an approximate analysis of the development of the distance between two successive winds of the Square Root Spiral (or Einste in Spiral). In principle this analysis uses the length difference of two " square root rays" which differ by nearly exactly one wind of the square root spiral to each other.
(see example on FG. 1: sqit 79-sqit 33 = 3.1436...)
Another striking property of the Square Root Spiral is the fact, that the square roots of all square numbers ($4,9,16,25,36 \ldots$) lie on 3 highly symmetric al spiral graphs which divide the square root spiral into three equal areas (see FIG.1 : graphs Q1, Q2 and Q3 drawn in green). For these three graphs the following rules apply:
1.) The angle between successive Square Numbers (on the "Einstein Spiral") is striving for 360% for sqit(X$) \rightarrow \infty$
2.) The angle between the Square Numbers on two successive winds of the "Einstein Spiral" is striving for $360^{\circ}-3 \times\left(360^{\circ} / \pi\right)$ forsqit($\left.X\right) \rightarrow \infty$

Proof that these propositions a re correct shows Chapter 2 " The Spiral Arms" in the mathematical section.

The Square Root Spiral develops from a right angled base triangle (P1) with the two legs (cathets) having the length 1, and with the long side (hypotenuse) having a length which is equal to the square root of 2 .
\rightarrow see FG. 2 and 4
The square root spiral is formed by further adding right angled triangles to the base triangle P1 (see FIG 4) In this process the longer legs of the next triangles always attach to the hypotenuses of the previous triangles. And the longer leg of the next triangle always has the same length as the hypotenuse of the previous triangle, and the shorter leg always has the length 1.
In this way a spiral structure is developing in which the spiral is created by the shorter legs of the triangles which have the constant length of 1 and where the lengths of the radial rays (or spokes) coming from the centre of this spiral are the square roots of the natural numbers (sqit 2 , sqit 3 , sqit 4 , sqit $5 \ldots$.).

\rightarrow see FG. 1 and 4

The special property of this infinite chain of tria ngles is the fact that all triangles are also linked through the Pythagorean Theorem of the right angled triangle. This means that there is also a logical relationship between the imaginary square areas which can be linked up with the cathets and hypotenuses of this infinite chain of tria ngles (\rightarrow all square areas are multiples of the base area 1 , and these square areas represent the natural numbers $\mathrm{N}=1,2,3,4, \ldots ..) \rightarrow$ see RG. 2 and 3. This is an important property of the Square Root Spiral, which might tum out someday to be a "golden key" to numbertheory!

FIG. 1 shows the further development of the square root spiral or "Einstein Spiral" if one rectangular triangle after the other is added to the growing chain of triangles as described in FIG. 4.

For my further analysis I have created a square root spiral consisting of nearly 300 precise constructed triangles. For this I used the CAD Software SolidWorks. The length of the hypotenuses of these triangles which represent the square roots from the natural numbers 1 to nearly 300 , has an accuracy of 8 places after the decimal point. Therefore, the precision of the square root spiral used for the further analysis can be considered to be very high. (a bare Square Root Spiral can be found in the Appendix \rightarrow see FIG. 17)
The lengths of the radial rays (or spokes) coming from the centre of the square root spiral represent the square roots of the natural numbers ($n=\{1,2,3,4, \ldots\}$) in reference to the length 1 of the c athets of the base triangle P1 (see FIG. 4). And the natural numbers themselves are imaginable by the areas of "imaginary squares", which stay vertically on these "square root rays". $\boldsymbol{\rightarrow}$ see FG. $\mathbf{5}$ (compare with FIG.3)

Square Root Spiral
(Einstein Spiral)
\rightarrow The "square rootrays" of the Einstein Spiral can simply be seen as a projection of these spatially arranged "imaginary square areas", shown in FIG. 5, onto a two-dimensional plane.

2 Mathematical description of the Square Root Spiral

Comparing the Square Root Spiral with different types of spirals (e.g. logarithmic-, hyperbolic-, parabolic- and Archimedes-Spirals), then the Square Root Spiral obviously seems to belong to the Archimedes Spirals.

An Archimedes Spiral is the curve (orgraph) of a point which moves with a constant angle velocity a round the centre of the coordinate system and at the same time with a constant radial velocity away from the centre. Orin otherwords, the radius of this spiral grows proportional to its rotary angle.

> constant angle velocity

Archimedes Spiral

In polarcoordinate style the definition of an Archimedes Spiral reads as follows:

$$
\mathrm{r}(\varphi)=a \varphi \quad \text { with } \quad a=\text { const. }=\frac{V_{R}}{\omega} \gg 0
$$

for $\quad \mathrm{r} \rightarrow \infty$ the Square Root Spiral is an Archimedes Spiral with the following definition :

$$
\begin{aligned}
& \mathrm{r}(\varphi)=a \varphi+b \\
& \text { with } \quad a=\text { const. and } \quad b=\text { const. }
\end{aligned}
$$

The values of the parameters a and b are

$$
\begin{aligned}
& a=\frac{1}{2} \quad \text { and } \quad b=-\frac{C_{2}}{2} \quad ; \quad \text { with } \quad c_{2}=\text { Square Root Spiral Constant } \\
& C_{2}=-2.157782996659 \ldots .
\end{aligned}
$$

Hence the following formula applies for the Square Root Spiral :

$$
r(\varphi)=\frac{1}{2} \varphi+1.078891498 \ldots . \quad \text { for } r \rightarrow \infty
$$

for $\mathrm{r} \rightarrow \infty$ therefore the growth of the radius of the Square Root Spiral after a full rotation is striving for π (corresponding to the angle of a full rotation which is 2π)

Note : The mathematical definitions shown on this page and on the following page can also be found either in the mathematical section of this paper, or in other studies refeming to the Square Root Spiral. \rightarrow e.g. a mathematical analysis of the Square Root Spiral is a vailable on the following website : http://kociemba.org/themen/spirale/spirale.htm
$\rightarrow \quad$ Also note that in the mathematical section of my paper (contributed by Mr Kay Schoenberger) t_{n} is used instead of φ_{n} and $\omega(k)$ instead of $\varphi(k)$

Furtherdependencies in the Square Root Spiral :

If φ_{n} is the angle of the \boldsymbol{n} th spiral segment (ortriangle) of the Square Root Spiral, then $\tan \left(\varphi_{n}\right)=\frac{1}{\sqrt{n}} ;\left(\right.$ ratio $\left.\frac{\text { countercathet }}{\text { cathet }}\right)$

If the \boldsymbol{n} th triangle is added to the Square Root Spiral the growth of the angle is

$$
\varphi_{n}=\arctan \left(\frac{1}{\sqrt{n}}\right) \quad ; \quad \text { Note }: \text { angle in radian }
$$

The total angle $\varphi(k)$ of a number of \mathbf{K} triangles is

$$
\begin{gathered}
\varphi(\mathrm{k})=\sum_{n=1}^{k} \varphi n \text { or described by an integral } \int_{0}^{k} \arctan \left(\frac{1}{\sqrt{n}}\right) d n+c_{1}(\mathrm{k}) \\
\Rightarrow \varphi(\mathrm{k})=2 \sqrt{k}+c_{2}(\mathrm{k}) \text { with } \lim _{k \rightarrow \infty} c_{2}(\mathrm{k})=\text { const. }=-2.157782996659 \ldots . \\
c_{2}=\text { Square Root Spiral Constant }
\end{gathered}
$$

The growth of the radius of the Square Root Spiral at a certain triangle n is

$$
\Delta \mathrm{r}=\sqrt{n+1}-\sqrt{n}
$$

The radius I of the Square Root Spiral (i.e. the big cathet of triangle \mathbf{K}) is

$$
\begin{aligned}
& r(k)=\sqrt{k} \quad \text { and by converting the above shown equation for } \varphi(k) \text { it applies that } \\
& r(k(\varphi))=r(\varphi)=\sqrt{\frac{1}{4}\left(\varphi-c_{2}(\varphi)\right)^{2}}=\frac{1}{2} \varphi-\frac{c_{2}}{2}
\end{aligned}
$$

Forlarge n it also appliesthat φn is approximately $\frac{1}{\sqrt{n}}$ and $\Delta \mathrm{r}$ has pretty well half of this value, that is $\frac{1}{2 \sqrt{n}}$, what can be proven with the help of a Taylor Sequence.

The square roots of the square numbers (1), $4,9,16,25,36,49, \ldots$ lie in 3 areas which are a rranged highly symmetrically around the center of the square root spiral.
Here the square numbers themselves can be represented by the mentioned imaginary square areas which stay vertically on the "square rootrays"
\rightarrow see RG. 6
And the square roots of the square numbers, which are the numbers $1,2,3,4$, $5,6, \ldots$ are the "square root rays" which form the base lines of these imaginary quadratic areas.
Only the square roots of the square numbers are whole numbers or natural numbers.
That's why the 3 -symmetrical distribution of these numbers on the square root spiral must have an important meaning !
Especially if we consider that the Square Root Spiral is precisely divided in 3 equal areas by the square numbers!

But it seems nobody has yet taken notice of
 this amazing fact and tried to explain it !!

The " square root rays" of the square numbers are arranged in a way that their outer ends lie on three spiral graphs (quadratic polynomials) asshown in FIG. $1 \quad(\rightarrow$ spiral graphsdrawn in green).

3.1 Listing of important properties of the three spiral graphs c ontaining the square numbers :

- The Square Numbers lie on $\mathbf{3}$ highly symmetric al spiral graphs with a positive rotation direction (drawn in green). \rightarrow see RG. $1 \rightarrow$ These 3 spiral-graphs are defined by the following:
3 Quadratic Polynomials: \quad Q1 $=9 x^{2}+6 x+1$

$$
Q 2=9 x^{2}+12 x+4
$$

$$
\text { Q3 }=9 x^{2}+18 x+9
$$

(\rightarrow see also Table 3-B at page 34 in the Appendix!)

- The $\mathbf{3}$ spiral graphs Q1- Q3 are a ranged in an angle of a round 120° to each other (refeming to the center of the Square Root Spiral)
- It applies: Q1 containsthe square number sequence $\mathbf{1 , 1 6 , 4 9 , 1 0 0 , 1 6 9 , . .}$
(the square roots of these numbers are : $1,4,7,10,13 \ldots \rightarrow$ difference $=3$)
Q2 containsthe square number sequence $4, \mathbf{2 5}, \mathbf{6 4}, \mathbf{1 2 1}, \mathbf{1 9 6}, \ldots$
(the square roots of these numbers are : $2,5,8,11,14, \ldots \rightarrow$ difference $=3$)
Q3 contains the square number sequence $\mathbf{9 , 3 6}, \mathbf{8 1}, \mathbf{1 4 4}, \mathbf{2 2 5}, \ldots$
(the square roots of these numbers are : $3,6,9,12,15, \ldots \rightarrow$ difference $=3$)
(\rightarrow in the $\mathbf{Q 3}$ - sequence all numbers are also divisible by $\mathbf{3 !}$)
\rightarrow RG. 15 at page 30 in the Appendix shows the exact geometry of spiral graph $\mathbf{Q 1}$:
- The angle between successive square numbers on the Square Root Spiral ("Einstein Spiral") is striving for $360 \% \pi$ forsqit(X$) \rightarrow \infty$
\rightarrow see RG. 1 / RG. 8 \& mathematical section)
- The angle between the square numbers on two successive winds of the Square Root Spiral ("Einstein Spiral") is striving for $360^{\circ}-3 x\left(360^{\circ} / \pi\right)$ forsqit($\left.X\right) \rightarrow \infty \quad \rightarrow$ see RG. $1 /$ RG. 8
- Calculating the differences of the consecutive square numbers lying on one of the three spiral a ms, and then further calculating the differences of these differences (\rightarrow " 2. Differential "), results in the constant value $\mathbf{1 8}$ for the three spiral graphs (quadratic polynomials) Q1- Q3. (\rightarrow see difference values in PG.1 beside the na mes of the spiral-graphsQ1-Q3)
- The $\mathbf{3}$ spiral graphs containing the square numbers divide the square root spiral exactly into 3 equal ares.

Proof that this proposition iscorrect can be found in Chapter3 "Area equality" in the mathematical section.

The following analysis can also be used as a first approximate proof that this proposition is correct :

First we calculate the areas which lie between the square roots of the square numbers.
\rightarrow see the first three such a reas on the square root spiral marked in green, yellow and red in FIG. 7

Then we always calculate the ratio of two such successive areas.
\rightarrow see calculation process shown below the image :
For $\sqrt{x} \rightarrow \infty$ the resulting ratio is striving for the value of $\mathbf{1}$ at infinity.

This first a p proximation indic ates that the square root spiral is precisely divided into $\mathbf{3}$ equal areas by the square numbers ! areas by the square numbers!

FG. 7 :
FIG. 7:

 \square

For the a ngles between the " square root rays" of the square numbers a similar approximation can be made asfor the areas. \rightarrow see RG. 1 and RG. 8 :

FG. 8 showsthe development of the angles between the "square root rays" of the square numbers.
The precisly measured anglesindicate the correctness of the two following statements:
1.) The angle between successive square numbers on the Square Root Spiral ("Einstein Spiral") is striving for 360% forsqit(X$) \rightarrow \infty$
2.) The angle between the square numbers on two successive winds of the Square Root Spiral ("Einstein Spiral") is striving for $360^{\circ}-3 x\left(360^{\circ} / \pi\right)$ for sqit($\left.X\right) \rightarrow \infty$

Proof that these propositions are correct is shown in Chapter 2 "The Spiral Ams" (\rightarrow mathematical section)
For further mathematic al analysis of the spiral-graphs Q1, Q2 and Q3 shown in FIG. 1, I included the exact geometry of the spiral graph Q1, which contains the square roots of the square numbers $1,16,49$, 100, 169,...

This graph together with accurate polarcoordinatescan be found in the Appendix \rightarrow see RG. 15
FG. 8 :

In comparison to the square numbers, which lie on three single spiral arms, which are symmetrically arranged around the center of the Square Root Spiral, all other natural numbers lie on "spiral graph systems" which consist of more than one spiral arm.
Here the natural numbers divisible by the prime factors $2,3,5,7,11$ lie on more than one of these mentioned "spiral graph systems" with either a positive rotation direction or a negative rotation direction respectively. Natural numbers divisible by the prime factor 13 lie on only one spiral graph system with a positive rotation direction, but on two spiral graph systems with a negative rotation direction. And all natural numbers divisible by prime factors ≥ 17 lie on only one spiral graph system with either a positiveora negative rotation direction.
The following image RG. $\mathbf{9}$ shows for example the distribution of the natural numbers divisible by $\mathbf{1 1}$ on the Square Root Spiral. Here all numbers divisible by 11 are marked in yellow.

4.1 The distribution of natural numbers divisible by the prime factor 11 :

As mentioned before,...If I am now talking about the a rangement of the numbers divisible by 11 on the Square Root Spiral, I am actually refeming to imaginary square areas, which stay vertical on certain radial rays of the square root spiral. The natural numbers divisible by 11 , are represented by these imaginary square areas (as explained in chapter 1). However in this analysis we only consider the projections of these imaginary square areas (= radial rays) onto a two-dimensional plane, for simplification.
From the image FG. 9 it is evident that the (square roots of the) natural numbers divisible by 11 (marked in yellow) lie on defined spiral graphs which have their starting point in or near the centre of the Square Root Spiral. These spiral graphshave either a positive or a negative rotation direction.
A spiral graph which has a clockwise rotation direction shall be called negative (N) and a spiral graph which hasa counterclockwise rotation direction shall be called positive (P).
The green spiral graphs show the three spiral-graphs which conta in the square numbers $4,9,16,25,36, \ldots$. which are drawn for reference only!

4.11 Properties of the spiral graph systems containing the numbers divisible by 11 :

- The numbers divisible by $\mathbf{1 1}$ lie on $\mathbf{2}$ spiral-graph-systems with a negative rotation direction (drawn in orange and pink) and on $\mathbf{2}$ spiral-graph-systems with a positive rotation direction (only one system drawn in light grey lines!). The $\mathbf{2}$ negative spiral graph systems are named N1 a nd N2 and the $\mathbf{2}$ positive systems are named $\mathbf{P 1}$ a nd $\mathbf{P 2}$ (only P1 is drawn!).
\rightarrow Note: Not all spiral arms of the described spiral-graph-systems are drawn!
- The spiral-graph-systems N1 and N2 aswell as P1 and P2 lie approximately point-symmetrical to each other (in reference to the centre of the square root spiral)
- Calculating the differences of the consecutive numbers lying on one of the drawn spiral arms, and then further calculating the differences of these differences(2. Differential), results in the constant value $\mathbf{2 2}$ for the positive as well as the negative rotating spiral-graphs.
\rightarrow see difference calculation for $\mathbf{3}$ exemplary spiral ams (one spiral a m per system) in FIG. 9 beside the names of the spiral-graph-systemsN1, N2 and P1. (\rightarrow P2-system not shown!)
These $\mathbf{3}$ exemplary spiral arms are defined by the following quadratic polynomials:

Quadratic Polynomials of exemplary spiral ams :

$11 x^{2}+22 x-11$	$=11\left(x^{2}+2 x-1\right)$	\rightarrow	belongsto N1-sy
$11 x^{2}+11 x-11$	$=11\left(x^{2}+x-1\right)$	\rightarrow	elongs to $\mathbf{N 2}$ - syste
11x ${ }^{2}-22 x+44$	$=11\left(x^{2}-2 x+4\right)$	\rightarrow	belongs to P1-system

\rightarrow The following example shows how to calculate these quadratic polynomials.

Calculation of the quadratic polynomial belonging to one exemplary spiral am of the N1-system :

Number sequence N_{1} : first difference :
second difference : third difference :

22, 77, 154, 253, ... (\rightarrow see number sequence beside the name of the N1-system)

Because the third differences are zero (and this yieldsa quadratic polynomial), we can use the short notation of the Newton Interpolation Polynomial to calculate the quadratic polynomial :

Here the following assignment is used :

with the short notation of the Newton Interpolation Polynomial we have the polynomial :

$$
\begin{aligned}
N(t) & =f_{1}+(t-1) f[1,2]+(t-1)(t-2) f[1,2,3] \\
& =f_{1}+(t-1)\left(f_{2}-f_{1}\right)+\frac{1}{2}(t-1)(t-2)\left(f_{1}-2 f_{2}+f_{3}\right)
\end{aligned}
$$

The generator polynomial for N_{1} is therefore :

$$
\begin{aligned}
N_{1}(t) & =22+(t-1)(77-22)+\frac{1}{2}(t-1)(t-2)(22-2 \cdot 77+154) \\
& =11\left(t^{2}+2 t-1\right)
\end{aligned}
$$

or in the general form of quadratic polynomials:

$$
f(x)=11\left(x^{2}+2 x-1\right)=11 x^{2}+22 x-11
$$

\rightarrow Refeming to the general quadratic polynomial $f(x)=\mathbf{a x} \mathbf{x}^{\mathbf{+}} \mathbf{b x}+\mathbf{c}$ the following rules apply for the quadratic polynomials, belonging to the shown spiral-graphs:

Rules forcoeffic ients \mathbf{a}, \mathbf{b} and $\mathbf{c}: \quad \mathbf{a} \rightarrow$ equivalent to the "2.Differential" divided by $\mathbf{2}$
(orsequence of coefficients) $\quad \mathbf{b} \rightarrow$ this coefficient (orsequence of coefficients) indic a tes the system of spiral-graphs it belongs to.
c \rightarrow describes the consecutive parallel distance of the spiral-graphs in the same system
\rightarrow Please refer to chapter 2 "The Spiral Arms" in the mathematic al section for a detailed mathematical explanation of the spiral arms (orspiral-graphs) shown in FG. 1/9/10/11/12

As a further example the following image FG. 10 shows the distribution of the natural numbers divisible by $\mathbf{7}$ on the square root spiral. Here all numbers divisible by $\mathbf{7}$ are marked in yellow.

4.21 Properties of the spiral graph systems containing the numbers divisible by 7 :

- The numbers divisible by $\mathbf{7}$ lie on $\mathbf{3}$ spiral-graph-systems with a negative rotation direction (drawn in orange, blue and pink) and on $\mathbf{3}$ spiral-graph-systems with a positive rotation direction (only one system dra wn in light grey lines!).
The $\mathbf{3}$ negative spiral graph systems are named $\mathbf{N} \mathbf{1}, \mathbf{N} \mathbf{2}$ a nd $\mathbf{N} \mathbf{3}$ a nd the $\mathbf{3}$ positive systems are named P1, P2 and P3 (only two spiral a ms of P1 are drawn!).
\rightarrow Note: Not all spiralarms of the described spiral-graph-systems are drawn!
- The spiral-graph-systems N1, N2 and N3 as well as P1, P2 and P3 are a rranged in an angle of around 120° to each other (in reference to the centre of the square root spiral), and they seem to refer to the three-symmetricala mangement of the $\mathbf{3}$ spiral-graphs of the square numbers $4,9,16,25,36,49, \ldots$ (drawn in green).
- Calculating the differences of the consecutive numbers lying on one of the drawn spiral arms, and then further calc ulating the differences of these differences(2. Differential), results in the constant value $\mathbf{2 1}$ forthe positive as well as the negative rotating spiral-graphs.
\rightarrow see difference calculation for 4 exemplary spiral ams (one spiral a m per system) in FIG. 10 beside the names of the spiral-graph-systems N1, N2, N3 and P1. (\rightarrow P2 \& P3-system not shown !) These $\mathbf{4}$ exemplary spiral arms are defined by the following quadratic polynomials:
Quadratic Polynomials of exemplary spiralams:

$$
\begin{array}{lll}
10.5 x^{2}+24.5 x+14 & \rightarrow & \text { belongs to } \mathbf{N} 1 \text { - system } \\
10.5 x^{2}+31.5 x+7 & \rightarrow & \text { belongs to } \mathbf{N} \mathbf{2} \text { - system } \\
10.5 x^{2}+38.5 x+21 & \rightarrow & \text { belongs to } \mathbf{N} \text { - } \text { - system } \\
10.5 x^{2}+10.5 x+28 & \rightarrow & \text { belongs to } \mathbf{P} 1 \text { - system }
\end{array}
$$

Natural numbers divisible by a certain prime factor are not distributed in a random way across the square root spiral! This is evident from FIG. 10 !
The arrangement of the natural numbers divisible by 7 is a good example which shows the highly symmetrical distribution of certa in number groups a cross the square root spiral in defined spiral systems. In this case it is a highly three-symmetrical distribution similar to the distribution of the square numbers contained in the three spiral-graphs Q1, Q2 and Q3 drawn in green!

4.3 The distribution of natural numbers divisible by the prime factors 13 and 17 :

The next two images show the analysis results regarding the distribution of the natural numbers which are divisible by the prime factors 13 and 17 : (\rightarrow only diagrams shown!)

RG. 12 :

4.4 The distribution of natural numbers divisible by the prime factors $2,3,5,13$ and 17 :

In the same way as shown in FIG. 9 and FIG. 10 for the natural numbers divisible by 11 or 7 , I have also ca mied out a detailed analysis for the numbers divisible by the prime factors $2,3,5,13$ and 17 .

These detailed a nalyses together with high resolution images of the spiral graph systems can be found in the arXiv - archive under my author name .
$\rightarrow \quad$ " The spiral graphs shown in FIG. 1 / 9 / 10 / 11 and 12 are caused by quadratic polynomials. In principle every quadratic polynomial causes a sequence of radii, which takes an archimedian spiral-like course, when marked on the Square Root Spiral!
And the spiral angle of this so-created spiral graph converges!"
This is essentially the conclusion of the mathematic al a nalysis.
\rightarrow explanation see mathematical section : Chapter 2 " The Spiral Arms"

The exact course of these quadratic polynomials is given by the structure of the Square Root Spiral.
To better understand the whole structure of the Square Root Spiral, the following graph can be used :
The " difference graph to the \mathbf{X}-axis" (\rightarrow see RG. 16 at page 30 in the Appendix,), shows that the length of the circumference of the Square Root Spiral actually increases by approximately 20 per wind of the spiral. \rightarrow see " 2. Differential " on FG. 16. The "difference graph to the X-axis" describes the difference of the increase of the circumference of the square root spiral to the number 20 per wind, in reference to the x-axis of the graph. This special graph, which represents the quadratic polynomial $f(x)=\mathbf{1 0 x} \mathbf{2} \mathbf{- 1 4 x + 6}$ can be used for a further analysis of the structure and the growth-behavior of the Square Root Spiral.

As already mentioned in the description of the highly three-symmetrical spiral graphs Q1, Q2 and Q3, which contain the square roots of the quadratic numbers, there must be a profound logic which govems the structure of the Square-Root-Spiral! And this logic is definitely not understood yet!

And as a proof for this assumption, I can show a general rule which govems the existence of the described spiral graph systems as shown in FIG 9 to 12 !
These spiral-graph-systems shall be called "Number-Group-Spiral-Systems" to indicate that these spiral graph systems represent certa in number groups (e.g. numbers divisible by $2,3,5,7,11,13,17, \ldots$)

Before I explain this rule, I want to emphasize that this rule highly depends on the value of the 2. Differential of the numbers lying on these spiral graphs as shown in the examples in FIG. 9 to 12

As described for the spiral graphs in FIG. 9 a nd FIG. 10, the " 2. Differential " of all spiral graphs is constant a nd it is equal for all spiral graphs (quadratic polynomials) with the same rotation direction.
The " 2 . Differential" can easily been calculated by calculating the differences of the consecutive numbers lying on one of the drawn spiral arms, and then further calc ulating the differences of these differences.
$\rightarrow \quad$ See example in FIG. 10 beside the name of the spiral-graph-sytem N1. In this example the differences of the numbers 182, 105, 49 and 14 on this spiral arm are 77,56 and 35 . And the differences of these numbers are all 21. So the 2 . Differential of this spiral-graph system is $\mathbf{2 1}$.

With the help of the Newton Interpolation Polynomial and the calculated first and second differences the quadratic polynomials belonging to these spiral graphscan then be calculated.

5.1 Overall view of the distribution of the natural numbers on the Square Root Spiral

Table 2 on page 32 in the Appendix shows the a nalysis results refering to the distribution of certain number groups on defined spiral-graph-systems on the "Square Root Spiral" (for example the distribution of the square numbers or the distribution of natural numbers divisible by the prime factor 11 etc.) It also shows the number sequences of exemplary spiral a ms of the found spiral-graph-systems.
(\rightarrow number sequences of one spiral a m perspiral-graph-system)

Table 3A \& 3B at page 33/34 in the Appendix shows the quadratic polynomials of the exemplary spiral a ms shown in Table 2.

This allows a first overall view of the quadratic polynomials, which define the spiral arms in the spiral-graph-systems shown in FIG. 9 to 12

5.2 The general rule which determines the existence of the described Spiral Graph Systems

\rightarrow There is an interdependency between the number of spiral-graph-systems with the same rotation direction, for a certa in number group (\rightarrow e.g. all numbers divisible by the prime factor 11) and the " 2. Differential" belonging to these spiral-graph-systems.

This interdependency can be expressed by the general formula shown in the head of the following table:
The table below clearly shows, that the discribed interdependency a pplies for all a nalysed number groups (numbers divisible by the prime factors $2,3,5,7,11,13$ and 17) :

prime factor of number group	X	number of spiral graph systems [with a negative (N) or a positive (\mathbf{P}) rotation direction]		=	"2. Differential "
2	X	10	(N)	=	20
2	X	9	(P)	=	18
3	X	7	(N)	=	21
3	X	6	(P)	=	18
5	X	4	(N or P)	$=$	20
7	X	3	(N or P)	=	21
11	X	2	(N or P)	$=$	22
13	X	2	(N)	$=$	26
13	X	1	(P)	=	13
17	X	1	(N or P)	$=$	17
19	X	1	(N or P)	$=$	19

($\mathrm{X}=$ multiplication symbol)
Beside this general rule which detemines the number of spiral-graph-systems, there is also a mathematic al explanation available, which describesthe character of single spiral-graphs.
\rightarrow see Mathematic al Section "The Spiral Arms ".

Further there are also some notable differences in the number of spiral-graph-systems with an opposite rotation direction per numbergroup :

5.3 Listing of differences of the number of spiral-graph-systems with an opposite rotation direction per number group :

- The natural numbers divisible by 5, 7, 11, $\mathbf{1 7}$ and $\mathbf{1 9}$ lie on the same number of spiral-graphsystems for the negative as well as for the positive rotation direction. This also seems to be the case for all natural numbers divisible by prime factors >19.
- The natural numbers divisible by 2,3 and $\mathbf{1 3}$ lie on a different number of spiral-graph-systems for the negative and the positive rotation direction (for example natural numbers divisible by the prime factor $\mathbf{3}$ lie on $\mathbf{7}$ spiral graph systems with a negative rotation direction and on $\mathbf{6}$ spiral graph systems with a positive rotation direction)
- The natural numbers divisible by $\mathbf{2 , 3 , 5 , 7}$ and $\mathbf{1 1}$ lie on more than one spiral graph system with either a positive rotation direction or a negative rotation direction.
- The natural numbers divisible by prime factors $\geq \mathbf{1 7}$ lie on only one spiral graph system for either the positive rotation direction or the negative rotation direction. (\rightarrow see example FIG.12)

Also interesting is the fact that the " 2 .Differential" of the spiral-graph-systems belonging to numbers divisible by a prime factor ≥ 17 is equal to the prime factoritself.
(e.g. natural numbers divisible by the prime factor 17 lie on one positive and one negative rotating spiral graph system with the constant number 17 as the " 2.Differential" of the graphs)

The distribution of the prime numbers on the square root spiral should interest every professional mathematician working in the field of numbertheory !!
Prime Numbers clearly accumulate on spiral graphs, which run through the square root spiral (Einstein Spiral), in a similar fashion as the square numbers, or natural numbers which are divisible by the same prime factors (as shown in FIG. 9 to 12).

And all these "Prime Number Spiral Graphs" represent quadratic polynomials with special coefficients.

Because I have described the distribution of prime numbers on the Square Root Spiral in more detail in a nother paper, I only want to show here one type of spiral-graph-system, which describes the distribution of the prime numbers on the Square Root Spiral.
It is probably the most impressive one. But there are other such systems existing with a different value of the " 2. Differential " !
My complete analysis of the Prime Number Spiral Graphs can be found on the arXiv-archive under my a uthor na me and the following title :

\rightarrow " The Ordered Distribution of Prime Numbers on the Square Root Spiral "

The following picture RG. 13 shows how the prime numbers are clearly distributed on defined spiral-graph systems which are a rranged in a highly symmetrical manner around the centre of the Square Root Spiral.
On the shown 3 Prime-Number-Spiral-Systems (PNS) P18-A, P18-C and P18-C , the prime numbers are located on pairs of spiral ams, which are separated by $\mathbf{3}$ numbers in between. And two spiral arms of one such pair of spiralarms, are separated by 1 number in between.

All spiral-graphs of the shown 3 Prime-Number-Spiral-Systems (PNS) have a positive rotation direction (\mathbf{P}) a nd the " 2. Differential " of all spiral-graphs is $\mathbf{1 8}$.
That's why the first part of the naming of the $\mathbf{3}$ Prime-Number-Spiral-Systems (PNS) is P18.
The $\mathbf{3}$ spiral-graph-systems \mathbf{A} (drawn in orange), \mathbf{B} (drawn in pink) and \mathbf{C} (drawn in blue) have further spiral arms. But for cleanty there are only around 10 spiral arms dra wn per system.
One striking property of all spiral arms is the nonexistence of numbers which are divisible by $\mathbf{2}$ or $\mathbf{3}$.

7

Before I give you an insight into the relationship between the Square Root Spiral and Fibonac ci Numbers, I want to invite you to read my detailed analysis about Fibonacci Numbers. This analysis contains some interesting facts and some new discoveries about Fibonac ci Numbers !!
I intend to file this a nalysis in the arXiv-archive under the following title :

\rightarrow "The mathematical origin of natural Fibonacci Sequences, and the periodic distribution of prime factors in these sequences."

Fibonacci number sequences seem to play an important role in the structure of the Square Root Spiral.
Fibonacci numbers divide the Square Root Spiral into areas whose proportions strive for a constant ratio for $\sqrt{\mathbf{x}} \rightarrow \infty$

And the ratio of the angles of two such successive areason the Square Root Spiral is striving for a constant number at infinity too! (\rightarrow see explanation below)

In both cases, this ratio is closely connected with the "golden mean" (or golden section, orgolden ratio)
The occurence of these ratios, indicates that there is a special relationship between the Square Root Spiral and the Fibonacci Sequences!

Ratio of the angles between consecutive Fibonacci Numbers \rightarrow Self-Avoiding-Walk-Constant "SAW-F1":

If we mark the square roots of the Fibonacci Numbers $1,2,3,5,8,13,21, \ldots$ on the Square Root Spiral and then mea sure the angles between the square roots of the numbers 1 and 2,2 and 3,3 and 5,5 and 8,8 and 13,13 and $21 \ldots$ and so on, then we will get the following angles as a result:
$\alpha_{1}=45^{\circ} ; \alpha_{2}=35,26^{\circ} ; \alpha_{3}=56,57^{\circ} ; \alpha_{4}=67,01^{\circ} ; \alpha_{5}=88,34^{\circ} ; \alpha_{6}=111,40^{\circ}$ etc.

FG. 14-A

Calculated angle ratios:

If we now calculate the ratios of suc cessive angles, as shown above, we get the following ratios as result : 0,784 ; 1,604; 1,185 : 1,318;1,261 etc
It is easy to see that this ratio is quickly a pproaching a constant number for $\sqrt{\mathrm{x}} \rightarrow \infty$
The square root spiral which I used formy analysis is precisely constructed up to sqrt293 and allows one to calculate this constant with the following accuracy:

$$
1,272242 \text { < SAW-F1 < 1,272507 }
$$

I call this constant "SAW-F1" which means "self-avoiding-walk constant " F1
(Here F1 stands for Fibonacci Sequence 1).

This consta nt is a lready known as " self-a voiding-wa lk-constant 1.272..."
\rightarrow see book : Mathematical Constants" from Steven R. Finch
There might still be a bit of inaccuracy left in the calculated range of $\mathbf{1 , 2 7 2 2 4 2}<\mathbf{S A W}$ - $\mathbf{F I}<\mathbf{1 , 2 7 2 5 0 7}$ for the angle ratio, because of inaccuracies in the sums of the angles, calculated by the CAD-System.
So the real value of this constant SAW-F1 could finally be slightly higher or lower.
It could tum out, that the true value of this constant SAW-F1 is 1.27201965... !
This number is the square root of the golden mean (golden section)!
\rightarrow The golden mean (golden section) : $\tau=1,61803399 \ldots$ and $\sqrt{\tau}=1.27201965 \ldots .$.
There is a good rea son that this could finally be the corect constant! \rightarrow see next paragraph

Ratio of the areas between consecutive Fibonacci Numbers \rightarrow Area-Ratio-Constant "ARC-F1" :

My reason for the above-mentioned assumption is the value of the constant for the proportions of the areas between the square roots of the Fibonacci Numbers. Because the proportions of the areas also strive for a constant which also seems to be linked to the "golden ratio"!
We mark again the square roots of the Fibonacci Numbers $1,2,3,5,8,13,21, \ldots$ on the square root spiral. Then we calculate the areasbetween these marked square roots (areas marked in red, green, blue etc.) And if we now calculate the ratios between successive marked areas as shown below, then we get the following ratios as a result: 1.4114, 2.6389, 1.9644, 2.1512, 2.055....

FIG. 14-B:

Calculated area ratios :

$\frac{\mathrm{A} 2}{\mathrm{~A} 1}$	$=1,41421$
$\frac{\mathrm{~A} 3+\mathrm{A} 4}{\mathrm{~A} 2}$	$=2,63896$
$\frac{\mathrm{~A} 5+\mathrm{A} 6+\mathrm{A} 7}{\mathrm{~A} 3+\mathrm{A} 4}$	$=1,96442$
$\frac{\mathrm{~A} 8+\mathrm{A} 9+\ldots+\mathrm{A} 11+\mathrm{A} 12}{\mathrm{~A} 5+\mathrm{A} 6+\mathrm{A} 7}$	$=2,15124$
$\frac{\mathrm{~A} 13+\mathrm{A} 14+\ldots+\mathrm{A} 19+\mathrm{A} 20}{\mathrm{~A} 8+\mathrm{A} 9+\ldots+\mathrm{A} 11+\mathrm{A} 12}$	$=2,05542$
I	

A5+A6+A7
$A 3+A 4=1,96442$

A8+A9+...+A11+A12

A5+A6+A7

The ratio between successive areas (as shown above) is striving for a constant number for

```
ARC-F1 = 2.05819 }\pm0.000
```

I call this constant "ARC-F1" which means "area ratio constant" -F1
(Here F1 aga in standsfor Fibonacci Sequence 1).
As mentioned before : This constant is closely related to the golden mean (golden section)!
With a high probability it is equal to $\tau \times \sqrt{\tau}=\mathbf{2 . 0 5 8 1 7 1} .$. with $\tau=1,61803399 .$. ($=$ golden mean)
There is an interesting study existing to this constant $\tau \times \sqrt{\tau}$ from MarkA. Reynolds, which has the following title: "The unknown Modulor the " 2.058 " Rectangle

This study can be downloaded from this weblink: http://www.springerlink.com/content/ w534664pmjx0/

8 Final comment / References

The square root spiral (or Einstein Spiral) shows the interdependencies between natural numbers in a visual way. Therefore, it can be considered to be a kind of visual representation of numbertheory !

Through pure graphical analysis of this a mazing structure, the higher logic of the (spatial) distribution of natural numbers (and special sub-groups like square numbers or prime numbers) comes to light and is very easy to grasp, because it is visible !!

That's why mathematicians who read this paper should continue my work and do a more extensive a nalysis of the square root spiral, by using a precise computer model of the square root spiral and by using more advanced analysis software and a nalysis techniques, in a similar way as I have !

I haven't found any scientific study which camied out a similar graphical analysis of the (spatial) distribution of natural numbers on the square root spiral as shown here in my study. This offers a great opportunity because there is a lot of unknown land to discover here! And I probably have only just reached the beach of this new land and made a first clumsy step!

In December 2005 and J une 2006 I sent this study (in CD-format) to a dozen universities in Germany for an assessment. But there wasn't much response! That's why I decided to publish my discoveries here.

Prof. S.J. Patterson from the University of Goettingen found my discoveries very interesting. Prof. S.J. Patterson was especially interested in the spiral graphs which contain the Prime Numbers. These spiral graphs are special quadratic polynomials, which are of great interest to Prime Number Theory. For example the quadratic polynomial B3 in FIG. 15-D $\rightarrow \mathrm{B} 3=\mathrm{F}(\mathrm{x})=9 \mathrm{x}^{2}+27 \mathrm{x}+17$ (or $9 \mathrm{x}^{2}+9 \mathrm{x}-1$) or the quadratic polynomial K5 in FIG. 15-F \rightarrow K5 $=F(x)=11 x^{2}+25 x+13$ (or $11 x^{2}+3 x-1$) \rightarrow see my study "The Ordered Distribution of Prime Numbers on the Square Root Spiral"

Prof. Emst Wilhelm Znk from the Humboldt-University in Berlin also found my study very interesting and he organized a mathematical analysis of the spiral-graphs shown in this study as well as an analysis of some propositions which are described in my study refeming to the Fibonacci Number Sequences. This mathematical analysis was camied out by Mr. Kay Schoenberger a student of mathematics on the Humboldt-University of Berlin. Mr. Kay Schoenberger is currently doing his mathematical dissertation.

On this occasion I want to thank Mr. Kay Schoenberger for the smart proof of my propositions and Prof. Emst Wilhelm Znk for his interest in my work, for all his help to organize the mathematical analysis, which considerably upgraded the value of this study, and for his support during the publication process.

References

In the following I have listed some literature and weblinks, which refer to other studies of the Square Root Spiral, except of the first reference, which is not related to the Square Root Spiral.
The first reference is a very interesting website which deals with a special "Number Spiral", which is related to the well known Ulam Spiral. Everyone who reads my analysis should definitely have a closer look to this website too, because many of the analysis results shown on this website are in connection with my findings!
(In comparison to the Square Root Spiral, the mentioned "Number Spiral" is just wound 3 times tighter!)
www.numberspiral.com $\quad \rightarrow \quad$ analysis of the (spatial) position of the natural numbers on a
special Number Spiral. On this Number Spiral all square numbers lie on one single straight graph, which is used asa reference.
http://koc iemba.org/themen/spirale/spirale.htm $\quad \rightarrow$ mathematical analysis of the Square Root Spiral (in geman language)

Constant of Theodorus (pdf-document)
Author: Steven Finch
April 9, 2005
weblink: http://algo.inria.fr/c solve/th.pdf

The Spiral of Theodorus
The Americ an Mathematical Monthly : 111 (2004) 230-237
Author: D. Gronau
MR2042127 (2005c:51022)

The spiral of Theodorus
Author: W. Gautsc hi
special functions, and numeric al a nalysis,
in Davis, op ci., pp. 67-87
MR1224447 (94e:00001)

Spirals: From Theodorus to Chaos
Author:P.J.Davis
A.K. Peters, Wellesley, 1993, pp. 7-11, 37-43, 220

MR1224447 (94e:00001)

Gleichverteilung und Quadratwurzelschnecke (uniform distribution and Square Root Spiral)
Author: E. Hla wka
Monatsh. Math. 89 (1980) 19-44; Engl. transl. In Davis, op cit., pp. 157-167;
MR05666292 (81h:10069)

The functional equation of the square root spiral
Author: Daniel S. Moak \& Blake Boursaw (joint paper)
Functional Equations and Inequalities, 111-117,c hapter in a book edited by Theistoc les Rassias(Athens, Greece), 2000
Kluwer Academic Publishers, the Netherlands
MR1792078 (2001k:39033)

Generalization of functional equation for the square root spiral
Author: Zhihua Wang; Xiaofeng Chen; Bing Xu
Applied mathematics and computation. 182, no. 2, (2007): 1355
New York, Elsevier (etc.)

Mathematical Section

1 The Comelation to π

In the following part I would like to discuss in detail two assertions made by Mr. Hahn in the brief description. He claims here that

- the distance between two successive winds of the Square Root spiral convergesto π,
- the angle between two successive integercathets converges to 2 .

Using relatively elementary methods, both assertions are proven below.

If t_{n} is the angle of the $n t h$ spiral segment (in radian), we get

$$
\tan \left(t_{n}\right)=\frac{1}{\sqrt{n}}
$$

(ratio of counter cathet/ancathet). From this it follows that

$$
t_{n}=\arctan \left(\frac{1}{\sqrt{n}}\right)
$$

and the angle $w(k)$ between the first and the $(k+1)$ th cathet is

$$
w(k)=\sum_{n=1}^{k} t_{n}
$$

As t_{n} represents a non increasing sequence which tends to zero, the integral approximation

$$
w(k)=\sum_{n=1}^{k} t_{n}=\int_{0}^{k} \arctan \left(\frac{1}{\sqrt{n}}\right) \mathrm{d} n+c_{1}(k)
$$

applies, whereby for the remainderterm $\quad \lim _{k \rightarrow \infty} c_{1}(k)=$ const. \quad is valid.

The integral can be solved and from this we get

$$
w(k)=-\arctan (\sqrt{k})+k \cdot \arctan \left(\frac{1}{\sqrt{k}}\right)+\sqrt{k}+c_{1}(k)
$$

Asfor $\mathrm{x}>0$ the equality $\arctan (x)=\frac{\pi}{2}-\arctan \left(\frac{1}{x}\right) \quad$ applies, we can also write

$$
w(k)=\arctan \left(\frac{1}{\sqrt{k}}\right)-\frac{\pi}{2}+k \cdot \arctan \left(\frac{1}{\sqrt{k}}\right)+\sqrt{k}+c_{1}(k)
$$

The next step is to represent k asa function of w. This certainly does not work directly but we can rely on the Taylor series

$$
\arctan (x)=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-+\ldots
$$

Then we get the following equality

$$
\arctan \left(\frac{1}{\sqrt{k}}\right)=\frac{1}{\sqrt{k}}+\mathcal{O}\left(\frac{1}{k \sqrt{k}}\right)
$$

Substitute:

$$
\begin{aligned}
w(k) & =\underbrace{\frac{1}{\sqrt{k}}+\mathcal{O}\left(\frac{1}{k \sqrt{k}}\right)}_{\rightarrow 0}-\frac{\pi}{2}+\frac{k}{\sqrt{k}}+\underbrace{\mathcal{O}\left(\frac{1}{\sqrt{k}}\right)}_{\rightarrow 0}+\sqrt{k}+c_{1}(k) \\
& =2 \sqrt{k}+c_{2}(k) \quad\left(\text { where } \lim _{k \rightarrow \infty} c_{2}(k)=\text { const. }\right) \\
k(w) & =\frac{1}{4}\left(w-c_{3}(w)\right)^{2} \quad\left(\text { where } \lim _{w \rightarrow \infty} c_{3}(w)=\text { const. }\right)
\end{aligned}
$$

Forthe radius r (i.e. the big cathet) we have $r(k)=\sqrt{k}$, thus

$$
r(k(w))=r(w)=\sqrt{\frac{1}{4}\left(w-c_{3}(w)\right)^{2}}=\frac{1}{2}\left(w-c_{3}(w)\right)
$$

The radius therefore is proportional to the angle (the Archimedean Spiral also has this property).
The distance $a(w)$ of the spiral ams is the difference of the radii after a full rotation, therefore

$$
\begin{aligned}
a(w) & =r(w+2 \pi)-r(w) \\
& =\frac{1}{2}\left(w+2 \pi-c_{3}(w+2 \pi)\right)-\frac{1}{2}\left(w-c_{3}(w)\right) \\
& =\pi-\underbrace{\frac{1}{2}\left(c_{3}(w+2 \pi)-c_{3}(w)\right)}_{\rightarrow 0}
\end{aligned}
$$

Hence we obtain:

$$
\lim _{w \rightarrow \infty} a(w)=\pi
$$

Accordingly for the angle $v(k)$ between the square numbers k^{2} and $(k+1)^{2}$ the following applies:

$$
\begin{aligned}
v(k) & =w\left((k+1)^{2}\right)-w\left(k^{2}\right) \\
& =2(k+1)+c_{2}\left((k+1)^{2}\right)-2 k-c_{2}\left(k^{2}\right) \\
& =2+\underbrace{c_{2}\left((k+1)^{2}\right)-c_{2}\left(k^{2}\right)}_{\rightarrow 0}
\end{aligned}
$$

The limit is therefore

$$
\lim _{k \rightarrow \infty} v(k)=2=\frac{2 \pi}{\pi} \equiv \frac{360^{\circ}}{\pi}
$$

This therefore corresponds exactly with Mr. Hahn's prediction.
I presume that by the not completely clearly defined angle between the integer cathets of two successive spiral arms Mr. Hahn probably means the angle between two radii whose length differs by exactly 3 . On account of $\pi \approx 3$, these form a very small angle (not paying attention to the full rotation in between).

From the above a nalysis it immediately follows that this converges to $2 \pi-6$ or

$$
360^{\circ}-3 \cdot \frac{360^{\circ}}{\pi}
$$

as described by Mr. Hahn.

2 The Spiral Arms

The pictures FIG. 1 and FIG. 9 to 12 show a graphical analysis of the Square Root Spiral ca ried out by Mr. Hahn.
In FIG. 1 Mr. Hahn marked all Square Numbers (green) and divided them into three groups, through which he draw three spiral shaped graphs(drawn in green lines).
He made a similar subdivision for other number groups in FIG. 9 to 12.
In FIG 9 for example he divided all numbers, which are divisible by 11, into two systems of spiral graphs (drawn in orange and pink).

From the previous part " The Correlation to π ", it follows that two Square Numbers k^{2} and $(k+3)^{2}$ enclose a smallangle $\approx 2 \pi-6$

Mr. Hahn therefore simply subdivides the set of integer radii into three equivalence classes, using the classes of $\mathbb{Z} / 3 \mathbb{Z}$.

The set of integer radii can also be partitioned using $\mathbb{Z} / n \mathbb{Z}$, where n is a natural number.
But this doesn't result in similar " nice " angles.

Because the angle behaves nearly propotional to the radius, we therefore always get similar spiral arms.

The spiral graphs which contain the numbers divisible by 11 can be analysed in the same way. Mr. Hahn obviously used the following procedure to construct these spiral graphs:

He started with a multiple of 11 and then located the closest successor number on the next wind of the Square Root Spiral. Coming from the center of the Square Root Spiral the closest successor number which is divisible by 11 would lie a bit on the right (for the N-class spiral ams), or a bit on the left (for the P-class spiral arms), on the next wind of the Square Root Spiral, in reference to the start number. Mr. Hahn connected these numbers with a graph.
By continuing this graph the further successor numbers can then be located.
The continuing of this graph is made in such a way that nearly a constant spiral angle is achieved. That there are always corresponding numbers divisible by 11 located on the Square Root Spiral, through which the graph can be continued, is explained below.

In this way a sequence of multiples of 11 is created, which all lie on a defined spiral arm. For example graph N_{1} drawn in FIG. 9 results in the following number sequence :

$$
N_{1}: 22,77,154,253, \ldots
$$

Mr. Hahn now sets up the following sequences of differences

Sequence $\mathrm{N}_{1}:$	22		77		154		253		\ldots
first difference :	55		77		99		\ldots		
second difference		22		22		\ldots			
sell									

and he noticed that all second differences are equal to 22 . And it is the same with the other sequences drawn in FIG. 9.
To explain this fact we go back to the following expression :

$$
k(w)=\frac{1}{4}\left(w-c_{3}(w)\right)^{2}
$$

(\rightarrow see part 1 " The Correlation to π ")

The numbers k are proortional to the square of the angle W . This means that N_{1} is probably the sequence of values of a quadratic polynomial at the natural numbers. The same holds for the other sequencesdrawn in FIG. 9 to 12.
A quadratic polynomial always defines a sequence, where the sequence of the sec ond differences is constant.

For the proof we need some preliminary explanation: given arguments $t_{1}, t_{2}, \ldots, t_{n}$ and values $f\left(t_{1}\right), \ldots, f\left(t_{n}\right)$ the Newton's divided differences are defined as follows:

$$
\begin{aligned}
f\left[t_{i_{1}}, t_{i_{2}}\right] & :=\frac{f\left(t_{i_{1}}\right)-f\left(t_{i_{2}}\right)}{t_{i_{1}}-t_{i_{2}}} \\
f\left[t_{i_{1}}, \ldots, t_{i_{k}}\right] & :=\frac{f\left[t_{i_{1}}, \ldots, t_{i_{k-1}}\right]-f\left[t_{i_{2}}, \ldots, t_{i_{k}}\right]}{t_{i_{1}}-t_{i_{k}}}
\end{aligned}
$$

With theirhelp the Newton interpolation polynomial

$$
\begin{aligned}
N(t):= & f\left(t_{1}\right)+\left(t-t_{1}\right) f\left[t_{1}, t_{2}\right]+\left(t-t_{1}\right)\left(t-t_{2}\right) f\left[t_{1}, t_{2}, t_{3}\right]+\ldots \\
& \ldots+\prod_{i=1}^{n-1}\left(t-t_{i}\right) f\left[t_{1}, \ldots, t_{n}\right]
\end{aligned}
$$

can be defined. This fulfils the interpolation conditions

$$
N\left(t_{i}\right)=f\left(t_{i}\right), \quad i=1, \ldots, n
$$

For the sequences given by Mr. Hahn, this yields sequence
first difference:
second difference:

$$
f(1)
$$

${ }_{f[1,2]}^{f(2)}{ }_{f[2,3]}^{f}$
$f(3)$
$f(4)$
$2 f[1,2,3] \quad 2 f[2,3,4] \quad \ldots$

The third differences are zero, so that the interpolation polynomial has no terms of third order (and this yieldsa quadratic polynomial). In general, equality of the n-th differences leads to a polynomial of degree n.

In ourcase we have with the short notation $f_{i}:=f\left(t_{i}\right)$ the polynomial

$$
\begin{aligned}
N(t) & =f_{1}+(t-1) f[1,2]+(t-1)(t-2) f[1,2,3] \\
& =f_{1}+(t-1)\left(f_{2}-f_{1}\right)+\frac{1}{2}(t-1)(t-2)\left(f_{1}-2 f_{2}+f_{3}\right)
\end{aligned}
$$

The generator polynomial for N_{1} is therefore

$$
\begin{aligned}
N_{1}(t) & =22+(t-1)(77-22)+\frac{1}{2}(t-1)(t-2)(22-2 \cdot 77+154) \\
& =11\left(t^{2}+2 t-1\right)
\end{aligned}
$$

The simila rity between difference and derivatives mentioned by Mr. Hahn is certa inly visible.

If $t_{1}, \ldots, t_{n} \in[a, b]$ are pairwise different, and if $f \in C^{n-1}([a, b])$, then according to a mean value theorem there exists a $\xi \in[a, b]$,
such that

$$
f\left[t_{1}, \ldots, t_{n}\right]=\frac{1}{(n-1)!} \cdot f^{(n-1)}(\xi)
$$

A motivation that Mr. Hahn's considered curves N_{i} and P are close to archimedian spirals?

Forthis we consider a quadratic polynomial.

$$
p(t)=a t^{2}+b t+c
$$

For the corresponding angle $w(t):=w(p(t))$ on the root spiral we have

$$
w(t)=2 \sqrt{a t^{2}+b t+c}+c_{2}(p(t))
$$

Now we consider the angle $v(t):=w(t+1)-w(t)$ between the radii of two successive sequence terms. For the limit we get the following.

$$
\begin{aligned}
\lim _{t \rightarrow \infty} v(t) & =\lim _{t \rightarrow \infty}[2 \sqrt{p(t+1)}-2 \sqrt{p(t)}+\underbrace{c_{2}(p(t+1))-c_{2}(p(t))}_{\rightarrow 0}] \\
& =\lim _{t \rightarrow \infty} 2[\sqrt{p(t+1)}-\sqrt{p(t)}] \\
& =\lim _{t \rightarrow \infty} 2\left[\frac{p(t+1)-p(t)}{\sqrt{p(t+1)}+\sqrt{p(t)}}\right] \\
& =\lim _{t \rightarrow \infty} 2\left[\frac{2 a t+a+b}{\sqrt{a t^{2}+2 a t+b t+b+c+1}+\sqrt{a t^{2}+b t+c}}\right] \\
& =\lim _{t \rightarrow \infty} 2\left[\frac{t\left(2 a+\mathcal{O}\left(\frac{1}{t}\right)\right)}{\sqrt{t^{2}\left(a+\mathcal{O}\left(\frac{1}{t}\right)\right)}+\sqrt{t^{2}\left(a+\mathcal{O}\left(\frac{1}{t}\right)\right)}}\right] \\
& =\lim _{t \rightarrow \infty} 2\left[\frac{2 a+\mathcal{O}\left(\frac{1}{t}\right)}{2 \sqrt{a+\mathcal{O}\left(\frac{1}{t}\right)}}\right] \\
& =2 \cdot \frac{2 a}{2 \sqrt{a}}=2 \sqrt{a}
\end{aligned}
$$

The corresponding spiral angle therefore convergesto $(2 \sqrt{a} \bmod 2 \pi)$
The numbersequences given by Mr. Hahn are generated from quadratic polynomials !
The mean value theorem qouted above implies immediately that the second differencesare $2 a$. For the example N_{1} and that of the other sequences of multiples of 11 , the parameter a must according to the construction be a multiple of $\frac{11}{2}$.

A corresponding investigation for the prime numbers 7,13 and 17 is shown in Figures 10 to 12 as well as in tabular form in Table 2, 3A and 3B. Here the prime numbers give rise to a special choice of coeffic ients of the polynomial corresponding to them.

Final Conclusion of the analysis of the spiral ams shown in RG. 1 and FG. 9 to 12 :
Every quadratic polynomial causes a sequence of radii, which takes an archimedian spiral-like course, when marked on the Square Root Spiral!
And the spiralangle of this so created spiralgraph converges!

3 Area Equality

The following proposition refers to figure 7 in chapter 3.1.

Proposition 1

$$
\lim _{M \rightarrow \infty} \frac{S(M+1)}{S(M)}=1 \text { for } S(M):=\sum_{n=M^{2}}^{M^{2}+2 M} A_{n}
$$

Proof: We consider the function

$$
g(n)=A_{n}=\frac{1}{2} \sqrt{n}
$$

According to "Euler'ssummation formula" we have:

$$
\sum_{n=1}^{N} g(n)=g(1)+\int_{1}^{N} g(x) d x+\int_{1}^{N}(x-[x]) g^{\prime}(x) d x
$$

Hence we get

$$
\begin{equation*}
\sum_{n=M}^{N} \frac{1}{2} \sqrt{n}=\left[\frac{1}{3} x^{\frac{3}{2}}\right]_{M-1}^{N}+\frac{1}{4} \int_{M-1}^{N}(x-[x]) x^{-\frac{1}{2}} d x \tag{1}
\end{equation*}
$$

and the errorterm is bounded from above by

$$
\frac{1}{4} \int_{M-1}^{N} x^{-\frac{1}{2}} d x=\frac{1}{2}\left[x^{\frac{1}{2}}\right]_{M-1}^{N}
$$

Using the definition

$$
T(M):=\sum_{n=M^{2}+1}^{(M+1)^{2}} A_{n}=\frac{1}{2} \sum_{n=M^{2}+1}^{(M+1)^{2}} \sqrt{n}
$$

by $S(M)=T(M)-\frac{1}{2}$ we get

$$
\lim _{M \rightarrow \infty} \frac{S(M+1)}{S(M)}=\lim _{M \rightarrow \infty} \frac{T(M+1)}{T(M)}
$$

Now we take (1) into account.

$$
T(M)=\left[\frac{1}{3} x^{\frac{3}{2}}\right]_{M^{2}}^{(M+1)^{2}}+c=\frac{1}{3}\left((M+1)^{3}-M^{3}\right)+c
$$

The error is

$$
c \leq \frac{1}{2}\left[x^{\frac{1}{2}}\right]_{M^{2}}^{(M+1)^{2}}=\frac{1}{2},
$$

and the following equation finishes the proof.

$$
\lim _{M \rightarrow \infty} \frac{T(M+1)}{T(M)}=\lim _{M \rightarrow \infty} \frac{(M+2)^{3}-(M+1)^{3}}{(M+1)^{3}-M^{3}}=\lim _{M \rightarrow \infty} \frac{3 M^{2}+9 M+7}{3 M^{2}+3 M+1}=1
$$

q.e.d.

Appendix :

FG. 15 :

Square-Numbers Spiral-Graph Q1:

Root	α	Angle to the X-Axis
$\sqrt{1}$	1	0°
$\sqrt{16}$	2	$22,88582334^{\circ}$

Calculated
quadratic polynomial
of Square-Number-Graph Q1 :
$\rightarrow f(x)=9 x^{2}-12 x+4$

Harry K. Hahm/1.5.2006

$f(x)=2\left(5 x^{2}-7 x+3\right)=10 x^{2}-\mathbf{1 4 x}+6$

Tabelle 1 : Analysis to the development of the winding-distance of the „Einstein-Spiral" (Square Root Spiral)

Length difference of two „root rays" which differ by approximately one winding of the square root spiral	calculated winding-distance	winding No. :	calculated average winding-distance of this winding	accuracy of average winding-distance in comparison to π
$\sqrt{21}-\sqrt{2}$	3,16836	2	3,1592037	99,44255 \%
$\sqrt{24}-\sqrt{3}$	3,16693			
$-\sqrt{29}-\sqrt{5}$	3,14910			
$\sqrt{38}-\sqrt{9}$	3,16441			
$\sqrt{40}-\sqrt{10}$	3,16228			
$-\sqrt{42}-\sqrt{11}$	3,16412			
$\sqrt{51}-\sqrt{16}$	3,14143			
$\sqrt{53}-\sqrt{17}$	3,15700			
$\sqrt{58}-\sqrt{20}$	3,14364	3	3,1443455	99,91245 \%
$\sqrt{63}-\sqrt{23}$	3,14142			
$-\sqrt{68}-\sqrt{26}$	3,14719			
$-\sqrt{76}-\sqrt{31}$	3,15003			
$\sqrt{79}-\sqrt{33}$	3,14363			
$\sqrt{82}-\sqrt{35}$	3,13931			
$\sqrt{97}-\sqrt{45}$	3,14065			
$\sqrt{100}-\sqrt{47}$	3,14435			
$\sqrt{103}-\sqrt{49}$	3,14889			
$-\sqrt{113}-\sqrt{56}$	3,14683	4	3,14428	99,91453 \%
$-\sqrt{127}-\sqrt{66}$	3,14539			
$-\sqrt{138}-\sqrt{74}$	3,14501			
$-\sqrt{142}-\sqrt{77}$	3,14141			
$\sqrt{174}-\sqrt{101}$	3,14103			
$-\sqrt{178}-\sqrt{104}$	3,14363			
$-\sqrt{182}-\sqrt{107}$	3,14666			
$\sqrt{191}-\sqrt{114}$	3,14320	5	3,142395	99,97447 \%
$-\sqrt{200}-\sqrt{121}$	3,14213			
$-\sqrt{209}-\sqrt{128}$	3,14312			
$\sqrt{223}-\sqrt{139}$	3,14336			
$-\sqrt{228}-\sqrt{143}$	3,14141			
$-\sqrt{263}-\sqrt{171}$	3,14058			
$-\sqrt{268}-\sqrt{175}$	3,14195			
$-\sqrt{273}-\sqrt{179}$	3,14362			
$\sqrt{284}-\sqrt{188}$	3,14099			
$\sqrt{289}-\sqrt{192}$	3,14359			

Note: On the left side of this table, the length-difference of two „square root rays" at a time are shown, which differ by approximately one winding of the „Square Root Spiral" to each other (\rightarrow see FIG. 1 - Square Root Spiral). With every further winding of the spiral, these length-differences (which represent the winding-distance), strive more and more for the constant π. This is evident if we compare the average winding-distance with this constant. At winding No. 5 the average winding-distance is already equal to π to around 99,975 \% !!

Table 2 :
Analysis results referring to the distribution of the natural numbers (or their square roots respectively) on defined spiral-graph-systems on the "Square Root Spiral" (--> see examples in FIG. 9-12)

Number Group						
The Natural Numbers divisible by :	Number of Spiral Systems with a positive direction of rotation	Number of Spiral Systems with a negative direction of rotation	Namingof theSpiral Systems$(P=$ positive $)$$(N=$ negative $)$	The " 2. Differential " of the numbers on the Spiral Arms results in the following values:$\text { (--> see examples on FIG.9, } 10$	For every found spiral system one exemplary spiral arm is given : --> Specification of the number sequence belonging to the chosen exemplary spiral arm	
					System	Exemplary Spiral-arm (-sequence)
19	1	1	$\begin{aligned} & \mathrm{N} 1 \\ & \mathrm{P} 1 \\ & \hline \end{aligned}$	19	$\begin{aligned} & \mathrm{N} 1 \\ & \mathrm{P} 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 19,76,152,247,361, \ldots . \\ & 19,38,76,133,209, \ldots . \end{aligned}$
17	1	1	$\begin{aligned} & \hline \text { N1 } \\ & \text { P1 } \\ & \hline \end{aligned}$	17	$\begin{aligned} & \mathrm{N} 1 \\ & \mathrm{P} 1 \end{aligned}$	$\begin{aligned} & \hline 51,136,238,357, \ldots \\ & 85,136,204,289, \ldots \\ & \hline \end{aligned}$
13	1	2	$\begin{gathered} \mathrm{N} 1-\mathrm{N} 2 \\ \mathrm{P} 1 \end{gathered}$	for $\mathrm{N} 1-\mathrm{N} 2$ $:$ $\mathbf{2 6}$ for P 1 $:$ $\mathbf{1 3}$	$\begin{aligned} & \hline \text { N1 } \\ & \text { N2 } \\ & \text { P1 } \\ & \hline \end{aligned}$	$39,104,195,312, \ldots$. $13,65,143,247, \ldots$. $39,65,104,156, \ldots$.
11	2	2	$\begin{aligned} & \text { N1 - N2 } \\ & \text { P1 - P2 } \end{aligned}$	22	$\begin{aligned} & \text { N1 } \\ & \text { N2 } \\ & \text { P1 } \\ & \text { P2 } \end{aligned}$	$\begin{aligned} & 22,77,154,253,374, \ldots . \\ & 11,55,121,209,319, \ldots . \\ & 33,44,77,132,209, \ldots . \\ & 33,55,99,165,253 \ldots . \end{aligned}$
7	3	3	$\begin{aligned} & \text { N1 - N3 } \\ & \text { P1 - P3 } \end{aligned}$	21	N1 N2 N3 P1 P2 P3	14,49,105,182,280,.... 7,49,112,196,301,.... $21,70,140,231,343, \ldots$. 28,49,91,154,238,.... 21,35,70,126,203,... $21,28,56,105,175, \ldots$.
5	4	4	$\begin{aligned} & \text { N1 - N4 } \\ & \text { P1 - P4 } \end{aligned}$	20	N1 N2 N3 N4 P1 P2 P3 P4	$\begin{aligned} & 25,80,155,250,365, \ldots \\ & 5,45,105,185,285, \ldots \\ & 45,110,195,300, \ldots \\ & 15,65,135,225,335, \ldots \\ & 15,40,85,150,235, \ldots \\ & 10,20,50,100,170, \ldots \\ & 10,25,60,115,190, \ldots \\ & 10,30,70,130,210, \ldots \end{aligned}$
3	6	7	$\begin{aligned} & \text { N1 - N7 } \\ & \text { P1 - P6 } \end{aligned}$	for N1-N7 : $\mathbf{2 1}$ for P1-P6 $:$ $\mathbf{1 8}$	N1 N2 N3 N4 N5 N6 N7 P1 P2 P3 P4 P5 P6	$\begin{aligned} & 24,69,135,222,330, \ldots \\ & 27,75,144,234,345, \ldots \\ & 9,39,90,162,255, \ldots \\ & 12,45,99,174,270 \\ & 15,51,108,186,285, \ldots \\ & 3,21,60,120,201, \ldots \\ & 3,24,66,129,213, \ldots \\ & 21,48,93,156,237, \ldots \\ & 12,42,90,156,240, \ldots \\ & 9,24,57,108,177, \ldots \\ & 3,21,57,111,183, \ldots \\ & 6,27,66,123,198, \ldots \\ & 6,30,72,132,210, \ldots \end{aligned}$
2	9	10	$\begin{aligned} & \mathrm{N} 1-\mathrm{N} 10 \\ & \mathrm{P} 1-\mathrm{P} 9 \end{aligned}$	for N1-N10 $:$ 20 for P1-P9 $:$ $\mathbf{1 8}$	N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 P1 P2 P3 P4 P5 P6 P7 P8 P9	$\begin{aligned} & 2,26,70,134,218, \ldots \\ & 4,30,76,142,228, \ldots \\ & 6,34,82,150,238, \ldots \\ & 8,38,88,158,248, \ldots \\ & 6,38,90,162,254, \ldots \\ & 10,44,98,172,266, \ldots \\ & 10,46,102,178,274, \ldots \\ & 12,50,108,186,284, \ldots \\ & 16,56,116,196,296, \ldots \\ & 20,62,124,206,308, \ldots \\ & 8,38,86,152,236, \ldots \\ & 2,16,48,98,166, \ldots \\ & 6,22,56,108,178, \ldots \\ & 4,22,58,112,184, \ldots \\ & 2,22,60,116,190, \ldots \\ & 6,28,68,126,202, \ldots \\ & 6,30,72,132,210, \ldots \\ & 6,14,40,84,146,226, \ldots \\ & 12,40,86,150,232, \ldots \end{aligned}$

Number Group	Number of Spiral Arms with a positive direction of rotation	Number of Spiral Arms with a negative direction of rotation	Naming of the Spiral Arms ($\mathrm{Q}=$ quadratic $)$	The " 2. Differential " of the numbers on the Spiral Arms Q1, Q2 and Q3 results in the following values : (--> see FIG. 1)	Spiral Arm (FIG)	Number sequence belonging to Spiral Arm
The Square Numbers $(1,4,9,16,25 \ldots . .)$	3	None	Q1 to Q3	18	see FIG. 1	Q1: $1,16,49,100,169,256,361,484, \ldots .$. Q2 : $4,25,64,121,196,289,400,529, \ldots .$. Q3 : $9,36,81,144,225,324,441,576, \ldots .$.

Table 3-A: Quadratic Polynomials of exemplary Spiral-Graphs of the Number-Group-Spiral-Systems shown in FIG. 9-12 and described in Table 2

Table 3-B: Quadratic Polynomials of exemplary Spiral-Graphs of the Number-Group-Spiral-Systems shown in FIG. 9-12 and described in Table 2

Numbers divisible by	2. Differential of Spiral-Graphs	Spiral Graph System	Number Sequence of one exemplary Spiral Graph of this system	Quadratic Polynomial 1 (calculated with the first 3 numbers of the given sequence)	Quadratic Polynomial 2 (calculated with 3 numbers starting with the $\mathbf{2}$. Number of the sequence)	Quadratic Polynomial 3 (calculated with 3 numbers starting with the 3 . Number of the sequence)	Quadratic Polynomial 4 (calculated with 3 numbers starting with the 4 . Number of the sequence)
3	21 : for N1 to N7 18 : for P1 to P6	N1	24, 69 , 135, 222, 330, 459,..	$\mathrm{f}_{1}(\mathrm{x})=10,5 \mathrm{x}^{2}+13,5 \mathrm{x}+0$	$\mathrm{f}_{2}(\mathrm{x})=10,5 \mathrm{x}^{2}+34,5 \mathrm{x}+24$	$\mathrm{f}_{3}(\mathrm{x})=10,5 \mathrm{x}^{2}+55,5 \mathrm{x}+69$	$\mathrm{f}_{4}(\mathrm{x})=10,5 \mathrm{x}^{2}+76,5 \mathrm{x}+135$
		N2	$27,75,144,234,345,477, .$.	$\mathrm{f}_{1}(\mathrm{x})=10,5 \mathrm{x}^{2}+16,5 \mathrm{x}+0$	$\mathrm{f}_{2}(\mathrm{x})=10,5 \mathrm{x}^{2}+37,5 \mathrm{x}+27$	$\mathrm{f}_{3}(\mathrm{x})=10,5 \mathrm{x}^{2}+58,5 \mathrm{x}+75$	$\mathrm{f}_{4}(\mathrm{x})=10,5 \mathrm{x}^{2}+79,5 x+144$
		N3	, $39,90,162,255,369, \ldots .$.	$\mathrm{f}_{1}(\mathrm{x})=10,5 \mathrm{x}^{2}-1,5 \mathrm{x}+0$	$\mathrm{f}_{2}(\mathrm{x})=10,5 \mathrm{x}^{2}+19,5 \mathrm{x}+9$	$\mathrm{f}_{3}(\mathrm{x})=10,5 \mathrm{x}^{2}+40,5 \mathrm{x}+39$	$\mathrm{f}_{4}(\mathrm{x})=10,5 \mathrm{x}^{2}+61,5 \mathrm{x}+90$
		N4	12, 45, 99, 174, 270, 387,......	$\mathrm{f}_{1}(\mathrm{x})=10,5 \mathrm{x}^{2}+1,5 \mathrm{x}+0$	$\mathrm{f}_{2}(\mathrm{x})=10,5 \mathrm{x}^{2}+22,5 \mathrm{x}+12$	$\mathrm{f}_{3}(\mathrm{x})=10,5 \mathrm{x}^{2}+43,5 \mathrm{x}+45$	$\mathrm{f}_{4}(\mathrm{x})=10,5 \mathrm{x}^{2}+64,5 \mathrm{x}+99$
		N5	15, 51, 108, 186, 285, 405,...	$\mathrm{f}_{1}(\mathrm{x})=10,5 \mathrm{x}^{2}+4,5 \mathrm{x}+0$	$\mathrm{f}_{2}(\mathrm{x})=10,5 \mathrm{x}^{2}+25,5 \mathrm{x}+15$	$\mathrm{f}_{3}(\mathrm{x})=10,5 \mathrm{x}^{2}+46,5 \mathrm{x}+51$	$f_{4}(x)=10,5 x^{2}+67,5 x+108$
		N6	$21,60,120,201,303$,...	$\mathrm{f}_{1}(\mathrm{x})=10,5 \mathrm{x}^{2}-13,5 \mathrm{x}+6$	$\mathrm{f}_{2}(\mathrm{x})=10,5 \mathrm{x}^{2}+7,5 \mathrm{x}+3$	$\mathrm{f}_{3}(\mathrm{x})=10,5 \mathrm{x}^{2}+28,5 \mathrm{x}+21$	$\mathrm{f}_{4}(\mathrm{x})=10,5 \mathrm{x}^{2}+49,5 \mathrm{x}+60$
		N7	$24,66,129,213,318$,...	$\mathrm{f}_{1}(\mathrm{x})=10,5 \mathrm{x}^{2}-10,5 \mathrm{x}+3$	$\mathrm{f}_{2}(\mathrm{x})=10,5 \mathrm{x}^{2}+10,5 \mathrm{x}+3$	$\mathrm{f}_{3}(\mathrm{x})=10,5 \mathrm{x}^{2}+31,5 \mathrm{x}+24$	$f_{4}(x)=10,5 x^{2}+52,5 x+66$
		P1	$12,21,48,93,156,237, \ldots . .$.	$\mathrm{f}_{1}(\mathrm{x})=9 \mathrm{x}^{2}-18 \mathrm{x}+21$	$\mathrm{f}_{2}(\mathrm{x})=9 \mathrm{x}^{2}+0 \mathrm{x}+12$	$\mathrm{f}_{3}(\mathrm{x})=9 \mathrm{x}^{2}+18 \mathrm{x}+21$	$\mathrm{f}_{4}(\mathrm{x})=9 \mathrm{x}^{2}+36 \mathrm{x}+48$
		P2	$12,42,90,156,240,342, \ldots . . .$.	$\mathrm{f}_{1}(\mathrm{x})=9 \mathrm{x}^{2}+3 \mathrm{x}+0$	$\mathrm{f}_{2}(\mathrm{x})=9 \mathrm{x}^{2}+21 \mathrm{x}+12$	$\mathrm{f}_{3}(\mathrm{x})=9 \mathrm{x}^{2}+39 \mathrm{x}+42$	$f_{4}(\mathrm{x})=9 \mathrm{x}^{2}+57 \mathrm{x}+90$
		P3	, $24,57,108,177,264, \ldots \ldots .$.	$\mathrm{f}_{1}(\mathrm{x})=9 \mathrm{x}^{2}-12 \mathrm{x}+12$	$\mathrm{f}_{2}(\mathrm{x})=9 \mathrm{x}^{2}+6 \mathrm{x}+9$	$\mathrm{f}_{3}(\mathrm{x})=9 \mathrm{x}^{2}+24 \mathrm{x}+24$	$\mathrm{f}_{4}(\mathrm{x})=9 \mathrm{x}^{2}+42 \mathrm{x}+57$
		P4	$21,57,111,183,273, \ldots .$.	$\mathrm{f}_{1}(\mathrm{x})=9 \mathrm{x}^{2}-9 \mathrm{x}+3$	$\mathrm{f}_{2}(\mathrm{x})=9 \mathrm{x}^{2}+9 \mathrm{x}+3$	$\mathrm{f}_{3}(\mathrm{x})=9 \mathrm{x}^{2}+27 \mathrm{x}+21$	$\mathrm{f}_{4}(\mathrm{x})=9 \mathrm{x}^{2}+45 \mathrm{x}+57$
		P5	, $27,66,123,198,291, \ldots . .$.	$\mathrm{f}_{1}(\mathrm{x})=9 \mathrm{x}^{2}-6 \mathrm{x}+3$	$\mathrm{f}_{2}(\mathrm{x})=9 \mathrm{x}^{2}+12 \mathrm{x}+6$	$\mathrm{f}_{3}(\mathrm{x})=9 \mathrm{x}^{2}+30 x+27$	$f_{4}(x)=9 x^{2}+48 x+66$
		P6	30, 72, 132, 210, 306	$\mathrm{f}_{1}(\mathrm{x})=9 \mathrm{x}^{2}-3 \mathrm{x}+0$	$\mathrm{f}_{2}(\mathrm{x})=9 \mathrm{x}^{2}+15 \mathrm{x}+6$	$\mathrm{f}_{3}(\mathrm{x})=9 \mathrm{x}^{2}+33 \mathrm{x}+30$	$\mathrm{f}_{4}(\mathrm{x})=9 \mathrm{x}^{2}+51 \mathrm{x}+72$
2	20 : for N1 to N10 18 : for P1 to P9	N1	$26,70,134,218,322$	$\mathrm{f}_{1}(\mathrm{x})=10 \mathrm{x}^{2}-6 \mathrm{x}-2$	$\mathrm{f}_{2}(\mathrm{x})=10 \mathrm{x}^{2}+14 \mathrm{x}+2$	$\mathrm{f}_{3}(\mathrm{x})=10 \mathrm{x}^{2}+34 \mathrm{x}+26$	$\mathrm{f}_{4}(\mathrm{x})=10 \mathrm{x}^{2}+54 \mathrm{x}+70$
		N2	30, 76, 142, 228, 334,.....	$\mathrm{f}_{1}(\mathrm{x})=10 \mathrm{x}^{2}-4 \mathrm{x}-2$	$\mathrm{f}_{2}(\mathrm{x})=10 \mathrm{x}^{2}+16 \mathrm{x}+4$	$\mathrm{f}_{3}(\mathrm{x})=10 \mathrm{x}^{2}+36 \mathrm{x}+30$	$f_{4}(x)=10 x^{2}+56 x+76$
		N3	34, 82, 150, 238, 346	$\mathrm{f}_{1}(\mathrm{x})=10 \mathrm{x}^{2}-2 \mathrm{x}-2$	$\mathrm{f}_{2}(\mathrm{x})=10 \mathrm{x}^{2}+18 \mathrm{x}+6$	$\mathrm{f}_{3}(\mathrm{x})=10 \mathrm{x}^{2}+38 \mathrm{x}+34$	$f_{4}(x)=10 x^{2}+58 x+82$
		N4	8, 38, 88 , 158, 248, 358 ,......	$f_{1}(x)=10 x^{2}+0 x-2$	$\mathrm{f}_{2}(\mathrm{x})=10 \mathrm{x}^{2}+20 \mathrm{x}+8$	$\mathrm{f}_{3}(\mathrm{x})=10 \mathrm{x}^{2}+40 \mathrm{x}+38$	$f_{4}(\mathrm{x})=10 \mathrm{x}^{2}+60 \mathrm{x}+88$
		N5	$38,90,162,254,366$,...	$\mathrm{f}_{1}(\mathrm{x})=10 \mathrm{x}^{2}+2 \mathrm{x}-6$	$\mathrm{f}_{2}(\mathrm{x})=10 \mathrm{x}^{2}+22 \mathrm{x}+6$	$\mathrm{f}_{3}(\mathrm{x})=10 \mathrm{x}^{2}+42 \mathrm{x}+38$	$\mathrm{f}_{4}(\mathrm{x})=10 \mathrm{x}^{2}+62 \mathrm{x}+90$
		N6	$10,44,98,172,266,380$,...	$\mathrm{f}_{1}(\mathrm{x})=10 \mathrm{x}^{2}+4 \mathrm{x}-4$	$\mathrm{f}_{2}(\mathrm{x})=10 \mathrm{x}^{2}+24 \mathrm{x}+10$	$\mathrm{f}_{3}(\mathrm{x})=10 \mathrm{x}^{2}+44 \mathrm{x}+44$	$f_{4}(x)=10 x^{2}+64 x+98$
		N7	10, 46 , 102, 178, 274, 390,...	$\mathrm{f}_{1}(\mathrm{x})=10 \mathrm{x}^{2}+6 \mathrm{x}-6$	$\mathrm{f}_{2}(\mathrm{x})=10 \mathrm{x}^{2}+26 \mathrm{x}+10$	$\mathrm{f}_{3}(\mathrm{x})=10 \mathrm{x}^{2}+46 \mathrm{x}+46$	$f_{4}(x)=10 x^{2}+66 x+102$
		N8	$12,50,108,186,284,402, \ldots . .$.	$\mathrm{f}_{1}(\mathrm{x})=10 \mathrm{x}^{2}+8 \mathrm{x}-6$	$\mathrm{f}_{2}(\mathrm{x})=10 \mathrm{x}^{2}+28 \mathrm{x}+12$	$\mathrm{f}_{3}(\mathrm{x})=10 \mathrm{x}^{2}+48 \mathrm{x}+50$	$f_{4}(x)=10 x^{2}+68 x+108$
		N9	16,56 , 116, 196, 296,416 ,...	$\mathrm{f}_{1}(\mathrm{x})=10 \mathrm{x}^{2}+10 \mathrm{x}-4$	$\mathrm{f}_{2}(\mathrm{x})=10 \mathrm{x}^{2}+30 \mathrm{x}+16$	$\mathrm{f}_{3}(\mathrm{x})=10 \mathrm{x}^{2}+50 \mathrm{x}+56$	$\mathrm{f}_{4}(\mathrm{x})=10 \mathrm{x}^{2}+70 x+116$
		N10	20, 62, 124, 206, 308, 430,	$\mathrm{f}_{1}(\mathrm{x})=10 \mathrm{x}^{2}+12 \mathrm{x}-2$	$\mathrm{f}_{2}(\mathrm{x})=10 \mathrm{x}^{2}+32 \mathrm{x}+20$	$\mathrm{f}_{3}(\mathrm{x})=10 \mathrm{x}^{2}+52 \mathrm{x}+62$	$f_{4}(x)=10 x^{2}+72 x+124$
		P1	$38,86,152,236,338$,......	$\mathrm{f}_{1}(\mathrm{x})=9 \mathrm{x}^{2}+3 \mathrm{x}-4$	$\mathrm{f}_{2}(\mathrm{x})=9 \mathrm{x}^{2}+21 \mathrm{x}+8$	$\mathrm{f}_{3}(\mathrm{x})=9 \mathrm{x}^{2}+39 \mathrm{x}+38$	$\mathrm{f}_{4}(\mathrm{x})=9 \mathrm{x}^{2}+57 \mathrm{x}+86$
		P2	, $16,48,98$, 166, 252 ,...	$\mathrm{f}_{1}(\mathrm{x})=9 \mathrm{x}^{2}-13 \mathrm{x}+6$	$\mathrm{f}_{2}(\mathrm{x})=9 \mathrm{x}^{2}+5 \mathrm{x}+2$	$\mathrm{f}_{3}(\mathrm{x})=9 \mathrm{x}^{2}+23 \mathrm{x}+16$	$\mathrm{f}_{4}(\mathrm{x})=9 \mathrm{x}^{2}+41 \mathrm{x}+48$
		P3	$6,22,56,108,178,266$,......	$\mathrm{f}_{1}(\mathrm{x})=9 \mathrm{x}^{2}-11 \mathrm{x}+8$	$\mathrm{f}_{2}(\mathrm{x})=9 \mathrm{x}^{2}+7 x+6$	$\mathrm{f}_{3}(\mathrm{x})=9 \mathrm{x}^{2}+25 \mathrm{x}+22$	$f_{4}(x)=9 x^{2}+43 x+56$
		P4	, $22,58,112,184,274$,...	$\mathrm{f}_{1}(\mathrm{x})=9 \mathrm{x}^{2}-9 \mathrm{x}+4$	$\mathrm{f}_{2}(\mathrm{x})=9 \mathrm{x}^{2}+9 \mathrm{x}+4$	$\mathrm{f}_{3}(\mathrm{x})=9 \mathrm{x}^{2}+27 \mathrm{x}+22$	$\mathrm{f}_{4}(\mathrm{x})=9 \mathrm{x}^{2}+45 \mathrm{x}+58$
		P5	, $22,60,116,190,282, \ldots .$.	$\mathrm{f}_{1}(\mathrm{x})=9 \mathrm{x}^{2}-7 \mathrm{x}+0$	$\mathrm{f}_{2}(\mathrm{x})=9 \mathrm{x}^{2}+11 \mathrm{x}+2$	$\mathrm{f}_{3}(\mathrm{x})=9 \mathrm{x}^{2}+29 \mathrm{x}+22$	$\mathrm{f}_{4}(\mathrm{x})=9 \mathrm{x}^{2}+47 \mathrm{x}+60$
		P6	$28,68,126,202,296$,.....	$\mathrm{f}_{1}(\mathrm{x})=9 \mathrm{x}^{2}-5 \mathrm{x}+2$	$f_{2}(x)=9 x^{2}+13 x+6$	$\mathrm{f}_{3}(\mathrm{x})=9 \mathrm{x}^{2}+31 \mathrm{x}+28$	$f_{4}(x)=9 x^{2}+49 x+68$
		P7	30, 72, 132, 210, 306	$\mathrm{f}_{1}(\mathrm{x})=9 \mathrm{x}^{2}-3 \mathrm{x}+0$	$\mathrm{f}_{2}(\mathrm{x})=9 \mathrm{x}^{2}+15 \mathrm{x}+6$	$\mathrm{f}_{3}(\mathrm{x})=9 \mathrm{x}^{2}+33 \mathrm{x}+30$	$f_{4}(\mathrm{x})=9 \mathrm{x}^{2}+51 \mathrm{x}+72$
		P8	, 14, 40, 84, 146, 226 ,......	$f_{1}(x)=9 x^{2}-19 x+16$	$\mathrm{f}_{2}(\mathrm{x})=9 \mathrm{x}^{2}-1 \mathrm{x}+6$	$\mathrm{f}_{3}(\mathrm{x})=9 \mathrm{x}^{2}+17 \mathrm{x}+14$	$f_{4}(x)=9 x^{2}+35 x+40$
		P9	$12,40,86,150,232,332$	$\mathrm{f}_{1}(\mathrm{x})=9 \mathrm{x}^{2}+1 \mathrm{x}+2$	$\mathrm{f}_{2}(\mathrm{x})=9 \mathrm{x}^{2}+19 \mathrm{x}+12$	$\mathrm{f}_{3}(\mathrm{x})=9 \mathrm{x}^{2}+37 \mathrm{x}+40$	$\mathrm{f}_{4}(\mathrm{x})=9 \mathrm{x}^{2}+55 \mathrm{x}+86$

SQUARE NUMBERS	2. Differential of Spiral-Graphs	SPIRAL GRAPH
$4,9,16,25, .$	18	Q1
		Q2
		Q3

Number Sequences of the Spiral Graphs Q1, Q2 and Q3 (containing the Square Numbers)								
1	16	,	49	100	169	256	,$\ldots .$.	
4	,	25	,	64	,	121	196	289
9	,$\ldots \ldots .$.							

Quadratic Polynomial 1 (calculated with the first 3 numbers of the given sequence)				Quadratic Polynomial 2 (calculated with 3 numbers starting with the $\mathbf{2}$. Number of the sequence)						Quadratic Polynomial 3 (calculated with 3 numbers starting with the $\mathbf{3}$. Number of the sequence)						Quadratic Polynomial 4 (calculated with 3 numbers starting with the 4 . Number of the sequence)						
$\mathrm{f}_{1}(\mathrm{x})=$	$9 \mathrm{x}^{2}$	$12 \times$		$\mathrm{f}_{2}(\mathrm{x})=$	$9 \mathrm{x}^{2}$	+	$6 \times$			$\mathrm{f}_{3}(\mathrm{x})=$	$9{ }^{2}$	+	24			$\mathrm{f}_{4}(\mathrm{x})=$	9		42	\times		49
$\mathrm{f}_{1}(\mathrm{x})=$	$9 x^{2}$	$6 \times$		$\mathrm{f}_{2}(\mathrm{x})=$	$9 \mathrm{x}^{2}$	+	$12 \times$			$\mathrm{f}_{3}(\mathrm{x})=$	$9 \times$		30			$\mathrm{f}_{4}(\mathrm{x})=$	9		48	x		64
$\mathrm{f}_{1}(\mathrm{x})=$	x^{2}	$0 \times$	0	$\mathrm{f}_{2}(\mathrm{x})=$	$9 \mathrm{x}^{2}$		$18 \times$	+		$\mathrm{f}_{3}(\mathrm{x})=$	9	+	36			$\mathrm{f}_{4}(\mathrm{x})=$	9		54	\times	+	81

FG. 17: bare Square Root Spiral

