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Abstract 

The sum-of-squares relationship connects the square of elementary particle masses to the square of the 
Fermi scale. It constrains the spectrum of free parameters in the Standard Model (SM) and it suggests a 
straightforward resolution to the hierarchy problem. Here we show that this relationship follows from the 
minimal fractal structure of spacetime near the Fermi scale and supports the view that Dark Matter behaves 
as long-range multifractal replica of the SM. 
 
Key words: Sum-of-squares, Standard Model, Minimal fractal manifold, Dark Matter, Cantor Dust.  
 
 

1. Introduction and Background 

The sum-of-square relationship of the SM links the square of elementary particle masses 

to the square of the Fermi scale ( v ) viz.  

 2 2 2 2 2vW Z H f

f
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where ,W Z  and H  stand for the electroweak and the Higgs bosons, respectively, and the 

sum in the left-hand side is taken over the whole spectrum of SM fermions [1-2]. The 

contribution of bosons and fermions in (1) is split in nearly equal shares, that is, 
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As conjectured in [2], (1) and (2) arise from the minimal fractal structure of spacetime 

near the Fermi scale, with (1) pointing to an unexpected resolution of the hierarchy 
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problem. The goal here is to elaborate on this conjecture by appealing to concepts related 

to the geometry of multifractal Cantor set and to the attributes of random walks.  

2. Multifractal Cantor Set in mass space  

We proceed by introducing the concept of mass space   as an abstract Cartesian space 

formed by multiple mass coordinates. The spectrum of SM masses is entirely contained 

in its mass space, which is accordingly labeled SM    , 1, 2,...,jm j n= . Pursuing the 

framework of ideas put forward in [2, 8], the goal of this section is to uncover the 

dimensional description of SM  as a multifractal Cantor set.    

It is known that fractals are typically created starting from an elementary geometric object 

(the generator) and allowing its components ( 1,2,...,i L= ) to be independently scaled by 

a factor ir , where 1ir   [3]. Consider the simplest case of a Cantor set with two scales, 

1 1 1m =     and  2 2 1m =   . The recursive construction of the Cantor set consists of 

taking the segment of unit mass length, dividing it into segments of lengths 

1 1 2 2,1 ( ),   − +  and removing the middle segment. The division of segments continues 

indefinitely, generating a scale-reduced replica of the original construction. Aside from a 

scale factor, the subsets lying in the disjoint intervals  10,   and  21 ,1−  are images of 

the whole set. Assume that the whole set is covered with unit segments (or dimensional 

boxes) of size  . By definition, the number of boxes needed to cover the set is given by  

 ( )N  ~ HD −    (3) 
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in which HD  stands for the Hausdorff dimension. Upon magnification with scales 11 

and 21  , the number of boxes covering the interval  10,   and  21 ,1−  are 1( )N    and 

2( )N   , respectively, which leads to 
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= +   (4) 

or 

 1 2 1H HD D + =   (5) 

The generalization of (5) when the generator is composed by Q  elements is 

straightforward, namely,  
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3. Random walk in mass space and its Hausdorff dimension 

Here we follow [3] in detail and assume that there is a probability distribution function 

underlying a random walk (RW) in 3d Q=   dimensions of the mass space. It can 

typically take the form of a Gaussian or of a more general expression solely dependent on 

the magnitude of the mass coordinate, 

 ( ) ( )p p =   (7) 
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We further confine the discussion to the case of RW’s of fixed step size 0  and posit that 

the magnitude of the step is commensurate with the dimensional box introduced above 

(that is, 0 ( )O = ). In addition, we demand that all the moments of (7) stay finite. When 

3Q = , (7) can be written as 

 02
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( ) ( )

4
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= −   (8) 

in which (...)D stands for the Dirac delta function.  

The explicit construction of the probability function starts with defining of a “coarse-

grained” RW step  
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leading to 

 1 1( ) ,..., ( ') ( ),..., ( )d d

n D nP d d p p       = −   (10) 

Introducing the Fourier transform of the delta function turns (10) into 
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d

d k
P ik ik  


 = −  
    (11) 

in which the characteristic function of the probability distribution function ( )p   is given 

by 
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 ( ) exp( exp( ) ( )dg k ik d ik p   =  =    (12) 

One may invoke the cumulant expansion of the characteristic function, along with the 

symmetry condition 0 = , to show that the coarse-grained distribution (11) takes the 

form 

 2 2

0( ') exp( ')exp( ...)
(2 ) 2

d

d

d k n
P ik k  


= −  − +   (13) 

where 2

0  is defined through the matrix of second moments 2

  as in 

 2 2

0           = − =   (14) 

It can be also shown that the integrand of (13) is dominated by Fourier vectors k  having 

magnitudes on the order of 

 
2

0

1
( )k O

n
=   (15) 

Under these circumstances, (13) can be reduced to the familiar Gaussian distribution, 

namely, 
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By symmetry, after n  RW steps, the average “distance” in SM  is ' 0 =  and, since the 

individual steps are statistically uncorrelated, we have  
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 0   =   (17) 

for   . As a result, 
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and the average root-mean-square distance amounts to 

 
2

0 ( )n O n   = = =   (19) 

If 1n , the RW may be partitioned into q  sub-walks having n q steps. Further 

assuming that 1 q n  , one can repeat the previous arguments for each of the sub-

walks. By analogy with (19), the root-mean-square distance covered by each sub-walk is 

 ( ) ( )q O q =   (20) 

Relations (19) and (20) indicate that the RW of n  steps is nearly self-similar to the RW 

of n q  steps, each walk being defined by a length dependent on  . Let ( )N   denote the 

number of dimensional boxes needed to cover the walk. Self-similarity arguments imply 

that ( )N   scales as  

 ( )N   ~ 2 HD  −− =   (21) 
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which shows that the Hausdorff dimension of the RW is 2HD = . Note that the same 

dimension applies for quantum mechanical paths, which hints to the underlying fractality 

of spacetime near or above the Fermi scale [10-12]. 

It is apparent that the sum-of-square relationship (1) can be directly recovered from 

replacing j  with ( v)jm  and from the combined use of (6) and (21).    

4. Cantor Dust as long-range replica of the SM 

Recent research suggests that Dark Matter is a large-scale dimensional condensate of 

Cantor Dust, a topological structure emerging from the minimal fractal geometry of 

spacetime near or above the Fermi scale [4, 7, 9]. Remarkably, the Hausdorff dimension 

of Cantor Dust in three-dimensional space falls close to 2HD =  and so is the Hausdorff 

dimensions of Penrose tiling used in modelling of atomic clusters and diffusion limited 

aggregation [5-7]. Taken together, these considerations favor the view that Dark Matter 

is a long-range replica of the SM and it behaves like a superfluid phase on cosmic scales 

[9].    
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