Division by Zero Calculus in Multiply Dimensions and Open Problems (an extension)

Saburou Saitoh
Institute of Reproducing Kernels, Kawauchi-cho, 5-1648-16, Kiryu 376-0041, JAPAN saburou.saitoh@gmail.com

June 12, 2019

Abstract

In this paper, we will introduce the division by zero calculus in multiply dimensions in order to show some wide and new open problems as we see from one dimensional case.

Key Words: Zero, division by zero, division by zero calculus, $0 / 0=$ $1 / 0=z / 0=0$, multiply dimensions, several complex analysis, Laurent expansion.

2010 Mathematics Subject Classification: 32D05, 32D20, 00A05, 00A09.

1 Division by zero and division by zero calculus

For the long history of division by zero, see $[1,19]$. The division by zero with mysterious and long history was indeed trivial and clear as in the followings.

By the concept of the Moore-Penrose generalized solution of the fundamental equation $a x=b$, the division by zero was trivial and clear as $a / 0=0$ in the generalized fraction that is defined by the generalized solution of
the equation $a x=b$. Here, the generalized solution is always uniquely determined and the theory is very classical. See [5] for example.

Division by zero is trivial and clear also from the concept of repeated subtraction - H. Michiwaki.

Recall the uniqueness theorem by S. Takahasi on the division by zero. See [5, 29].

The simple field structure containing division by zero was established by M. Yamada ([8]). For a simple introduction, see H. Okumura [17].

Many applications of the division by zero to Wasan geometry were given by H. Okumura. See $[11,12,13,14,15,16]$ for example.

As the number system containing the division by zero, the Yamada field structure is perfect. However, for applications of the division by zero to functions, we need the concept of the division by zero calculus for the sake of uniquely determinations of the results and for other reasons.

For example, for the typical linear mapping

$$
\begin{equation*}
W=\frac{z-i}{z+i} \tag{1.1}
\end{equation*}
$$

it gives a conformal mapping on $\{\mathbf{C} \backslash\{-i\}\}$ onto $\{\mathbf{C} \backslash\{1\}\}$ in one to one and from

$$
\begin{equation*}
W=1+\frac{-2 i}{z-(-i)}, \tag{1.2}
\end{equation*}
$$

we see that $-i$ corresponds to 1 and so the function maps the whole $\{\mathbf{C}\}$ onto $\{\mathbf{C}\}$ in one to one.

Meanwhile, note that for

$$
\begin{equation*}
W=(z-i) \cdot \frac{1}{z+i}, \tag{1.3}
\end{equation*}
$$

we should not enter $z=-i$ in the way

$$
\begin{equation*}
[(z-i)]_{z=-i} \cdot\left[\frac{1}{z+i}\right]_{z=-i}=(-2 i) \cdot 0=0 \tag{1.4}
\end{equation*}
$$

However, in many cases, the above two results will have practical meanings and so, we will need to consider many ways for the application of the
division by zero and we will need to check the results obtained, in some practical viewpoints. We referred to this delicate problem with many examples in the references.

Therefore, we will introduce the division by zero calculus. For any Laurent expansion around $z=a$,

$$
\begin{equation*}
f(z)=\sum_{n=-\infty}^{-1} C_{n}(z-a)^{n}+C_{0}+\sum_{n=1}^{\infty} C_{n}(z-a)^{n} \tag{1.5}
\end{equation*}
$$

we define the identity, (by the division by zero)

$$
\begin{equation*}
f(a)=C_{0} \tag{1.6}
\end{equation*}
$$

(Note that here, there is no problem on any convergence of the expansion (1.5) at the point $z=a$, because all the terms $(z-a)^{n}$ are zero at $z=a$ for $n \neq 0$.)

Apart from the motivation, we define the division by zero calculus by (1.6). With this assumption, we can obtain many new results and new ideas. However, for this assumption we have to check the results obtained whether they are reasonable or not. By this idea, we can avoid any logical problems. - In this point, the division by zero calculus may be considered as a fundamental assumption like an axiom.

The division by zero calculus opens a new world since Aristotele-Euclid. See, in particular, [3] and also the references for recent related results.

On February 16, 2019 Professor H. Okumura introduced the surprising news in Research Gate:

José Manuel Rodríguez Caballero
Added an answer
In the proof assistant Isabelle/HOL we have $x / 0=0$ for each number x. This is advantageous in order to simplify the proofs. You can download this proof assistant here: https://isabelle.in.tum.de/.
J.M.R. Caballero kindly showed surprisingly several examples by the system that

$$
\begin{aligned}
\tan \frac{\pi}{2} & =0 \\
\log 0 & =0
\end{aligned}
$$

$$
\exp \frac{1}{x}(x=0)=1
$$

and others. Furthermore, for the presentation at the annual meeting of the Japanese Mathematical Society at the Tokyo Institute of Technology:

March 17, 2019 : 9: 45-10: 00 in Complex Analysis Session, Horn torus models for the Riemann sphere from the viewpoint of division by zero with [3],
he kindly sent the kind message:
It is nice to know that you will present your result at the Tokyo Institute of Technology. Please remember to mention Isabelle/HOL, which is a software in which $\mathrm{x} / 0=0$. This software is the result of many years of research and a millions of dollars were invested in it. If $x / 0=0$ was false, all these money was for nothing. Right now, there is a team of mathematicians formalizing all the mathematics in Isabelle/HOL, where x/0 $=0$ for all x , so this mathematical relation is the future of mathematics. https://www.cl.cam.ac.uk/ lp15/Grants/Alexandria/

Meanwhile, on ZERO, the authors S. K. Sen and R. P. Agarwal [26] published its long history and many important properties of zero. See also R. Kaplan [4] and E. Sondheimer and A. Rogerson [28] on the very interesting books on zero and infinity. In particular, for the fundamental relation of zero and infinity, we stated the simple and fundamental relation in [24] that

The point at infinity is represented by zero; and zero is the definite complex number and the point at infinity is considered by the limiting idea as an ideal point of one point compactification and that is represented geometrically with the horn torus model [3].
S. K. Sen and R. P. Agarwal [26] referred to the paper [5] in connection with division by zero, however, their understandings on the paper seem to be not suitable (not right) and their ideas on the division by zero seem to be traditional, indeed, they stated as the conclusion of the introduction of the book that:
"Thou shalt not divide by zero" remains valid eternally.
However, in [23] we stated simply based on the division by zero calculus that

We Can Divide the Numbers and Analytic Functions by Zero with a Natural Sense.

They stated in the book many meanings of zero over mathematics, deeply.

Of course, we will be interested in the case of multiply dimensions, in general, and for multiply dimensional cases, the situations will be very complicated and involved than one dimensional case. At the first step, we would like to consider its origin, simply.

This is an extended version of the paper [25].

2 Division by zero calculus in multiply dimensions

In order to make clear the problem, we give firstly a prototype example. We have the identity by the division by zero calculus, for

$$
f(z)=\frac{1+z}{1-z}, \quad f(1)=-1
$$

From the real part and imaginary part of the function, we have, for $z=x+i y$

$$
\frac{1-x^{2}-y^{2}}{(1-x)^{2}+y^{2}}=-1, \quad \text { at } \quad(1,0)
$$

and

$$
\frac{y}{(1-x)^{2}+y^{2}}=0, \quad \text { at } \quad(1,0)
$$

respectively. Why the differences do happen?
In order to solve this problem, we will give the definition of the division by zero calculus in multidimensional spaces.

Definition of the division by zero calculus for multidimensional spaces:

For an analytic function $g(z)$ on a domain D on $\mathbf{C}^{n}, n \geq 1$, we set

$$
E=\{z \in D ; g(z)=0\} .
$$

For an analytic function $f(z)$ on the set $D \backslash E$ such that

$$
\begin{equation*}
f(z)=\sum_{n=-\infty}^{\infty} C_{n}(z) g(z)^{n} \tag{2.1}
\end{equation*}
$$

for analytic functions $C_{n}(z)$ on D, we define the division by zero calculus by the correspondence

$$
f \longrightarrow F_{f, g=0}(z):=C_{0}(z)
$$

that shows a natural analytic function of the function f on the domain D derived from $D \backslash E$ with respect to $E=\{z \in D ; g(z)=0\}$.

Of course, this definition is a natural extension of one dimensional case. The expression (2.1) may be guaranteed by the general Laurent expansion that is given by the following proposition (that was introduced by Takeo Ohsawa):

Proposition 13.1 In the Definition of the division by zero calculus for mutidimensional spaces, if the domain D is a regular domain, for any analytic function g, the expansion (2.1) is possible.

See [30] for the related topics.
Since the uniqueness of the expansion is, in general, not valid, the division by zero calculus is not determined uniquely. However, we are very interested in the expansion (2.1) and the property of the function $C_{0}(z)$ as in one dimensional case.

From the above arguments, we can see the desired results for the examples as follows:

$$
\begin{gather*}
\frac{1-x^{2}-y^{2}}{(1-x)^{2}+y^{2}} \\
=-1+\frac{2(1-x)}{(1-x)^{2}+y^{2}}=-1, \quad \text { at } \tag{1,0}
\end{gather*}
$$

and

$$
\frac{y}{(1-x)^{2}+y^{2}}=0, \quad \text { at } \quad(1,0)
$$

3 In parameter representations

For example, we will consider the parameter representation

$$
\begin{equation*}
x^{2}=\frac{a(u-a)(v-a)}{(b-a)(c-a)}, \tag{3.1}
\end{equation*}
$$

$$
\begin{align*}
& y^{2}=\frac{b(u-b)(v-b)}{(c-b)(a-b)} \tag{3.2}\\
& z^{2}=\frac{c(u-c)(v-c)}{(a-c)(b-c)} \tag{3.3}
\end{align*}
$$

of the ellipsoid

$$
\begin{equation*}
\frac{x^{2}}{a}+\frac{y^{2}}{b}+\frac{z^{2}}{c}=1 \quad a, b, c,>0 \tag{3.4}
\end{equation*}
$$

([2], 112 page).
For the very natural case $b=a$, how will be the parameter representations (3.1)-(3.3)?

At first, we have, by the division by zero, for $b=a$,

$$
\begin{equation*}
\frac{x^{2}}{a}+\frac{y^{2}}{a}+\frac{z^{2}}{c}=1 \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{2}=0 \tag{3.6}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\frac{y^{2}}{a}+\frac{z^{2}}{c}=1 \tag{3.7}
\end{equation*}
$$

This will mean that (3.5) is the rotation of (3.7) around the z axis and (3.7) is the cut elliptic function of (3.5) by the plane $x=0$.

Next, by the division by zero calculus, we have

$$
\begin{equation*}
y^{2}=-\frac{1}{(c-a)^{2}}[c(u-a)(v-a)-a(c-a)(u-a)-a(c-a)(v-a)] . \tag{3.8}
\end{equation*}
$$

However, since we are considering the case with $x=0$, the parameters u and v have to be restricted as $u=a$ or $v=a$. We fix as $v=a$ then we have

$$
\begin{equation*}
y^{2}=\frac{a(a-u)}{a-c} . \tag{3.9}
\end{equation*}
$$

Finally, of course, we have

$$
\begin{equation*}
z^{2}=\frac{c(u-c)}{a-c} . \tag{3.10}
\end{equation*}
$$

Meanwhile, we will consider the parametric representations with $c=0$

$$
\begin{gather*}
x^{2}=\frac{-(u-a)(v-a)}{b-a} \tag{3.11}\\
y^{2}=\frac{-(u-b)(v-b)}{a-b} \tag{3.12}\\
z^{2}=0 \tag{3.13}
\end{gather*}
$$

Then, we note that

$$
\begin{equation*}
\frac{x^{2}}{a}+\frac{y^{2}}{b}=1-\frac{u v}{a b} \tag{3.14}
\end{equation*}
$$

and so, for the case $u=0$ or $v=0$, we obtain the parameter representation for the elliptic curve

$$
\begin{equation*}
\frac{x^{2}}{a}+\frac{y^{2}}{b}=1 \tag{3.15}
\end{equation*}
$$

4 Open problem

In Section 3, we gave natural interpretations for the parameter representations (3.1)-(3.3) for the case $b=a$ by the division by zero and division by zero calculus. However, we wonder

Open problem: For the parameter representations (3.1)-(3.3), could we derive some parameter representations of (3.5)?

When, we use (3.5), (3.3) and (3.8), we have the curious representation:

$$
\begin{equation*}
x^{2}=\frac{1}{(c-a)^{2}}\left[u v(c-a)+a c(u+v)+a^{2}(u+v+c)-a^{3}-a(c-a)(v-a)\right] . \tag{4.1}
\end{equation*}
$$

Acknowledgements

The author wishes to express his deep thanks to Professor Takeo Ohsawa for his very important information for the Laurent expansion in several complex analysis and to Professor Hiroshi Okumura and Mr. José Manuel Rodríguez Caballero for their very exciting informations.

References

[1] C. B. Boyer, An early reference to division by zero, The Journal of the American Mathematical Monthly, 50 (1943), (8), 487- 491. Retrieved March 6, 2018, from the JSTOR database.
[2] R. Courant and D. Hikbert, METHODS OF MATHEMATICAL PHYSICS, VOLUME II PARTIAL DIFFERENTIAL EQUATIONS,BY R. Courant, International Publishers (1962).
[3] W. W. Däumler, H. Okumura, V. V. Puha and S. Saitoh, Horn Torus Models for the Riemann Sphere and Division by Zero, viXra:1902.0223 submitted on 2019-02-12 18:39:18.
[4] R. Kaplan, THE NOTHING THAT IS A Natural History of Zero, OXFORD UNIVERSITY PRESS (1999).
[5] M. Kuroda, H. Michiwaki, S. Saitoh and M. Yamane, New meanings of the division by zero and interpretations on $100 / 0=0$ and on $0 / 0=0$, Int. J. Appl. Math. 27 (2014), no 2, pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
[6] T. Matsuura and S. Saitoh, Matrices and division by zero $z / 0=0$, Advances in Linear Algebra \& Matrix Theory, 6(2016), 51-58 Published Online June 2016 in SciRes. http://www.scirp.org/journal/alamt http://dx.doi.org/10.4236/alamt.2016.62007.
[7] T. Matsuura, H. Michiwaki and S. Saitoh, $\log 0=\log \infty=0$ and applications, Differential and Difference Equations with Applications, Springer Proceedings in Mathematics \& Statistics, 230 (2018), 293-305.
[8] H. Michiwaki, S. Saitoh and M.Yamada, Reality of the division by zero $z / 0=0$, IJAPM International J. of Applied Physics and Math. 6(2015), 1-8. http://www.ijapm.org/show-63-504-1.html
[9] H. Michiwaki, H. Okumura and S. Saitoh, Division by Zero $z / 0=0$ in Euclidean Spaces, International Journal of Mathematics and Computation, 28(2017); Issue 1, 1-16.
[10] H. Okumura, S. Saitoh and T. Matsuura, Relations of 0 and ∞, Journal of Technology and Social Science (JTSS), 1(2017), 70-77.
[11] H. Okumura and S. Saitoh, The Descartes circles theorem and division by zero calculus, https://arxiv.org/abs/1711.04961 (2017.11.14).
[12] H. Okumura, Wasan geometry with the division by 0, https://arxiv.org/abs/1711.06947 International Journal of Geometry, 7(2018), No. 1, 17-20.
[13] H. Okumura and S. Saitoh, Harmonic Mean and Division by Zero, Dedicated to Professor Josip Pečarić on the occasion of his 70th birthday, Forum Geometricorum, 18 (2018), 155-159.
[14] H. Okumura and S. Saitoh, Remarks for The Twin Circles of Archimedes in a Skewed Arbelos by H. Okumura and M. Watanabe, Forum Geometricorum, 18(2018), 97-100.
[15] H. Okumura and S. Saitoh, Applications of the division by zero calculus to Wasan geometry, GLOBAL JOURNAL OF ADVANCED RESEARCH ON CLASSICAL AND MODERN GEOMETRIES" (GJARCMG), 7(2018), 2, 44-49.
[16] H. Okumura and S. Saitoh, Wasan Geometry and Division by Zero Calculus, Sangaku Journal of Mathematics (SJM), 2 (2018), 57-73.
[17] H. Okumura, To Divide by Zero is to Multiply by Zero, viXra:1811.0132.
[18] S. Pinelas and S. Saitoh, Division by zero calculus and differential equations, Differential and Difference Equations with Applications, Springer Proceedings in Mathematics \& Statistics, 230 (2018), 399-418.
[19] H. G. Romig, Discussions: Early History of Division by Zero, American Mathematical Monthly, 31, No. 8. (Oct., 1924), 387-389.
[20] S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra \& Matrix Theory, 4 (2014), no. 2, 87-95. http://www.scirp.org/journal/ALAMT/
[21] S. Saitoh, A reproducing kernel theory with some general applications, Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications - Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics, 177(2016), 151-182.
[22] S. Saitoh, Mysterious Properties of the Point at Infinity, arXiv:1712.09467 [math.GM](2017.12.17).
[23] S. Saitoh, We Can Divide the Numbers and Analytic Functions by Zero with a Natural Sense, viXra:1902.0058 submitted on 2019-02-03 22:47:53.
[24] S. Saitoh, Zero and Infinity; Their Interrelation by Means of Division by Zero, viXra:1902.0240 submitted on 2019-02-13 22:57:25.
[25] S. Saitoh, Division by Zero Calculus in Multiply Dimensions and Open Problems, viXra:1903.0371 submitted on 2019-03-20 23:56:47.
[26] S.K.S. Sen and R. P. Agarwal, ZERO A Landmark Discovery, the Dreadful Void, and the Unitimate Mind, ELSEVIER (2016).
[27] F. Soddy, The Kiss Precise, Nature 137(1936), 1021. doi:10.1038/1371021a0.
[28] E. Sondheimer and A. Rogerson, NUMBERS AND INFINITY A Historical Account of Mathematical Concepts, Dover (2006) unabridged republication of the published by Cambridge University Press, Cambridge (1981).
[29] S.-E. Takahasi, M. Tsukada and Y. Kobayashi, Classification of continuous fractional binary operations on the real and complex fields, Tokyo Journal of Mathematics, 38(2015), no. 2, 369-380.
[30] A. Takeuchi, Nonimmersiblity of $P^{n} \backslash S$ into \mathbf{C}^{n}, Math. Japon. 25 (1980), no. 6, 697-701.

