
Modified dynamics of massive bodies in the

graviton background

Michael A. Ivanov
Physics Dept.,

Belarus State University of Informatics and Radioelectronics,
6 P. Brovka Street, BY 220027, Minsk, Republic of Belarus.

E-mail: ivanovma@tut.by.

July 16, 2019

Abstract

The additional deceleration of massive bodies and the redshift of re-
mote objects in the model of low-energy quantum gravity are caused by
collisions with gravitons. Some results of numerical modeling of a motion
of bodies in the central field by the influence of this additional deceleration
are described here. The two peculiarities of modified dynamics take place:
an absence of closed orbits and a possibility of the non-planar motion of
massive bodies in the central field.

1 Introduction

The claimed discovery of dark energy [1, 2] was accepted by the scientific com-
munity without a necessary healthy skepticism. Now big efforts are taken to
understand what is this suggested substance. In the model of low-energy quan-
tum gravity [3, 4], gravitation is considered as the screening effect in the sea
of super-strong interacting gravitons. The Newton constant G and the Hub-
ble constant H are computable in the model as functions of the background
temperature. There is not a need of any expansion of the universe and dark
energy in the model to fit corresponding cosmological observations. The two-
parametric theoretical luminosity distance of the model is caused by forehead
and non-forehead collisions of photons with gravitons. The additional decelera-
tion of massive bodies has the same nature as the redshift of remote objects in
the model: these effects are caused by collisions with gravitons, but we should
take into account both forehead and backhead collisions with gravitons in a case
of massive bodies [5]. Some results of numerical modeling of a motion of bodies
in the central field by the influence of this additional deceleration are described
here.
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2 Modified dynamics in the graviton background

As it was shown in [5], due to forehead and backhead collisions with gravitons,

Figure 1: A star orbit in a galaxy with M = 1010 · M� by u = 5 · 105 m/s and
r(0) = 1 kpc; t � 30 Gyr, single loops interflow, the change of the distance to
the center Δr/r(0) = −0.034.

the deceleration w of massive bodies in this model is equal to:

w = −w0 · 4η2 · (1 − η2)0.5, (1)

where w0 ≡ H0c = 6.419 · 10−10 m/s2, if we use the theoretical value of H0 in
the model; η ≡ V/c, V is a body’s velocity relative to the graviton background.
For small velocities we have:

w � −w0 · 4η2. (2)

In the Newtonian approach, if u is a more massive body’s velocity relative to
the background, M is its mass, and V = v+u is the velocity of the small body
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relative to the graviton background, we will have now the following equation of
motion of the small body:

r̈ = −G
M

r2
· r
r

+
4w0

c2
(u · u − | v + u | · (v + u)), (3)

where r is a radius-vector of the small body.
To model the motion in the central field, I have slightly modified the program

in C++ written for our work [6] to work in 3 dimensions using Eq. 3.

Figure 2: A star orbit in a galaxy with M = 1010 · M� by u = 5 · 105 m/s and
r(0) = 100 kpc; t � 300 Gyr, the first unclosed external loop corresponds to
29.2 Gyr.

3 A motion in the central field

Let us consider the initial conditions by which a material point trajectory in
the classical case is circular, i.e. v(0) = (G ·M/r(0))0.5, and v(0) ⊥ r(0). T is a
period of motion in the classical case of a circular trajectory by the given initial
distance to the center. To evaluate a stability of planetary orbits in the solar
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system in a presence of the anomalous deceleration w, we can use the following
trick: to increase w by hand to see a very small change of the orbit’s radius, and
to re-calculate a value of the resulting effect. In a case of the Earth-like circular
orbit, i.e. by M = M�, r(0) = 1 AU, given u = 4·105 m/s and that three vectors
r, v, u lie in one plane, we get by the replacement: w → 104 ·w for one classical
period T : Δr/r(0) = −1.08 · 10−8 yr−1 by Δt = 10−10 ·T. It means that by the
anomalous deceleration w we should have now: Δr/r(0) = −1.08 · 10−12 yr−1.
For the case when u is perpendicular to r, v we have: Δr/r(0) = −7.2 · 10−13

yr−1. The Earth orbit will be stable enough to have not contradictions with the
estimated age of it in the solar system.

Figure 3: The deviation z(t) (solid) of a star orbit in a galaxy (with M =
1010 · M� by u = 5 · 105 m/s and r(0) = 10 kpc) from the classical plane (x, y)
for the case of v(0) = 1.2·(G·M/r(0))0.5; T = 0.781 Gyr, the graph of 10−4 ·y(t)
(dotted) is shown for the comparison.

Results of modeling a star orbit in a galaxy in the similar way are shown
in Figures 1 and 2 for M = 1010 · M�, u = 5 · 105 m/s by r(0) = 1 kpc (Fig.
1) and r(0) = 100 kpc (Fig. 2). The ratio w0

r̈(0) is equal to 2.2 and 0.00022
respectively. By r(0) = 1 kpc the relative change of the distance to the center
is Δr/r(0) = −0.034 during the time interval of � 30 Gyr. By r(0) = 1 kpc the
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Figure 4: The same graphs as in Fig. 3, but for the case of v(0) = (G·M/r(0))0.5;
T = 0.781 Gyr, 10−4 · y (dotted), z (solid).

first unclosed external loop in Fig. 2 corresponds to 29.2 Gyr. We see that at
all scales closed orbits do not exist in the model: bodies inspiral to the center
of attraction, but for the Earth-like orbits this effect is very small.

When u is perpendicular to r, v, another effect takes place: the motion of
the body in the central field is not planar. The deviation z(t) of a star orbit
in a galaxy (with M = 1010 · M� by u = 5 · 105 m/s and r(0) = 10 kpc)
from the classical plane (x, y) is shown in Figures 3 and 4. For the case of
v(0) = (G · M/r(0))0.5 (the classical orbit would be circular), deviations from
the classical plane (x, y) occur in one side off this plane, with returns to it (Fig.
4). In the case of the Earth-like circular orbit, the maximal deviation from the
classical plane is lesser of 1 mm by u = 4 · 105 m/s. If v(0) �= (G · M/r(0))0.5,
deviations from the classical plane (x, y) occur in both sides off this plane (Fig.
3, v(0) = 1.2 · (G · M/r(0))0.5), and the ones may be interpreted as a slow
revolution of a quasi-classical planar orbit around some axis in this plane.
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4 Conclusion

The described results show two peculiarities of modified dynamics in the model:
an absence of closed orbits and a possibility of the non-planar motion of massive
bodies in the central field due to the anomalous deceleration by the graviton
background. These effects are negligible for the Earth-like orbits and, perhaps,
too small to be observable during an acceptable time interval in galaxies. But
the interaction of photons with the background leads to the observable effects
which can be essential for our understanding of the universe.
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