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Abstract 
Objective. From a theoretical point of view, the demarcation between science and (fantastical) pseudoscience is 
in necessary for both practical and theoretical reasons. One specific nature of pseudoscience in relation to science 
and other categories of human reasoning is the resistance to the facts.  
Methods. Several methods are analyzed which may be of use to prevent that belief is masqueraded genuinely as 
scientific knowledge. 
Results. Modus ponens, modus tollens and modus conversus are reanalyzed. Modus sine, logically equivalent to 
modus ponens is developed. Modus inversus and modus juris are described in detail. 
Conclusions. In our striving for knowledge, there is still much more scientific work to be done on the demarcation 
between science and pseudoscience. 
Keywords: non strict inequality, quantum mechanics, science, pseudoscience 
 
1. Introduction 
Acquiring long lasting and possibly generally valid scientific knowledge is concerned with problems which are 
closely related to central problems of science as such. At first blush, different scientific methods like inductive and 
deductive reasoning, systematic observation and experimentation and other methods of inquiry does not guarantee 
automatically the discovery and justification of new truths. Clear and sometimes formal standards or normative 
criteria for identifying advances and improvements in science with respect to mathematics are necessary too. In 
contrast to natural sciences, there is a widespread view that investigating fundamental questions concerning 
mathematics is to some extent problematic since the status of mathematical knowledge appears to be ultimate and 
therefore less open to revision than natural sciences. Narrowly speaking, even if the methods of investigation of 
natural sciences (more or less induction) may differ markedly from the methods of investigation in the mathematics 
(more or less deduction) there is usually a lot of overlap between them. both have at least on point in common, the 
(to many times possibly fruitless) hunt for the truth. The problem of course is, what is the truth and, in a way, easy 
to state, is there an absolute truth at all? The origins of the problems closely connected to the truth are traceable to 
ancient times and this simple statement masks a great deal of controversy. Is there at least one single knowledge, 
statement or axiom et cetera, which can or which must be accepted as being true by all scientist, since the axiomatic 
method is one of the crucial tools for mathematics? In an attempt to find a logically consistent answer to problems 
like this it is necessary to consider a number of distinct ways of answering questions about the nature of truth and 
the preservation of truth?  
Strategically, proceeding axiomatically has as one of many advantages to develop a theorem or a theory in a 
rigorous way from some fundamental principles. This fundamental insight underpins the possibility of an 
axiomatic system (1) to serve, for later investigations, as a tool for discovery of errors inside a theory. As a matter 
of fact, Hilbert's demand to find a complete and consistent set of axioms for all mathematics was counteracted to 
some extent by Gödel's incompleteness theorems (2). But one way to handle these difficulties is to reject the 
possibility for the premises to be true but conclusion false. 
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2. Material and Methods 
Inequalities are widely used in many branches of physics and mathematics. In general, an inequality is a relation 
that holds between two values which are not equal, which are different. In mathematics, analytic number theory 
often operates with inequalities. Usually, an inequality is denoted by the symbols < or > or by the symbols < or >.. 
 
2.1 Definitions 
To date, mathematics is more or less a product of human thought and mere human imagination and belongs more 
to the world of human thought and mere human imagination then to experimentally determined sciences. In the 
following, it is of principal use to ground mathematics on nature grounded entities to disable the possibility to 
regard mathematics as a religion whose language are numbers, definitions et cetera than as science. 
 
Definition 2.1.1. (Number +1) 
Let c denote the speed of light in vacuum, let e0 denote the electric constant and let µ0 the magnetic constant. Let 
i denote the imaginary number (3). The number +1 is defined as the expression  
 

 +(𝑐$ × 𝜀' × 𝜇') ≡ +1 + 0 ≡ −𝑖$ = +1 (1) 

while “=” denotes the equals sign (4) or equality sign (5,6) used to indicate equality and “-” (7) (8) (5) denotes 
minus signs used to represent the operations of subtraction and the notions of negative as well and “+” denotes the 
plus (4) signs used to represent the operations of addition and the notions of positive as well. 
 
 
Definition 2.1.2. (Number +0) 
Let c denote the speed of light in vacuum, let e0 denote the electric constant and let µ0 the magnetic constant. Let 
i denote the imaginary. Let the arithmetic operation subtraction be signified by the minus sign (−). The number +0 
is defined as the expression  
 

 +(𝑐$ × 𝜀' × 𝜇') − (𝑐$ × 𝜀' × 𝜇') ≡ +1 − 1 ≡ −𝑖$ + 𝑖$ ≡ +0 (2) 

 
Definition 2.1.3. (The sample space) 
The sample space of an experiment or random variable or random trial is the set of all possible outcomes or results 
of that experiment or random variable or trial. Let At denote the sample space of a (Bernoulli distributed) random 
variable A which can take the values either +1 or +0 at a Bernoulli trial (period of time) t. Let Bt denote the sample 
space of another (Bernoulli distributed) random variable B which can take the values either +1 or +0 at the same 
Bernoulli trial (period of time) t. Let Pt denote the sample space of the premise, a (Bernoulli distributed) random 
variable P which can take the values either +1 or +0 at a Bernoulli trial (period of time) t. Let Ct denote the sample 
space of the conclusion, another (Bernoulli distributed) random variable C which can take the values either +1 or 
+0 at the same Bernoulli trial (period of time) t. In general, we define the sample space A at a Bernoulli trial/period 
of time t as  
 

 𝐴1 ≡ 2+01 , +11 4 (3) 

 
We define the sample space of B at a Bernoulli trial/period of time t as 
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 𝐵1 ≡ 2+01 , +11 4 (4) 

 
We define the sample space of a premise P at a Bernoulli trial/period of time t as  
 

 𝑃1 ≡ 2+01 , +11 4 (5) 

 
We define the sample space of a conclusion C at a Bernoulli trial/period of time t as  
 

 𝐶1 ≡ 2+01 , +11 4 (6) 

 
 
Definition 2.1.4. (Strict inequalities) 
A strict inequality (9) is an inequality where the inequality symbol is either < (strictly less than) or > (strictly 
greater than). Consequently, a strict inequality has no equality conditions. In terms of algebra, we obtain 
  

 𝐴1 < 𝐵1  (7) 

 
The notation At is < Bt means that “At is strictly less than Bt”. The following table (Table 1) may illustrate this 
relationship under the conditions above. 

 

Table 1. The strict inequality At < Bt. 

At < Bt  Conditioned Bt  
  Bt = +1 Bt = +0 Total 

Condition At 
At = +1 0 0  
At = +0 1 0  

 Total   1 
 
The strict inequality At < Bt describes the complementary part of the conditio sine qua non relationship without At 
no Bt. In other words, it is p(At < Bt) + p(At > Bt) = 1. Equally there may exist conditions where   
 

 𝐴1 > 𝐵1  (8) 

 
The notation At > Bt means that “At is strictly greater than Bt”. The following table (Table 2) may illustrate this 
relationship under the conditions above. 

 

 

 

Table 2. The strict inequality At > Bt. 
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At > Bt  Conditioned Bt  
  Bt = +1 Bt = +0 Total 

Condition At 
At = +1 0 1  
At = +0 0 0  

 Total   1 
 
As can be seen, the strict inequality At > Bt describes the complementary part of the conditio per qaum relationship 
if At then Bt. In other words, it is p(At > Bt) + p(At < Bt) = 1. 
 
Definition 2.1.5. (Non strict inequalities) 
In contrast to strict inequalities, a non-strict inequality is an inequality where the inequality symbol is > (either 
greater than or equal to) or < (either less than or equal to). Consequently, a non-strict inequality is an inequality 
which has an equality condition too. In terms of algebra, we obtain                                  
 

 𝐴1 ≤ 𝐵1  (9) 

 
The notation a < b means that “either At is less than Bt or At is equal to Bt”.  The following table (Table 3) may 
illustrate this relationship under the conditions above. 

 

Table 3. The non-strict inequality At < Bt. 

At < Bt  Conditioned Bt  
  Bt = +1 Bt = +0 Total 

Condition At 
At = +1 1 0  
At = +0 1 1  

 Total   1 
 

As can be seen, the non-strict inequality At < Bt describes the conditio per quam relationship if At then Bt. In 
other words, it is p(At < Bt) = 1 - p(At > Bt). The notation  
 

 𝐴1 ≥ 𝐵1  (10) 

 
means that “either At is greater than Bt or At is equal to Bt”. The logical content of the non-strict inequality At > 
Bt is clearly demonstrated by the following table (Table 4). 

 

Table 4. The non-strict inequality At > Bt. 

At > Bt  Conditioned Bt  
  Bt = +1 Bt = +0 Total 

Condition At 
At = +1 1 1  
At = +0 0 1  

 Total   1 
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As can be seen, the non-strict inequality At > Bt describes the conditio sine qua non relationship without At no Bt. 
In other words, it is p(At > Bt) = 1 - p(At < Bt). 
 
 
Definition 2.1.6. (Russell's paradox) 
 
Considering Cantor's power class theorem, Russell was the first to discuss a contradiction arising in the logic of 
sets or classes at length in his published works (10,11). Some sets are members of themselves, while other are not. 
The empty class or set must not be a member of itself. Thus far, according to Russell’s paradox (10,11), let R be 
the set of all sets (with certain properties). Either R is a member of itself or R is not a member of itself. Furthermore, 
either R contain itself or R does not contain itself. The following table may provide a preliminary overview (Table 
5). 

 

Table 5. Russell's paradox. 

R is the set of all sets.  R contains itself  
  Yes No Total 

R is member of itself 
Yes   U 
No c d U 

 Total W W 1 
 

 

Scholium. 

Russell's paradox (also known as Russell's antinomy), discovered by Bertrand Russell in 1901, demands that if R 
is not a member of itself (case U), then R’s definition dictates that it must contain itself (case c), and if R contains 
itself (case W), then R contradicts its own definition as the set of all sets that are not members of themselves.  
Russell’s conclusion is not justified and incorrect.  
Reasons. 
First of all, Russell is mismatching being member of itself and containing itself, both notions are due to Russell 
understanding not identical. In particular, if containing itself and being member of itself are two different and not 
identical or equivalent notions, then it is possible for the set of all set R to contain itself while being a member of 
itself or not being a member of itself. In the same respect, if containing itself and being member of itself are two 
different notions then it is possible for the set of all sets not being member of itself (case U) while containing itself 
(case c) or not containing itself (case d). But even in the case if R just contains itself, Russell’s conclusion is 
incorrect. In this case we obtain the following situation (Table 6). 

 

Table 6. Russell's paradox. 

R is the set of all sets.  R contains itself  
  Yes  Total 

R is member of itself 
Yes   U 
No c  U 

 Total W  1 
 

Even if R contains itself, according to Russel, R must not be a member of itself otherwise being member of itself 
and containing itself would mean the same. 
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Definition 2.1.7. (The ten commandments of a fair scientific engagement) 
 

I) The axiom principium identitatis (i. e. +1=+1) is the only principle you must respect. You shall not 
respect any other axioms before principium identitatis. 

II) You shall not tolerate any individual unscientific behavior or any other errors in science. 
III) You shall not misuse principium identitatis. 
IV) You shall make sure that at least every seventh of your publications must start with or must be 

devoted to principium identitatis. 
V) You shall honor your former scientific predecessors since the beginning of time and your present 

scientific competitor too. Without those, you would not be there, where you are today. 
VI) You shall not put into question the reputation or the integrity of your scientific colleagues. 
VII) You shall not work on two different scientific projects, articles et cetera at the same time. 
VIII) You shall not forget to give credit or reference to another scientist.  
IX) You shall not bear false witness against your former scientific predecessors, your scientific 

competitor or yourself. 
X) You shall respect the work of the colleagues you are working night or day together. 

 
2.1. Methods 
Detecting inconsistencies and inadequacies in scientific theories and resolving contradictions is of particular 
importance within science itself. Experiments or experience can help us many times to decide upon the truth or 
falsity of natural laws but do not provide any help to trace these inconsistencies and inadequacies back to the 
fundamental axioms from which they spring. Unfortunately, even peer-reviewed published or proposed theorems 
or statements of science and mathematics are not automatically correct. Whenever we find that a system has been 
questioned somehow, we shall test the same again and reject it if possible, as circumstances may require. It is 
necessary to prove these theorems while using rigorous proof methods of science and mathematics which are 
acceptable beyond any shadow of doubt. In order to formulate methodological rules which, prevent us to adopt 
inconsistencies and inadequacies in scientific theories it necessary to consider that the results of (thought) 
experiments are either to be rejected, or to be accepted. 
 
2.2.1. Direct Proof  
A direct (mathematical) proof demonstrates the truth or falsehood of a given equation, statement by a 
straightforward combination of established facts. 
 
2.2.2. Proof by modus ponens  
Explicitly, the modus ponens statement is Pt → Ct or “If Pt is true, then Ct is true” (Table 7). In other words, 
modus ponens demands that (Pt  ® Ct) = +1 and that Pt = +1 is true. 
 
Table 7. Modus ponens: if the premisse Pt is true then the conclusion Ct is true (Pt ® Ct). 

Pt ® Ct  Ct  
  Ct = +1 Ct = +0 Total 

Pt 
Pt = +1 1 0  
Pt = +0 1 1  

 Total   1 
 
The modus ponens demands that Pt = +1 (Table 7). In this case, the conclusion is that Ct = +1 too. 
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Table 8. Modus ponens: if the premisse Pt is true then the conclusion Ct is true (Pt ® Ct). Pt = +1. Ergo: Ct = +1. 

Pt ® Ct  Ct  
  Ct = +1 Ct = +0 Total 

Pt 
Pt = +1 1 0  
Pt = +0 1 1  

 Total   1 
 

The proof by modus ponens in classical two-valued logic can be clearly demonstrated by use of the following table 
9. 
 
 
 Table 9.  

Proof by modus ponens.   
Claim.   
 (Premise 1) Pt → Ct 
Proof.   
 (Premise 2) Pt 
Decision.   
 (Conclusion) Ct  
Quod erat demonstrandum.   

 
 
Scholium. 
Modus ponens is grounded on the preservation of truth but the same has been criticized (12) too. Many times, 
modus ponens is used for time depended processes too where an antecedent is prior in time to a consequent. An 
inappropriate use of modus pones under these conditions can lead to contradictions. It is necessary to apply modus 
ponens especially on events which occur together, at the same (period of time) t. The following example may 
formalize modus ponens in more detail. For the sake of simplicity, we define P1 = (+1=+1), we define P2 = (+2=+2) 
and we define C1 = (+3=+3). The proof by modus ponens is as follows. 
 
 
Proof by modus ponens I.   
Claim.   
Premise 1: P1 → C2: if the premisse P1 = (+1=+1) is true then the conclusion C1 = (+3=+3) is true. 
Proof.   
Premise 2: P1 : +1 = +1 is true. 
Adding +2 we obtain +2 +1 = +2 + 1 or +3=+3. 
Decision. (Conclusion)  
C1 = (+3=+3) is true. 
Quod erat demonstrandum. 
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Proof by modus ponens II.   
Claim.   
Premise 1: P2 → C1: if the premisse P2 = (+2=+2) is true then the conclusion C1 = (+3=+3) is true. 
Proof.   
Premise 2: P2 : +2 = +2 is true. 
Adding +1 we obtain +2 +1 = +2 + 1 or +3=+3. 
Decision. (Conclusion)  
C1 = (+3=+3) is true. 
Quod erat demonstrandum. 
 
Modus ponens allows that one and the same conclusion C1 = (+3=+3) is true and can be deduced from different 
points of view, from different premisses. In the case of the premisse P1 it is true that +1=+1. The premise P2 is 
because of premise P1 not incorrect, because P2 : +2 = +2 is also true, the premise P2 is just not used for the proof 
performed. However, as can be seen in the second proof, the premise P2 can used for the proof too without any 
restriction. Thus far, modus ponens cannot be misused for claims that from something incorrect or non-existent 
(P1 = +0) something correct (C1 = +0) follows. This would provide evidence of creatio ex nihilio. 
 
 
 
2.2.3. Proof by modus securus - anti modus ponens  
In point of fact, modus ponens demands that “if Pt is true then Ct is true” or Pt → Ct. Thus far, if the negation of 
modus ponens is true i. e. ¬(Pt → Ct) = true, then the original modus ponens proposition (and by extension the 
contrapositive) is false. The following table (Table 10) shows the case, when modus ponens is false. 
 
Table 10. Modus securus - Negation of modus ponens (Anti modus ponens):   
Premisse Pt is true and conclusion Ct is false ¬(Pt ® Ct). 

¬(Pt ® Ct)  Ct  
  Ct = +1 Ct = +0 Total 

Pt 
Pt = +1 0 1  
Pt = +0 0 0  

 Total   1 
 
Either modus ponens (Pt → Ct) is true or modus securus (¬(Pt → Ct)) is true but not both. 
 
 Table 11.  

Proof by modus securus.   
Claim.   
 (Premise 1) ¬(Pt → Ct) 
Proof.   
 (Premise 2) Pt 
Decision.   
 (Conclusion) ¬Ct  
Quod erat demonstrandum.   
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2.2.4. Proof by modus sine 
Modus ponens and modus sine are more than only closely related. Modus ponens and modus sine are logically 
equivalent: if a statement according to modus ponens is true, then the same statement according to modus sine 
(Table 12) is true, and vice versa. 
 
Table 12. Modus sine: Without premisse Pt is false no conclusion Ct is false (¬Pt ¬ ¬Ct). Pt = +0. Ergo: Ct = +0. 

¬Pt  ¬ ¬Ct  Ct  
  Ct = +0 Ct = +1 Total 

Pt 
Pt = +0 1 1  
Pt = +1 0 1  

 Total   1 
 

Modus sine doesn’t allow us to draw a false conclusion form a true premise. The proof by modus sine in classical 
two-valued logic can be demonstrated by use of the following table 
 
 
 Table 13.  

Proof by modus sine.   
Claim.   
 (Premise 1) ¬Pt ¬ ¬Ct 
Proof.   
 (Premise 2) ¬Pt 
Decision.   
 (Conclusion) ¬Ct  
Quod erat demonstrandum.   

 
 
Table 14.  

     Implication Modus sine Contrapositive 

Trial t Pt Ct ¬Pt ¬Ct (Pt → Ct) (¬Pt ¬ ¬Ct) (¬Ct → ¬Pt) 

1 1 1 0 0 1 1 1 

2 1 0 0 1 0 0 0 

3 0 1 1 0 1 1 1 

4 0 0 1 1 1 1 1 

 
In general, we obtain the logical equivalence of                                 
 

 (𝑃1 → 𝐶1) = =𝑃1 ∪ 𝐶1? = (¬𝑃1 ← ¬𝐶1) (11) 
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2.2.5. Proof by modus tollens 
Modus tollens and modus ponens are closely related.  Theophrastus was the first to explicitly describe the 
argument form modus tollens (13). A proof by modus tollens is determined by the secured relationship Pt → Ct. 
The logical consequence is that the negation of Ct implies the negation of Pt is valid. Following Popper, “… it is 
possible by means of purely deductive inferences (with the help of the modus tollens of classical logic) to argue 
from the truth of singular statements to the falsity of universal statements.” ( (14), p. 19). In other words, “By 
means of this mode of inference we falsify the whole system (the theory as well as the initial conditions) which 
was required for the deduction of the statement p, i.e. of the falsified statement.” ( (14), p. 56). In particular and in 
contrast to a proof by contrapositive, the modus tollens statement demands that Pt → Ct or that the premise “If Pt 
is true, then Ct is true” (Table 15) is given. 
 
 
 Table 15.  

Proof by modus tollens.   
Claim.   
 (Premise 1) Pt → Ct 
Proof.   
 (Premise 2) ¬ Ct 
Decision.   
 (Conclusion) ¬ Pt  
Quod erat demonstrandum.   

 
In other words, modus tollens demands that (Pt ® Ct) = +1 and that ¬ Ct = +1 is true. In this case, the conclusion 
is justified that ¬ Pt = +1 and is clearly demonstrated by use of the following table 16. 
 
Table 16. Modus tollens: if the premisse Pt is true then the conclusion Ct is true (Pt -> Ct). Ct =+0. Ergo: Pt =+0. 
 

Pt ® Ct  Ct  
  Ct = +1 Ct = +0 Total 

Pt 
Pt = +1 1 0  
Pt = +0 1 1  

 Total   1 
 
The modus tollens rule may be written as a theorem of propositional logic as 
 

 B= 𝑃1 → 𝐶1 ? ∩ ¬ 𝐶1 D → =¬ 𝑃1 ? (12) 
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  Table 17.  

Trial t Pt ¬ Pt Ct ¬ Ct Pt → Ct ((Pt → Ct)Ç¬ Ct) ¬ Pt ((Pt → Ct)Ç¬ Ct) ® (¬ Pt) 
1 1 0 1 0 1 0 0 1 
2 1 0 0 1 0 0 0 1 
3 0 1 1 0 1 0 1 1 
4 0 1 0 1 1 1 1 1 
… … … … … … … … … 

 
 
2.2.6. Proof by contraposition 
A proof by contraposition is based on the fact that the statement “if the premisse Pt is true then the conclusion Ct 
is true” is logically equivalent to the statement “if the premisse Pt is not true then the conclusion Ct is not true”. 
(Table 18). The proof by contraposition is not identical with the proof by modus tollens. In other words, in a proof 
by contraposition we show that Ct is false and then conclude that Pt is false too. 
 
Table 18. Proof by contraposition: if the conclusion Ct is not true then the premisse Pt is not true (¬Ct → ¬Pt). 

¬Ct → ¬Pt   Pt  
  Pt = +0 Pt = +1 Total 

Ct 
Ct = +0 1 0  
Ct = +1 1 1  

 Total   1 
 

Modus ponens and the proof by contrapositive are logically equivalent and are determined by the minimum 
demand that 
 

 = 𝑃1 ∩ 𝐶1 ? = =¬ 𝑃1 ∩ ¬ 𝐶1 ? = 	+1 = 𝑇𝑅𝑈𝐸 (13) 

 
The case Pt = +1 and Ct = +0 is neither compatible with the equation 

 = 𝑃1 ∩ 𝐶1 ? = (1 ∩ 0) = 	+0 (14) 

nor with the equation 

 =¬ 𝑃1 ∩ ¬ 𝐶1 ? = (0 ∩ 1) = 	+0 (15) 

In general, logical equivalence doesn’t care whether a glass is half-full or half-empty. This is a matter of personal 
taste. A statement and its contrapositive are logically equivalent or it is  
 

 = 𝑃1 ? → = 𝐶1 ? ≡ =¬ 𝐶1 ? → =¬ 𝑃1 ? = +1 = 𝑇𝑅𝑈𝐸 (16) 
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The contrapositive of a certain statement has the same truth value (truth or falsity) as the statement itself. If a 
contrapositive is true, then its statement is true (and vice versa). If a contrapositive is false, then its statement is 
false (and vice versa). 
 
 Table 19.  

Proof by contraposition.   
Claim.   
 (Premise 1) ¬Ct → ¬Pt 
Proof.   
 (Premise 2) ¬ Ct 
Decision.   
 (Conclusion) ¬ Pt  
Quod erat demonstrandum.   

 
2.2.7. Modus inversus 
The proof by inversion (modus inversus) is a valid rule of inference or a proof method “by which from a given 
proposition another is derived having for its subject the contradictory of the original subject and for its predicate 
the contradictory of the original predicate.” (Toohey 1948, p. 51). In general, the inverse of the statement Pt → Ct 
(“If Pt is true, then Ct is true”) is known to be the statement or the equation ¬Pt → ¬Ct  or in spoken language: 
“If Pt is false, then Ct is false” while the logical equivalent is viewed by the table (Table 20). In this context, it is 
worth to point out, that the basic relationship (Pt → Ct) = (¬¬Pt → ¬¬Ct) is valid. In other words, a direct proof 
provided without any technical errors which is grounded on something false must end up in something false.  
 
Table 20. Modus inversus: if the premisse Pt is false then the conclusion Ct is flase (¬Pt ® ¬Ct). Pt =+0. Ergo: Ct 
=+0. 

¬Pt ® ¬Ct  Ct  
  Ct = +0 Ct = +1 Total 

Pt 
Pt = +0 1 0  
Pt = +1 1 1  

 Total   1 
 
The proof by modus inversus is viewed by the following table (Table 21). The logical equivalent of modus inversus 
is (Pt ¬ Ct). 
 
 Table 21.  

Proof by modus inversus.   
Claim.   
 (Premise 1) ¬Pt → ¬Ct 
Proof.   
 (Premise 2) ¬ Pt 
Decision.   
 (Conclusion) ¬ Ct  
Quod erat demonstrandum.   

 
 



Ilija Barukčić viXra Vol. 11, No. 6; 2019 

 8 Published by viXra 
© 2019 Ilija Barukčić, Jever, Germany. All rights reserved. http://vixra.org/author/ilija_barukcic 

 

 
2.2.8. Proof by modus juris (anti modus inversus)  
In point of fact, modus inversus demands that “if the premisse Pt is false then the conclusion Ct is flase (¬Pt ® 
¬Ct). Pt =+0. Ergo: Ct =+0. Thus far, if the negation of modus inversus is true i. e. ¬(¬Pt ® ¬Ct) = true, then the 
original modus inversus proposition (and by extension the contrapositive) is false. The following table (Table 22) 
shows the case, when modus inversus is false. 
 
Table 22. Modus juris (Negation of modus inversus):  Premisse Pt is false and conclusion Ct is true ¬(¬Pt ® 
¬Ct). 
 

¬(¬Pt ® ¬Ct)  Ct  
  Ct = +0 Ct = +1 Total 

Pt 
Pt = +0 0 1  
Pt = +1 0 0  

 Total   1 
 
Either modus inversus (¬Pt ® ¬Ct) is true or modus juris (¬(¬Pt ® ¬Ct)) is true but not both. 
 
 Table 23.  

Proof by modus juris.   
Claim.   
 (Premise 1) ¬(¬Pt ® ¬Ct) 
Proof.   
 (Premise 2) Pt 
Decision.   
 (Conclusion) ¬ Ct  
Quod erat demonstrandum.   

 
 
2.2.9. Modus conversus 
The inverse of Pt → Ct is ¬ Pt → ¬ Ct and logically equivalent to the contrapositive (¬ Ct → ¬ Pt) of the converse 
(Ct → Pt). The contrapositive of the statement “if the premisse Pt is false then the conclusion Ct is false” is logically 
equivalent to the statement “without premisse Pt is true no conclusion Ct is true”. In logic, the converse of an 
implicational statement is the result of reversing its two parts of Pt → Ct to Ct → Pt (Table 24). 
 
Table 24. Modus conversus 
 

Ct  ® Pt  Pt  
  Pt = +1 Pt = +0 Total 

Ct 
Ct = +1 1 0  
Ct = +0 1 1  

 Total   1 
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The dominance of modus ponens over the other modi is not justified. One disadvantage of modus ponens is that 
conclusions with false antecedents are considered true. In opposite to modus ponens, modus conversus does not 
allow to conclude a true conclusion (Ct = +1) from a false premise (Pt = +0). Table 25  provides us with an 
overview. 
 
Table 25.  

   Implication Converse   Contrapositive Inverse 

Trial t Pt Ct (Pt → Ct) (Ct → Pt) ¬Pt ¬Ct (¬Ct → ¬Pt) (¬Pt → ¬Ct) 

1 1 1 1 1 0 0 1 1 

2 1 0 0 1 0 1 0 1 

3 0 1 1 0 1 0 1 0 

4 0 0 1 1 1 1 1 1 

 
Note that the converse of Pt → Ct is Ct → Pt. The contrapositive of Pt → Ct is ¬Ct → ¬Pt and has the same truth 
values as Pt → Ct or it is Pt → Ct = ¬Ct → ¬Pt. The inverse of Pt → Ct is ¬Pt → ¬Ct. The converse of Pt → Ct and 
the inverse of Pt → Ct have the same truth values or it is Ct → Pt = ¬Pt → ¬Ct. In general, the inverse of premise 
Pt → Ct is the same as the contrapositive of the converse. Besides of all differences, the implication, the 
converse, the contrapositive and the inverse agree all completely at the trial t=1 and the trial t=4. 
 
2.2.10. Proof by contradiction (Reductio ad absurdum) 
In point of fact, it is difficult for scientists prove a theorem, a theory et cetera to be true for ever. Regardless of 
how many positive examples appear to support a theorem or a theory, one single counter-example or one single 
contradictory instance to a theory is sufficient enough to falsify the general validity of a theorem or of a theory et 
cetera. A proof by contradiction (15,16) is such a scientific proof method which is able to proof the general the 
falsity or the truth of a statement, an equality, a principle (P) et cetera. Reduction to the impossible is a style of 
reasoning found repeatedly in Aristotle's Prior Analytics (17). Throughout the history of philosophy and 
mathematics from classical antiquity onwards there have been circumstances where a thesis had to be accepted 
because its rejection would be untenable. “The proof ... reductio ad absurdum, which Euclid loved so much, is one 
of the mathematician’s finest weapons” ((18), p. 94). A contradiction in a formal axiomatic system can prove any 
theorem true. In other words, according to the to the principle of explosion from a contradiction, anything follows 
(ex contradictione sequitur quodlibet). Even if there are trials advocated especially by the Peruvian philosopher 
Francisco Miró Quesada to establish something like a system of paraconsistent logic (19) which attempts to deal 
with contradictions (20), the progress has been very slow. In short, a proof by contradiction demands to assume 
that Pt is false. In the following assume that ¬Pt is true and derive a contradiction. Since Pt cannot be both true and 
false, Pt is false. 
 
 
 Table 26.  

Proof by contradiction.   
Claim.   
 (Premise 1) Pt is false. 
Proof.   
 (Premise 2) ¬ Pt is true. 
Decision.   
 (Conclusion) Derive a contradiction from ¬ Pt is 

true.  
Quod erat demonstrandum.   
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Something impossible or incorrect cannot be derived from something correct as long as there are nor technical or 
other errors inside a proof. 
 
 
 
2.2.11. Proof by counterexample 
Can we learn anything from scientific theories or from experiments? Theoretically, one single experiment (21) has 
the potential to refute a whole theory. Historically, no theory has been refuted by one single experiment. In 
philosophy, mathematics, physics or in science as such, it is not all the time possible to prove all scientific claims 
in time beyond any doubt. The proof by a counterexample (22–25) is a valid proof methodology to infer 
consequences of scientific claims or theories and to demonstrate clearly that a certain scientific position is wrong 
by showing that it does not apply in certain cases. A counterexample which is able to derive a logical contradiction 
in the absences of technical and other errors out of a theorem or a theory refutes the same. 
 
 
2.3. Axioms 
 
2.3.1. Principium identitatis 
 

 +1 = +1 (17) 

 
2.3.2 Principium contradictionis 
Contradictions are an objective and important feature (Barukčić, 2019c) of objective reality. Still, contradictions 
in theorems, arguments and theories would allow us to conclude everything desired. In contrast to religion and 
other domains of human culture, one very important and at the end to some extent normative criteria to achieve 
some advances and progress in science is depended on detecting contradictions in science and eliminating the same 
too. The most important point is that even if we are surrounded by contradictions a co-moving observer (Barukčić, 
2019c) will always find that something is either +1=+1 or +0=+0 but not both, i. e. it is not +1 = +0. The simplest 
form of Aristotle’s law of contradiction (Barukčić, 2019a; Barukčić, 2019b; Barukčić, 2019c; ) is defined as 
 

 +0 = +1 (18) 

 
However, according to Popper, a philosopher of science of the 20th century, contradiction is the demarcation line 
between science and ‘non-science’. “We see from this that if a theory contains a contradiction, then it entails 
everything, and therefore, indeed, nothing[...]. A theory which involves a contradiction is therefore entirely useless 
as a theory”. ((14), p. 429). In particular, to face the threat of a logical or scientific Armageddon and the breakdown 
of any logical coherence posed by accepting the contradiction +0 = +1, it is necessary to formulate the same clearly. 
Far from reduced to the silence of deep space given due to the explosive effect of ex contradictione quodlibet, 
there are circumstances of special theory of relativity where it is possible to allow a kind of inconsistency without 
logical incoherence (20). A proof can be based on principium contradictionis, the premise like +0 = +1 can justify 
further conclusions. A sound argument would follow if the conclusions were logically derived from the premises 
(26) without any technical errors. The result would have to be a mistake, since we started with a mistake. In contrast 
to a sound argument a valid argument is a sound argument while all the premises are true. If anything after the 
false premise is true and logically consistent then in the absence of any technical errors the conclusion itself must 
be false too. 
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3. Results 
 
Theorem 3.1. (At < Bt and disjunction) 
The strict inequality At < Bt is not identical with an inclusive disjunction, also known as alternation. 
 
Proof.  
The truth table of logical disjunction is (At  È Bt) is defined as follows (Table 27). 
 
Table 27. Logical disjunction 
 

At  È Bt  Bt  

  Bt = +1 Bt = +0 Total 

At 
At = +1 at= yes bt= yes  
At = +0 ct= yes dt= no  

 Total   1 
 
The strict inequality At < Bt is defined as follows (Table 28). 
 
Table 28. Strict inequality At < Bt 
 

At  <  Bt  Bt  

  Bt = +1 Bt = +0 Total 

At 
At = +1 at= no bt= no  
At = +0 ct= yes dt= no  

 Total   1 
 
Logical disjunction and the strict inequality agree on in case ct = ((At = +0)Ç (Bt = +1)) but not in general. The 
strict inequality At < Bt is not identical with of inclusive disjunction. 
Quod erat demonstrandum. 
 
 
 
Remark 1. 
 
This proof is of importance for quantum theory too. 
 
 
 
 
 
 
 



Ilija Barukčić viXra Vol. 11, No. 6; 2019 

 8 Published by viXra 
© 2019 Ilija Barukčić, Jever, Germany. All rights reserved. http://vixra.org/author/ilija_barukcic 

 

Theorem 3.2. (At > Bt and disjunction) 
The strict inequality At > Bt is not identical with an inclusive disjunction, also known as alternation. 
 
Proof.  
The truth table of logical disjunction is (At  È Bt) is defined as follows (Table 29). 
 
Table 29. Logical disjunction 
 

At  È Bt  Bt  

  Bt = +1 Bt = +0 Total 

At 
At = +1 at= yes bt= yes  
At = +0 ct= yes dt= no  

 Total   1 
 
The strict inequality At > Bt is defined as follows (Table 30). 
 
Table 30. Strict inequality At > Bt 
 

At  >  Bt  Bt  

  Bt = +1 Bt = +0 Total 

At 
At = +1 at= no bt= yes  
At = +0 ct= no dt= no  

 Total   1 
 
Logical disjunction and the strict inequality At > Bt  agree on in case bt = ((At = +1)Ç (Bt = +0)) but not in general. 
The strict inequality At > Bt is not identical with of inclusive disjunction. 
Quod erat demonstrandum. 
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Theorem 3.3. (At < Bt and material implication) 
The strict inequality At < Bt is identical with material implication. 
 
Proof.  
The truth table of material implication is (At  ® Bt) is defined as follows (Table 27). 
 
Table 31. Logical disjunction 
 

At  ® Bt  Bt  

  Bt = +1 Bt = +0 Total 

At 
At = +1 at= yes bt= no  
At = +0 ct= yes dt= yes  

 Total   1 
 
The non-strict inequality At < Bt is defined as follows (Table 28). 
 
Table 32. Non-strict inequality At < Bt 
 

At  <  Bt  Bt  

  Bt = +1 Bt = +0 Total 

At 
At = +1 at= yes bt= no  
At = +0 ct= yes dt= yes  

 Total   1 
 
Material implication and non-strict inequality At < Bt  agree in all cases. The non-strict inequality At < Bt is 
identical with material disjunction. 
Quod erat demonstrandum. 
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Theorem 3.4. (At > Bt and disjunction) 
The non-strict inequality At > Bt is identical with conditio sine qua non. 
 
Proof.  
The truth table of conditio sine qua non is (At  ¬ Bt) is defined as follows (Table 29). 
 
Table 33. Conditio sine qua non 
 

At  ¬ Bt  Bt  

  Bt = +1 Bt = +0 Total 

At 
At = +1 at= yes bt= yes  
At = +0 ct= no dt= yes  

 Total   1 
 
The non-strict inequality At > Bt is defined as follows (Table 30). 
 
Table 34. Non-strict inequality At > Bt 
 

At  >  Bt  Bt  

  Bt = +1 Bt = +0 Total 

At 
At = +1 at= yes bt= yes  
At = +0 ct= no dt= yes  

 Total   1 
 
Conditio sine qua non and the non-strict inequality At > Bt  agree on all cases. The non-strict inequality At > Bt is 
identical with conditio sine qua non. 
Quod erat demonstrandum. 
 
Remark 2. 
This proof demonstrates clearly the equivalence of the non-strict inequality At > Bt and conditio sine qua non. 
Especially, it is not true, that the non-strict inequality At > Bt is identical with (an inclusive/exclusive) 
disjunction. The non-strict inequality At > Bt can be simplified as either (At = Bt) or (At > Bt) but not both at 
the same trial. Furthermore, both cases either (At = Bt) or (At > Bt) are a determining part of the non-strict 
inequality At > Bt. If the case (At > Bt) is not allowed, then the use of the non-strict inequality At > Bt is not 
allowed too, since the same demands that it must be possible that (At > Bt) too. Using the non-strict inequality 
At > Bt without allowing the case (At > Bt) implies a mis-use of the non-strict inequality At > Bt and can be 
the source of many contradictions. The variance  s(Xt)2 is defined as  s(Xt)2 =  E ((Xt)2)  - E(Xt)2 and can 
take the values  s(Xt)2 > 0, where E denotes the expectation values. In principle, it is allowed that either 
 s(Xt)2 > 0 or  s(Xt)2 = 0, but not both at the same trial t / (period of) time t.  
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Theorem 3.5. (The preservation of contradiction.) 
We inevitably make mistakes and have false beliefs. To prevent lapsing into absurdity, hypothesis can be tested 
only on clear foundations. In general, it is claimed that from a contradictory premise, anything follows, which 
contradicts the principle of the preservation of contradictions. However, in the absence of technical errors, if 
something contains a contradiction then everything else derived from such a contradiction should obtain a 
contradiction too (preservation of contradiction) otherwise it must be possible without one exemption the derive a 
true conclusion form a false premise. 
Claim. 
In the absence of technical errors, it is generally valid, that the contradiction is preserved. 
Proof by modus juris.  
In opposite to our claim, we assume the negation of the same or in other words: it is generally valid, that the 
contradiction is not preserved. Consequently, starting with a false premise (Pt : +1=+0 is false), we are not able to 
find one single case where it is not possible to derive a true conclusion (Ct : +3=+3 is true) from a false premise. 
The proof of this theorem is performed by modus juris and logically structured as follows.  

 𝑃1 ≡ (+1 = +0)
𝐶1 ≡ (+3 = +3)

𝑃𝑟𝑒𝑚𝑖𝑠𝑒	1: 𝑃1 = (+1 = +0)	𝑖𝑠	𝑓𝑎𝑙𝑠𝑒 𝑎𝑛𝑑 𝐶1 = (+3 = +3)	𝑖𝑠	𝑡𝑟𝑢𝑒.
 (19) 

The premise 2 of our proof by modus juris is  
 +1 = +0 (20) 

false. Adding +2 on both sides of the equation, it is  
 (+1) + (+2) = (+0) + (+2) (21) 

or 
 (+3) = (+2) (22) 

 
Quod erat demonstrandum. 
 
Remark 3. 
We started with the proof above with a false premise (Pt: +1=+0). Our expectation was, that this contradiction 
will not be preserved with the consequence that we should be able to derive a true conclusion but we failed. 
In the absence of technical errors, it was not possible to derive a true conclusion (Ct: +3=+3 is true) from a 
false premise, which completes our proof. From a contradiction, a contradiction follows. It was mentioned 
before that modus ponens allows to derive a true conclusion from different premises. If one concrete and 
single premise (i. e. Pt is true) is used to derive a true conclusion, then the rest (i. e. Pt is false) of many other 
possible but true premises is equally not used for these purposes. Modus pones just don’t care about the rest 
of all other possible premises to derive a true conclusion, modus ponens considers only one single premise 
and insists that from such a single and true premise a true conclusion must be drawn. To be precise, the 
conclusion that modus ponens allows to derive a true conclusion from a false premise is incorrect. As a result, 
obtaining of true and long-lasting scientific knowledge conducted through most simple step-by-step proofs 
has the potential to overcome obscurity and confusion in science. Searching for true scientific knowledge is 
a risky gesture. Still, either modus inversus (¬Pt ® ¬Ct) is generally true or modus juris (¬(¬Pt ® ¬Ct)) is 
generally true but not both. The proof demonstrated that modus juris, the negation of modus inversus, is not 
generally true. Consequently, we must accept that modus inversus is generally true and of use for further 
purposes. Nonetheless, contemporary approaches taken to develop a system of paraconsistent logic (20,27–
32) which we have so far seen need to ensure the preservation of truth. Despite the fact that paraconsistent 
logic is to some extent the rejection of classical logic, even a system of paraconsistent logic cannot avoid the 
explosion principle (ex contradictione quodlibet) when faced with a contradiction, where a contradiction is 
present. The contradiction is preserved especially according modus inversus (¬Pt ¬ ¬Ct) too which is the 
logical equivalent of modus ponens (Pt → Ct). Modus inversus as the other side of modus ponens demands 
that without a false premisse Pt no false conclusion. 
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Theorem 3.6. (The rule of the multiplication by zero is incorrect) 
 
Claim. 
In the absence of technical errors, today’s rule of the multiplication by zero leads to a contradiction and is 
incorrect. 
 
Proof by modus inversus.  
The proof by modus inversus is logically structured as follows.  
 

 𝑃1 ≡ (+1 = +0)
𝐶1 ≡ (+3 = +2)

𝑃𝑟𝑒𝑚𝑖𝑠𝑒	1: 𝑖𝑓 𝑃1 = (+1 = +0)	𝑖𝑠	𝑓𝑎𝑙𝑠𝑒, 𝑡ℎ𝑒𝑛 𝐶1 = (+3 = +2)	𝑖𝑠	𝑓𝑎𝑙𝑠𝑒.
 (23) 

The premise 2 of our proof by modus sine is  
 +1 = +0 (24) 

false. Adding +2 on both sides of the equation, it is  
 

 (+1) + (+2) = (+0) + (+2) (25) 

or 
 (+3) = (+2) (26) 

which is correct according to the proof by modus inversus (if Pt (+1=+0) is false then Ct (+3=+2) is false). The 
following changes of this equation are mathematically without any technical error and correct. These changes must 
preserve this contradiction. Multiplying by zero, it is 

 (+3) × (+0) = (+2) × (+0) (27) 

According to our today’s rules of the multiplication by zero, this is equivalent with 
 (+0) = (+0) (28) 

In other words, our today’s rules of the multiplication by zero equalizes differences and are able to change 
something false to something true without any logical necessity. Thus far, it is 

 (+1 − 1) = (+1 − 1) (29) 

or  
 (+1) = (+1) (30) 

 
Quod erat demonstrandum. 
 
 
Remark 4. 
We started with something incorrect and derived something correct. Thus far, one conclusion could be that from 
contradictory premises, anything follows, even something which is true. This is not convincing. The problem is 
today’s rule of the multiplication by zero which changes +3 = +2 to +0=+0 and at the end to +1=+1. Still, either 
modus inversus (¬Pt ® ¬Ct) is true or modus juris (¬(¬Pt ® ¬Ct)) is true but not both. The consequence is, that 
we must reject today’s rule of the multiplication by zero as incorrect. In general, without a false premisse Pt no 
false conclusion Ct (modus inversus) with the consequence that a true premise excludes a false conclusion. But 
not as demonstrated above if we multiply by zero. Consequently, we must reject either modus ponens or today’s 
rule of the multiplication by zero since modus inversus is the logical equivalent of modus ponens. 
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Theorem 3.7. (The factorial operation is not consistent) 
Saitho’s equation published as 
 

 
+

1
0 = +

0
0

 (31) 

 
is grounded on a logical contradiction and refuted. 
 
Proof by modus inversus.  
The proof by modus inversus is logically sound and demands that if Pt (+1=+0) is false then Ct (+1!=+0!) is false 
too. We define in this context 
 

 𝑃1 ≡ (+1 = +0)
𝐶1 ≡ (! (+1) = ! (0))

𝑃𝑟𝑒𝑚𝑖𝑠𝑒	1: 𝐼𝑓 𝑃1 = (+1 = +0)	𝑖𝑠	𝑓𝑎𝑙𝑠𝑒, 𝑡ℎ𝑒𝑛 𝐶1 = (1! = 0!)	𝑖𝑠	𝑓𝑎𝑙𝑠𝑒.
 (32) 

 
The premise 2 of our proof by modus sine is  

 +1 = +0 (33) 

 
false. Following Christian Kramp (1760 – 1826), the factorial (33) of a positive integer n is denoted by n!. Today, 
the value of 0! is 1, and the value of 1! is 1 too. Thus far, taking the factorial of the equation before, we obtain 

 (+1)! = (+0)! (34) 

or 
 +1 = +1 (35) 

which is false too. 
Quod erat demonstrandum. 
 
 
 
Remark 5. 
In general, since either modus inversus (¬Pt ® ¬Ct) is true or modus juris (¬(¬Pt ® ¬Ct)) is true but not 
both, we proof the correctness of modus inversus. In the proof above and logic of modus inversus, it is Pt = 
(+1=+0) = false, ergo Ct (+1! = +0!) must be false too but it is not. A technical error is not apparent. This 
contradiction is due to the fact that the factorial has the potential to equalize differences.  
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Theorem 3.8. (Refutation of Saitho’s equation 1/0 = 0/0) 
Saitho’s equation published as 
 

 
+

1
0 = +

0
0

 (36) 

 
is grounded on a logical contradiction and refuted. 
 
Proof by modus inversus.  
The proof by modus inversus is logically sound. We define in this context 
 

 𝑃1 ≡ (+1 = +0)
𝐶1 ≡ (! (+1) = ! (0))

𝑃𝑟𝑒𝑚𝑖𝑠𝑒	1: 𝑊𝑖𝑡ℎ𝑜𝑢𝑡 𝑃1 = (+1 = +0)	𝑖𝑠	𝑓𝑎𝑙𝑠𝑒 𝑛𝑜 𝐶1 = ^+
1
0 = +

0
0
_ 	𝑖𝑠	𝑓𝑎𝑙𝑠𝑒.

 (37) 

 
The premise 2 of our proof by modus sine is  

 +1 = +0 (38) 

 
false. Dividing by zero, we obtain 

 
+

1
0 = +

0
0

 (39) 

Quod erat demonstrandum. 
 
 
 
Remark 6. 
 
Modus inversus (¬Pt ¬ ¬Ct) is the logical equivalent of modus ponens (Pt → Ct) and demands that without a 
false premisse Pt (in our case +1=+0) no false conclusion Ct (+(1/0) = +(0/0)). In the proof above, it is Pt = 
(+1=+0) = false. Ergo: Ct = (+(1/0) = +(0/0))= false too, according to the proof by modus ponens. 
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Theorem 3.9. (Refutation of Anderson’s Nullity) 
Modus ponens demands that the premise “If Pt is true, then Ct is true” or (Pt → Ct ) = true (Table 5) is given. The 
inverse of the statement Pt → Ct (“If Pt is true, then Ct is true”) is the statement or the equation ¬Pt → ¬Ct  or in 
spoken language: “If Pt is false, then Ct is false” (Table 16). Thus far, under circumstances where Pt = +0 = false 
(i.e. ¬ Pt = +1= true), the conclusion is that ¬ Ct = +1 as demonstrated by the table (Table 16).  
 
Claim. 
Andersons’s Nullity is self-contradictory and refuted. 
 
Proof by modus inversus.  
The proof by modus inversus is logically structured as follows.  
 

 𝑃1 ≡ (+1 = +0)
𝐶1 ≡ (𝑁𝑢𝑙𝑙𝑖𝑡𝑦 = 𝑁𝑢𝑙𝑙𝑖𝑡𝑦)

𝑃𝑟𝑒𝑚𝑖𝑠𝑒	1: 𝑖𝑓 𝑃1 = (+1 = +0)	𝑖𝑠	𝑓𝑎𝑙𝑠𝑒, 𝑡ℎ𝑒𝑛 𝐶1 = (𝑁𝑢𝑙𝑙𝑖𝑡𝑦 = 𝑁𝑢𝑙𝑙𝑖𝑡𝑦)	𝑖𝑠	𝑓𝑎𝑙𝑠𝑒.
 (40) 

 
The premise 2 of our proof by modus sine is  

 +1 = +0 (41) 

 
false. Multiplying this equation by Andersons’s Nullity we obtain  
 

 (+1) × (𝑁𝑢𝑙𝑙𝑖𝑡𝑦) = (+0) × (𝑁𝑢𝑙𝑙𝑖𝑡𝑦) (42) 

 
According to Anderson’s Axiom 15 (34), it is Nullity ´ 1 = Nullity. We obtain 
 

 (𝑁𝑢𝑙𝑙𝑖𝑡𝑦) = (+0) × (𝑁𝑢𝑙𝑙𝑖𝑡𝑦) (43) 

 
According to Anderson’s Axiom 15, it is Nullity ´ 0 = Nullity (34). We obtain a conclusion Ct which is correct as 
 

 (𝑁𝑢𝑙𝑙𝑖𝑡𝑦) = (𝑁𝑢𝑙𝑙𝑖𝑡𝑦) (44) 

 
Quod erat demonstrandum. 
 
 
Remark 7. 
A consistent logical or mathematical operation is one that does not entail any contradiction. Consistently with the 
theorem above is that from contradictory premise or statement (+1=+0), anything follows (ex contradictione 
sequitur quodlibet (ECSQ)). Historically, ex contradictione sequitur quodlibet (or the Principle of Explosion) is 
ascribed to William of Soissons, a 12th century French logician who lived in Paris. The premise Pt is not only not 
given, the premise Pt = (+1=+0) is false. The consequence of such a false premise is that the conclusion Ct 
must be false to, but it is not. This is a contradiction. Anderson’s nullity is self-contradictory and refuted. 
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4. Discussion 
The change of objective reality appears to be a consistent process, to date, an end is not in sight. The nature of 
scientific inquiry of objective reality by which scientific knowledge is generated varies much across disciplines 
and often also invoke the incompatibility of opposed properties. The scientific success achieved depend to a very 
great extent. on the scientific methods used. Therefore, considerations accounting for the very nature of truth and 
falsity must be able to rely on logically sound scientific methods too.  
Modus ponens is one of the basic rules of inference and demands something like “If Pt, then Ct”. In other words, 
from Pt, we can infer Ct. If it were possible to have Pt true and Ct false then modus ponens inference would be 
invalid. What we think, what we write, what we talk, our everyday reasoning is supported by modus ponens too. 
Loosing modus ponens would indicate a sever loss. Philosopher's aimed to show that modus ponens is not a 
generally valid (12) form of inference. Many times, similar to other paradoxes, in one or other way, such trials rest 
on confusions and are easily circumvented. 
 
Example. 
Premise 1: If it is raining today on the street X (Pt is true), then the street X is wet (1000000 light years later). 
Premise 2: It is raining on the street X today (Pt is true), 
Conclusion: The street X is wet (1000000 light years later). 
 
Such a conclusion is of course not justified. But this does not disprove modus ponens. We just don’t know today, 
whether the street X is still existing 1000000 light years later. But even if the street X is still existing 1000000 
light years later, what has today’s rain to do with the street which is wet 1000000 light years later. Modus ponens 
can lead to inconsistencies if some basic assumptions are not considered by the user. It is necessary to make sure 
that events analyzed occur at the same (period of) time t. 
 
To date, the misuse of non-strict inequalities finds its own melting point in the mathematical formulations of 
Heisenberg’s uncertainty principle, of Bell’s theorem/inequality, in CHSH inequality et cetera of quantum 
mechanics. It is more than strange to ground any scientific knowledge on such an inconsistency. 
 
5. Conclusion 
Non-strict inequalities have their own interior logic which must be respected in detail otherwise a theory or theorem 
will end up at a contradiction. 
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