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Abstract 

“Every natural number, with the exception of 0 and 1, can be written in a unique way as a 

linear combination of consecutive powers of 2, with the coefficients of the linear 

combination being -1 or +1”. According to this theorem we define the L/R symmetry of 

the natural numbers. The L/R symmetry gives the factors which determine the internal 

structure of natural numbers. As a consequence of this structure, we have an algorithm for 

determining prime numbers and for factorization of natural numbers. 
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1    Introduction 

In this article, we start by proving the theorem: “Every natural number, with the exception 

of 0 and 1, can be written in a unique way as a linear combination of consecutive powers 

of 2, with the coefficients of the linear combination being -1 or +1”. As a consequence of 

this theorem we have two fundamental symmetries of natural numbers: the symmetry L 

and the symmetry R. There exists a transformation which confesses the symmetries L and 

R. In fact, we have a single L/R symmetry instead of having two different symmetries. 

    The L/R symmetry categorizes the natural numbers and reveals to us the factors which 

determine their internal structure. Every natural number belongs to one of the following 

categories: it has symmetry L or it has symmetry R or it is not symmetric. In the 

categorization of natural numbers according to L/R symmetry there exist three numbers 

each of them is a distinct category contained of exactly one number. These numbers are 0, 

1 and 3.  

    The order of the number of operations required for the factorization of a composite odd 

number C=Cn, with n digits in the decimal system, is10n . The large number of operations 

makes the factorizations of natural numbers impossible, if the number of digits is extremely 

high. From the properties of the L/R symmetry we can develop a factorization algorithm 

of the natural numbers which can work by skipping all the complicated operations 

mentioned above. L/R symmetry provides information for the factors of an odd number 

even when we know nothing about these factors. 
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2     Natural numbers as linear combination of consecutive powers of 2  

We prove the following theorem: 

Theorem 2.1.Every natural number, with the exception of 0, and 1, can be uniquely 

written as a linear combination of consecutive powers of 2, with the coefficients of the 

linear combination being -1 or +1.  

Proof. Let the odd number  as given from equation 
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.       (2.1) 

From equation (2.1) for 0  we obtain 

1 02 2 2 1 3      . 

We now examine the case where * 1,2,3,...    . The lowest value that the odd 

number  of equation (2.1) can obtain is 

  1 1 1 1

min 2 2 2 2 ........2 1               

  1

min 2 1     .                                                                                        (2.2) 

The largest value that the odd number  of equation (2.1) can obtain is 

  1 1 1

max 2 2 2 ........2 1            

  2

max 2 1     .                                                                                       (2.3) 

Thus, for the odd numbers  , i    of equation (2.1) the following inequality holds 

 1 2

min max2 1 , 2 1i

          .                                                        (2.4) 

The number   , iN    of odd numbers in the closed interval 1 22 1,2 1       is 

  
   2 1

max min
2 1 2 1

, 1 1
2 2

iN

 

 

    
      

  , 2iN    .                                                                                              (2.5) 

The integers , 0,1,2,........, 1i i    in equation (2.1) can take only two values,

1 1i i      , thus equation (2.1) gives exactly   2 , iN     odd numbers. 
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Therefore, for every *  equation (2.1) gives all odd numbers in the interval

1 22 1,2 1      . 

     We now prove the theorem for the even numbers. Every even number  which is a 

power of 2 can be uniquely written in the form of *2 ,   . We now consider the 

case where the even number  is not a power of 2. In that case, the even number is 

written in the form of 

*2 , odd, 1,l l      .                                                                           (2.6) 

We now prove that the even number  can be uniquely written in the form of equation 

(2.6). If we assume that the even number can be written in the form of  
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                                                                                                                       (2.7) 

the we obtain 

'

' '

2 2 '

2

l l

l l

  

  

 

which is impossible, since the first part of this equation is even and the second odd. Thus, 

it is 'l l  and we take that '   from equation (2.7). Therefore, every even number

that is not a power of 2 can be uniquely written in the form of equation (2.6). The odd 

number  of equation (2.6) can be uniquely written in the form of equation (2.1), thus 

from equation (2.6) it is derived that every even number   that is not a power of 2 can be 

uniquely written in the form of equation 
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and equivalently 
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.                                                           (2.9) 
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      For1we take 

01 2  

1 01 2 2   

thus, it can be written in two ways in the form of equation (2.1). Both the odds of 

equation (2.1) and the evens of the equation (2.8) are positive. Thus, 0 cannot be written 

either in the form of equation (2.1) or in the form of equation (2.8).  

     In order to write an odd number 1,3   in the form of equation (2.1) we initially 

define the *   from inequality (2.4). Then, we calculate the sum  

12 2   . 

If it holds that 12 2     we add the 12  , whereas if it holds that 12 2     then 

we subtract it. By repeating the process exactly   times we write the odd number  in 

the form of equation (2.1). The number of   steps needed in order to write the odd 

number   in the form of equation (2.1) is extremely low compared to the magnitude of 

the odd number  , as derived from inequality (2.4). 

Example 2.1. For the odd number 23   we obtain from inequality (2.4) 

1 22 1 23 2 1       

1 22 2 24 2      

12 12 2     

thus 3  . Then, we have 

1 4 32 2 2 2 24 23       (thus 22  is subtracted) 

4 3 22 2 2 20 23    (thus 12 is added) 

4 3 2 12 2 2 2 22 23     (thus 02 1  is added) 

4 3 2 12 2 2 2 1 23     . 

     Fermat numbers sF  can be written directly in the form of equation (2.1), since they are 

of the form min , 

 2 2 2 1 2 2 2 3 1

min2 1 2 1 2 2 2 2 ........ 2 1
s s s s ss

sF

s

            



.                (2.10) 

Mersenne numbers 
pM  can be written directly in the form of equation (2.1), since they 

are of the form 
max , 

  1 2 3 1

max2 1 2 2 2 2 ........ 2 1p p p p

pM p

p prime

           


.                          (2.11) 
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     In order to write an even number   that is not a power of 2 in the form of equation 

(2.1), initially it is consecutively divided by 2 and it takes of the form of equation (2.6). 

Then, we write the odd number   in the form of equation (2.1). 

Example 2.2. By consecutively dividing the even number 368   by 2 we obtain 

4368 2 23    . 

Then, we write the odd number 23   in the form of equation (2.1), 

4 3 2 123 2 2 2 2 1     , 

and we get 

 4 4 3 2 1368 2 2 2 2 2 1      

8 7 6 5 4368 2 2 2 2 2     . 

This equation gives the unique way in which the even number 368   can be written in 

the form of equation (2.9).  

From inequality (2.4) we obtain 

1 22 1 2 1       

1 1 2 22 2 1 2 1 2            

1 22 2    

   1 ln 2 ln 2 ln 2       

from which we get 

ln ln
1 1

ln 2 ln 2


 
     

and finally 

ln
1

ln 2


 
   

 
                                                                                                                          (2.12) 

Where
ln

ln 2

 
 
 

the integer part of
ln

ln 2


 . 

     We now give the following definition: 

Definition 2.1.We define as the conjugate of the odd 
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                                                                                    (2.13) 

the odd * , 
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                                                                               (2.14) 

for which it holds  

0,1,2,........, 1k k k       .                                                                         (2.15) 

     For conjugate odds, the following corollary holds: 

Corollary 2.1.For the conjugate odds  , i    and  * * , i    the following 

hold: 

1.  
*

*  .                                                                                                      (2.16) 

2. 
* 13 2     .                                                                                            (2.17) 

3.   is divisible by 3  if and only if * is divisible by 3 . 

4. Two conjugate odd numbers cannot have common factor greater than 3. 

Proof. 1. The 1 of the corollary is an immediate consequence of definition 4.1.  

2. From equations (2.13), (2.14) and (2.15) we get 

   * 1 12 2 2 2          

and equivalently 

* 13 2    . 

3. If the odd    is divisible by 3  then it is written in the form 3 ,x x odd   and from 

equation (4.17) we get * 13 3 2x      and equivalently  * 13 2 x    . Similarly we 

can prove the inverse 

4. If *,xy xz   , x, y, z  odd numbers, from equation (2.17) we have 

  13 2x y z      and consequently is 3x  .  
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From corollary 2.1 we have that 3 the only odd number which is equal to its conjugate: 
* 0 13 3 2 3 3    . 

 

3 The L/R symmetry 

We now give the following definition: 

Definition 3.1. Define as “symmetry” every specific algorithm which determines the 

signs of 1, 0,1,2,........, 1i i      in equation (2.1): 
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In this article we study the symmetries L and R, which are determined by the following 

definition: 

Definition 3.2.1. The odd number Π in the equation (2.1) has symmetry L when there 

exists an index L so that 


1 2 1 0
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.                                                                          (3.1) 

2. The odd number Π in the equation (2.1) has symmetry R when there exists an index R 

so that 


1 2 1 0

1

..... 1

1,2,3,..., 1

R

R R

R



   



 

 

     

 

.                                                                         (3.2) 

3. We will call asymmetric the odd numbers which have neither symmetry L nor 

symmetry R. 

4. For each even number α, 

*2 , odd, 1,l l       

we define as the symmetry of  α the symmetry of the odd Π. 

    We will note the symmetry of an odd Π by L=L(Π)=LΠ, or by R=R(Π)=RΠ. At first 

the L/R symmetry categorizes the odd numbers, and then the even numbers by 4 of 

definition 3.2. The odd number Π=1 cannot uniquely be written in the form of equation 

(2.1). So 1 and the powers of 2 are asymmetric numbers. 

    The odd numbers of the form 
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*2 1,As      

have 1 0,1,2,..., 1i i       in the equation (2.1), and so these are the only 

asymmetric odd numbers. From its definition we have that the Fermat numbers are 

asymmetric numbers. However, although 3 is a Fermat number it is asymmetric because 

of a different reason: It is the unique natural number which comes from equation (2.1) for 

ν=0, 

1 0 13 2 2 2 1,( 0)     .  

In the categorization of natural numbers according to L/R symmetry, 3 is a distinct 

category contained just one element, number 3. There are two other natural number with 

this property, 0 and 1. 

    The even numbers of the form 

*

2l As

l

  


 

where As  is asymmetric number, as well as the powers of 2 are the asymmetric even 

numbers. The rest even numbers are symmetric (so the symmetric even numbers are more 

than the asymmetric ones). 

    The theoretical study of the symmetries L and R has not been completed, so some of 

the following corollaries are just conjectures. 

Corollary 3.1. (Conjecture) A. 1. There aren’t two consecutive powers of an odd number 

with symmetry R. 

2. There isn’t an odd number with symmetry R to all of its powers (immediate result of 

the conjecture 1). 

3. With the exception of 3 itself, in all other powers of 3 alternate consecutively the 

symmetries L and R. 

4. The factors, prime numbers or composites of Fermat numbers have symmetry L. 

B.  For the symmetric prime numbers A and B with symmetry L or R we have the 

following: 

5. L(A)<L(B)=>L(AB)=L(A). 

6. L(A)<R(B)=>L(AB)=L(A) 

7. R(B)<L(A)=>L(AB)=R(B). 

8. R(A)<R(B)=>L(AB)=R(A). 

    The symmetry of an odd number can be found by writing it in the form of the equation 

(2.1). According to 4 of corollary 3.1, the factors, prime numbers or composites of 

Fermat numbers have symmetry L. Next, we have two examples: 

Example 3.1. The prime number Q= 45592577 is a factor of 1024

10 2 1F   . From the 

equation (2.12) we have ν+1=25, and then (see example 2.1) from the equation 2.1 we 

have 
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25 24 23 22 21 20 19 18 17 16 15 14 13 12

11 10 9 8 7 6 5 4 3 2 1

2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 1

Q              

           
. 

So the factor 45592577 of 10F has symmetry L 45592577=11. 

Example 3.2. The prime number 

Q=568630647535356955169033410940867804839360742060818433 is a factor of
4096

12 2 1F   . From the equation (2.12) we have ν+1=178, and then from equation 2.1 we 

have 

178 177 176 175 174 173 172 171 170 169 168 167 166

165 164 163 162 161 160 159 158 157 156 155 154 153 152

151 150 149 148 147 146 145 144 143 142 141 140 13

2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2

Q             

             

             9 138

137 136 135 134 133 132 131 130 129 128 127 126 125 124

123 122 121 120 119 118 117 116 115 114 113 112 111 110

109 108 107 106 105 104 103 102 101 100 99

2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2



             

             

           98 97 96 95

94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79

78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63

62 61 60 59 58 57 56 55 54 53 52 51 50 49

2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

   

               

               

              48 47

46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15

14 13 12 11 10 9 8 7 6 5 4 3 2 1

2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 1

 

               

               

              

 

So the factor 568630647535356955169033410940867804839360742060818433 of 12F

has symmetry L 568630647535356955169033410940867804839360742060818433=14. 

    We give two more examples for the part B of the corollary 3.1: 

Example 3.3. L(641)=6<L(114689)=13 =>L(641×114689)=6. 

Example 3.4. R(607)= 4<R(16633)=6 =>L(607×16633)=4. 

Next corollaries play an important role in factorization of Fermat numbers. 

Corollary 3.2.  Every composite Fermat number has at least two prime numbers factors 

1 2Q Q  with    1 2L Q L Q . 

Proof.  The corollary comes from the 4 of the corollary 3.1, and additionally taking into 

account that Fermat numbers are asymmetric.  

Corollary 3.3. (Conjecture) For the symmetry L of the factors of a Fermat number
22 1,

S

SF S                                                                                                                      (3.3)  

holds 

 1, 2, 3,...SL S S S     .                                                                           (3.4) 
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We have the following example. 

Example 3.5. For the known factors, prime numbers and composites of
 

4096

12 2 1F    we 

have: 

S=12 

L114689=13 

L26017793=15 

L63766529=15 

L190274191361=13 

L1256132134125569=13 

L568630647535356955169033410940867804839360742060818433=14 

L(C1133)=13 

where C1133 is a composite, non-factorized factor of 12F  with 1133 digits.  From the 

equations (3.3) we have 

23 16

24 16

36 14

15 14

1

2

3

4

49 14

5

6

114689 3 2 2 1 1

205 1

96949

26017793 3 2 2 13 1

63766529 3 2 2

190274191361 3 2 2

12561321341

7+1

3 2 2 26410994025569

5686306475353569551690334109408678048393

27

74

1

60

Q

Q

Q

Q

Q

Q



     



 



    

   

 

 



 

 



177 15 1847894375412404393111182934722332

206081843

463887459

3

94813 13 2 +2   

 

3761 141133 3 2 2 1C      

where Π is a negative number with 1128 digits. 

 

4    The basic study of the L/R symmetry 

In this chapter we prove the basic theorems for the L/R symmetry. 

Theorem 4.1.1. Every odd number Q with symmetry L can be written in the form 

 

1
1 1 1
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ln
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.                                   (4.1) 

The odd number * , 
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                                                                                                                   (4.2) 

has the same sign as 1 1    , and satisfies the inequality 

1 12 1 2 1L L         .                                                                                  (4.3) 

2. Every odd number D with symmetry R can be written in the form 
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.                                   (4.4) 

The odd number * , 
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                                                                                                                   (4.5) 

has the same sign as 1 1     , and satisfies the inequality 

1 12 1 2 1R R        .                                                                                  (4.6) 

Proof. We prove the part 1 of the corollary. The proof of the part 2 is similar. If Q has 

symmetry L, from equation (2.1) we have  
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and taking into account that the highest power of 2 in the sum 
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  is 12L  we take 

the equation (4.1). From equation (4.1) we have for the odd number Π,  

1
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which is the sum of successive powers of 2 with highest power 
1

1 2 L


 

  .  So the odd 

number Π has the same sign as 1 1    . Moreover, the minimum value of Π is 

1
1 1

min
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and the maximum  

1
1 1

max

1

2 2 1
L

L i L

i


 

 
    



    .  

The following theorem concerns the symmetry of conjugate odd numbers.  

Theorem 4.2.1. For the odd number Q, with symmetry L, holds 

1 * 13 2 2 1 3 2 2 1L RQ Q

R L

          


.                                                (4.7) 

2. For the odd number D, with symmetry R, holds 

1 * 13 2 2 1 3 2 2 1R LD D

L R

          


.                                               (4.8) 

Proof. Theorem is an immediate consequence of definitions 3.2, 2.1 and transformation 

(2.17).  

From equations (4.7) and (4.8) we have 

 
2

* 1 22 1 9 2LQ Q                                                                                                     (4.9) 

 
2

* 1 22 1 9 2RD D       .                                                                          (4.10) 

These equations are independent from the transformation of the conjugation, which is the 

transformation (2.17). 

Now, we prove the following theorem: 

Theorem 4.3.1. For the odd numbers Q with symmetry L the equation 

1

3 2 1

2
L L

Q 



  
                                                                                                             (4.11) 

gives the value of L, and the equation 

1

3 2 1

2
R R

D 



  
                                                                                                            (4.12) 

gives R=0, and 

1

2

R
L L

 
  .                                                                                                     (4.13) 

2. For the odd numbers D with symmetry R the equation (4.12) gives the value of R, the 

equation (4.11) gives L=0, and 

1

2

L
R R

 
  .                                                                                                     (4.14) 

Proof.  We prove the part 1 of the theorem. The proof of part 2 is similar. Trying to 

calculate the value of R, in case of an odd number Q with symmetry L in the form of 



13 
 

equation (4.4), we get 13 2 2 1R

RQ       . Combining this equation with the equation 

(4.1) we have 

1 1

1 1

3 2 2 1 3 2 2 1

2 2 2

1 2 2

L R

L R

R L

R L

R L

R L

Q   

 

         

   

   

 

and finally 

     1 2 2 1 2 2R L R L R L

R L R L

           . 

These equations hold if and only if R=0 or L=0. Number Q has symmetry L, so R=0. 

Moreover we have 

1 2L R

R

    

and because R=0 we take the equation (4.13).  

As an example, we calculate again the L and Π for the number Q of example 3.2 by using 

the equations (4.11) and (4.12): 

Example 4.1.  For the odd number 

A=568630647535356955169033410940867804839360742060818433 we have ν=177 

from equation (2.5). Then, the equation (4.12) gives R=0. So number A has symmetry L. 

Then we observe that the equation (4.11) is verified for L=1, L=2, L=3, ..., L=14. For the 

maximum value of L=14 the equation (4.11) gives Π=184789 437541 240439 311118 

293472 233246 388745 994813. 

From theorem 4.2 we conclude that symmetries L and R commute from transformation 

(2.17). So we have L/R symmetry. Theorem 4.3 gives one of the pairs

   1 0 0 1L R L R        for every odd number, independently of its symmetry. 

So, it gives a pair for the Fermat numbers: 

 

 

22 1,

2 1

0

S

S

S

S

S

F S

L F

R F

  

 



.                                                                                             (4.15) 

    Now we prove the following corollary: 

Corollary 4.1.1. For every odd number D with symmetry R the next odd number D+2=Q 

has symmetry L, and holds 

         2 2 2L RD D L D R D D         .                              (4.16) 

2. For every odd number Q with symmetry L the previous odd number Q-2=D has 

symmetry R, and holds 

         2 2 2R LQ Q R Q L Q Q         .                               (4.17) 

Poof. This corollary is an immediate consequence of theorem 4.1: 
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 1 1 12 3 2 2 1 2 3 2 2 1 3 2 2 1R R L

R R LD Q                      , 

 1 1 12 3 2 2 1 2 3 2 2 1 3 2 2 1L L R

L L RQ D                      . 

    Theorem 2.1 makes a partition to the set of natural numbers contained of intervals of 

the form   1 2 *2 1,2 1 ,        . From corollary 4.1 we have that the L/R symmetry 

makes a partition of the odd numbers of these intervals in 12 , 1    pairs. We prove the 

following corollary: 

Corollary 4.2. There are two numbers in the interval 

  1 2 1 2

*

2 1,2 1 2 1,3 2 1 3 2 1,2 1     



                       



                  (4.18) 

with symmetry L/R=ν-1, and two with undefined symmetry: 

1.  

 

    

1

1

1

1

2 1

2 1 1L L







 





  

    
 .                                                                                       (4.19) 

2. 

 

   
2

2

3 2 1

0,1,2,..., 1

0R

R R



 

   

   

 

 .                                                                                   (4.20) 

3. 

 

   
3

3

3 2 1

0,1,2,..., 1

0L

L L



 

   

   

 

.                                                                                     (4.21) 

4. 

 

    

2

4

2

4

3 2 1

3 2 1 1R R







 





   

     
.                                                                    (4.22) 

Proof.  Corollary 4.2 is an immediate consequence of equations (4.11), (4.12).  

    We name the intervals 12 1,3 2 1       and 23 2 1,2 1        as “A and B sub-

interval of Ω”. We define as “central boundary” of Ω the pair of (successive) odd numbers

3 2 1,3 2 1     . 

    From corollary 4.2 we have that the value of symmetry of the odd numbers Φ increases 

as ν increases. So we have the question: are there any other odd numbers which can have 
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symmetry with large values? The answer comes from the quantification of part 1 of 

corollary 3.1: 

Corollary 4.3. (Conjecture) With the exception of the numbers 
1 2 3 4, , ,    , the only 

powers of the odd numbers which have large L/R symmetry values are the numbers of the 

form 

  2,

, ,

S

S

S odd

   

  
,                                                                                           (4.23) 

 22
S

L S .                                                                                                        (4.24) 

2. There are no numbers of the form of 

  2,

, ,

S

S

S odd

  

   
                                                                                             (4.25) 

with symmetry R. 

    Next, we list five examples. 

Example 4.2. The powers of 3 with even exponent have symmetry L. For the powers of 

the form 
23

S

the following equation holds 

 23
S

L S

S





. 

For the rest powers of 3 with even exponent, the value of the symmetry L increases very 

slowly as the even exponent increases. 

The powers of 3 with odd exponent 

2 1 *3 ,l l   

have symmetry R. For small values of 
*l the values of symmetry are R=1, 2, 3 while if 

this value becomes higher than a specific number then it becomes constant. 

 2 1

*

3 2lR

l

 



. 

Example 4.3. The powers of 5 have symmetry L. For the powers of the form 
25

S

 following 

equation holds 

 25 1
S

L S

S

 



. 

The powers of 5 with odd exponent have constant symmetry L=1. 

Example 4.4. For powers of 7 with exponent being a power of 2 the following equation 

holds 
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 2

*

7 2
S

L S

S

 



. 

The symmetry of odd powers of 7 takes small values. 

Example 4.5. The powers of 61 have symmetry L. For powers of 61 with exponent being 

a power of 2 the following equation holds 

 261
S

L S

S





.  

The odd powers of 61 have constant symmetry L=1. 

Example 4.6. The powers of 1001 = 7×11×13 have symmetry L. For powers of 1001 with 

exponent being a power of 2 the following equation holds 

 21001 2
S

L S  . 

The odd powers of 1001 have constant symmetry L=2. 

Corollaries 4.1, 4.2 and 4.3 give the distribution of symmetry L/R in the set of the 

natural numbers. 

 

5 An algorithm for determining prime numbers and 

factorization of natural numbers 

The order of the number of operations required for the factorization of a composite odd 

number C=Cn, with n digits in decimal system is10n . The extremely high number of 

operations makes impossible this factorization if the number of digits is appropriately large 

[1]. The factorization of natural numbers can be done by using symmetries which calculate 

the factors of Cn by skipping the execution of these operations. L/R symmetry implies such 

an algorithm, by making use of part B of corollary 3.1, corollaries 4.2, 4.1, theorem 4.3, 

and the following corollary: 

Corollary 5.1 (Conjecture) For every asymmetric number of the form 

  22, 2 ,
S

S S                                                                                               (5.1) 

exists an interval around this number, whose length is of order 

2S                                                                                                                    (5.2) 

and this interval does not contain any prime numbers.  

Because of the accumulation of small prime numbers close to 0 the part 1 of the corollary 

holds for these values of S which satisfy 5S  . 

    In equation (5.2) we know the length (5.2). This allows us to determine the prime 

numbers by using the equations 
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2

2

2 1 2

2 1 2

2 ,

, , 5

S

S

S l

P x

P x

l

S x S

 

 

 

 

 

.                                                                                                 (5.3) 

From equation (5.3) for S=5, 6, 7, 8, 9 we get the first 10 prime numbers: 

32 32

32 32

5

2 1 2 2 2 1 2 3

2 1 2 8

4294 967291

4294 96732 1 2 7

2 8 ( 2 2) 2

1

0

1

S

P

P





        

        

     

 

6 64

64 64

4

6

18 446744 073709 551557

2 1 2 7 2 1 2 6 18 446744 073709 551629

2 7 (

2 1 2 29 2 1 2 3

2 29)

0

72

P

S

P





        

  

    



 

 

 
 

128 128 12

128 128

8

7

340 282366 920938 463463 374607 431768 211297

2 1 2 26 2 1 2 25

340 282366 920938 463463 374607 431768 

2 1 2 79 2 1 2 79 2 1 2

211507

2 26 ( 2 79) 210

80

S

P

P







         

      



     

 


 

256 256

256 256

8

115792 089237 316195 423570 985008 687907 

853269 984665 640564 039457 

2 1 2 217 2 1 2 218

2 1 2 149 2 1

584007 913129 639501

115792 089237 316195 423570 985008 687907 

85326  

1

8

8

9

2 4

9

P

S

P







       



      

4665 640564 039457 584007 913129 640233

2 149 ( 2 217) 732      
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512 512

9

2 1 2 284 2 1 2 285

13407 807929 942597 099574 024998 205846 127479 365820 592393 377723

 561443 721764 030073 546976 801874 298166 903427 690031 858186 486050

 853753 882811 946569 946433 64

S

P



       



512 512

9006 083527

2 1 2 38 2 1 2 37

13407 807929 942597 099574 024998 205846 127479 365820 592393 377723

561443 721764 030073 546976 801874 298166 903427 690031 858186 486050 

853753 882811 946569 9464

P        



33 649006 084171

2 38 ( 2 285) 646      

. 

For S    we obtain large prime numbers. 

    An initial statistical investigation showed that for 
*3 ,S l l   and *3 2,S l l    

the range ε tends to 2S , taking larger values. For *3 1, , 3S l l l     the range ε tends 

to 2S , taking smaller values. A further investigation will allow us to determine with 

greater precision the primer number found in the limits of the intervals of corollary 5.1. 

    From the inequalities (4.3) and (4.6) we get 

1

1

L

R





 

 
                                                                                                                                      (5.4) 

1

1

2

2

L

L

R

R





 

 

 

 
.                                                                                                        (5.5) 

From equations (4.1), for odd numbers Q with symmetry L, we have 

  13 2 1 2L

LQ                                                                                             (5.6) 

and 

  13 2 1 2R

RD                                                                                           (5.7) 

for the odd numbers D with symmetry R. From these equations we imply that numbers 
12L

L

   and 12R

R

   express the distance of Q and D respectively from the central 

boundary of the interval Ω. 

    From the known prime numbers factors of Fermat numbers we have the following 

conclusions: The factors, prime numbers and composite of Fermat numbers have 

symmetry L. As their value increases, the prime number factors of Fermat numbers are 

shifted from one sub-interval of Ω to the other, fact which is equivalent with the change 

of sign of the odd number 
L  in equation (5.6). As their value increases, their distance 

from the central boundary of the Ω and the difference ν-L increase too. Consequently, for 

the prime numbers factors of Fermat numbers we know the sign of the odd number 
L in 

equation (5.6). 
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    From part B of corollary 3.1 we can determine the L/R symmetry of at least of one 

composite odd number whose factors are unknown. Next, we list two examples. 

Example 5.1. From equation (2.12), for the number C1133 which is composite factor of 

12F  with 1133 digits, we get  1133 3761C  . Then, from equations (4.11), (4.12) we 

get L(C1133)=13. The factors of Fermat numbers have symmetry L, so from part 5 of 

corollary 3.1 we have that at least one of the factors of C1133 has symmetry L=13. 

Example 5.2. For RSA-232 = 

100988139787192354690956489430946858281823382195557395514112051620583102

133852854537436610975715436366491338008491706516992170152473329438927028

023438096090980497644054071120196541074755382494867277137407501157718230

5398340606162079, from equation (2.12)  we get that  232 766RSA   . Then, from 

equations (4.11), (4.12) we have R(RSA-232)=4. The only acceptable combination which 

is compatible with part B of Corollary 3.1 is the following: The one factor of RSA-232 

has symmetry L and the other has symmetry R, and the value of the symmetry of one of 

the two factors is 4 (L=4 or R=4), exactly the same as the symmetry of RSA-232. 

    The factorization algorithm of the odd numbers is based on the determining of prime 

numbers by using primality test [2-6] with specific characteristics. These characteristics 

of prime number factors of a composite odd number are determined by the use of 

properties of L/R symmetry. We list the three basic steps of the factorization algorithm 

for a composite odd number C=Cn, with n digits in decimal system: 

Step 1. From equation (2.12) we calculate ν(Cn), and from equations (4.11), (4.12) we 

calculate the symmetry L or the symmetry R of Cn. From part B of corollary 3.1 we 

calculate the symmetry of at least on factor Q or D of Cn. 

Step 2. By using the inequalities (5.4) for Q or D, we can determine the intervals in 

which ν(Q) and ν(D) belong. In order to determine these intervals we may use the 

properties of Cn, if it belongs to a specific number sequence. 

Step 3. For any possible value of ν=ν(Q) or ν=ν(D) we determine the set    . 

Corollary 4.2 gives the type of symmetry, L or R, of the first and the last number of sub-

intervals A and B of  . Corollary 4.1 gives the way that symmetry L/R changes in the  

sub-intervals A and B of  . Therefore, we know the position of Q with symmetry L, 

and of D with symmetry R within the set  . Next, we determine the odd numbers Q or 

D for which 

 

1

3 2 1

2
L L

Q

Q



 



  
  



                                                                                       (5.8) 

 

1

3 2 1

2
R R

D

D



 



  
  



.                                                                                     (5.9) 
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By using the primality test we can find the prime numbers Q or D of equations (5.8), 

(5.9). Then we check if prime numbers Q, D are factors of Cn: mod(Cn, Q)=0, mod(Cn, 

D)=0. 

    For every Fermat number the sign of 
L  changes as Q increases. Consequently we 

know the region of   in which we will look for prime numbers Q. The two factors of 

RSA-232 have equal or nearly equal number of digits, thus it is 

 
766

383
2

Q   and  
766

383
2

D  . 

    According to theorem 4.3 the consecutive pairs of odd numbers within the set  have 

equal symmetries L/R and L R   . Corollary 4.3 gives the numbers with large value of 

symmetry L within the set  . Corollary 5.1 gives sub-intervals of the set  of natural 

numbers which do not contain any prime numbers. Corollary 4.2 gives the four bounds 

1 2 3 4, , ,     in every set   at which the continuity of the symmetry breaks and the 

symmetry starts taking values from the beginning: L=R=1 for the first pair etc. 
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