A Final Tentative of The Proof of The *ABC* Conjecture - Case c = a + 1

Abdelmajid Ben Hadj Salem

6, Rue du Nil, Cité Soliman Er-Riadh, 8020 Soliman, Tunisia E-mail: abenhadjsalema@gmail.com

Abstract: In this paper, we consider the *abc* conjecture in the case c = a + 1. Firstly, we give the proof of the first conjecture that $c < rad^2(ac)$ using the polynomial functions. It is the key of the proof of the *abc* conjecture. Secondly, the proof of the *abc* conjecture is given for $\varepsilon \ge 1$, then for $\varepsilon \in]0,1[$ for the two cases: $c \le rad(ac)$ and c > rad(ac). We choose the constant $K(\varepsilon)$ as $K(\varepsilon) = e^{\left(\frac{1}{\varepsilon^2}\right)}$. A numerical example is presented.

A Final Tentative of The Proof of The ABC Conjecture - Case

c = a + 1

To the memory of my Father who taught me arithmetic

To the memory of my colleague and friend Dr.Eng. Chedly Fezzani (1943-2019) for his important work in the field of Geodesy and the promotion of the Geographic Sciences in Africa

1. Introduction and notations

Let *a* a positive integer, $a = \prod_i a_i^{\alpha_i}$, a_i prime integers and $\alpha_i \ge 1$ positive integers. We call *radical* of *a* the integer $\prod_i a_i$ noted by rad(a). Then *a* is written as:

$$a = \prod_{i} a_i^{\alpha_i} = rad(a) \cdot \prod_{i} a_i^{\alpha_i - 1}$$
(1.1)

We note:

$$\mu_a = \prod_i a_i^{\alpha_i - 1} \Longrightarrow a = \mu_a.rad(a) \tag{1.2}$$

The *abc* conjecture was proposed independently in 1985 by David Masser of the University of Basel and Joseph Æsterlé of Pierre et Marie Curie University (Paris 6) ([1]). It describes the distribution of the prime factors of two integers with those of its sum. The definition of the *abc* conjecture is given below:

Conjecture 1.3. (*abc Conjecture*): Let a,b,c positive integers relatively prime with c = a + b, then for each $\varepsilon > 0$, there exists $K(\varepsilon)$ such that :

$$c < K(\varepsilon).rad(abc)^{1+\varepsilon} \tag{1.4}$$

We know that numerically, $\frac{Logc}{Log(rad(abc))} \le 1.616751$ ([2]). A conjecture was proposed that $c < rad^2(abc)$ ([3]). Here we will give the proof of it, in the case c = a + 1, using a polynomial function.

Conjecture 1.5. *Let* a, b, c *positive integers relatively prime with* c = a + b*, then:*

$$c < rad^{2}(abc) \Longrightarrow \frac{Logc}{Log(rad(abc))} < 2$$
 (1.6)

This result, I think is the key to obtain a proof of the veracity of the *abc* conjecture.

2. A Proof of the conjecture (1.5) Case c = a + 1

Let *a*, *c* positive integers, relatively prime, with c = a + 1. If c < rad(ac) then we obtain:

$$c < rad(ac) < rad2(ac)$$
(2.1)

and the condition (1.6) is verified.

In the following, we suppose that $c \ge rad(ac)$.

2.1 Notations

We note:

$$a = \prod_{i} a_{i}^{\alpha_{i}} \Longrightarrow rad(a) = \prod_{i} a_{i}, \mu_{a} = \prod_{i} a_{i}^{\alpha_{i}-1}, i = 1, N_{a}$$
(2.2)

$$c = \prod_{j} c_{j}^{\beta_{j}} \Longrightarrow rad(c) = \prod_{j} c_{j}, \mu_{c} = \prod_{j} c_{j}^{\beta_{j}-1}, \ j = 1, N_{c}$$
(2.3)

with a_i, c_j prime integers and $N_a, N_c, \alpha, \beta \ge 1$ positive integers. Let:

$$R = rad(a).rad(c) = rad(ac)$$
(2.4)

$$\mathscr{R}(x) = \prod_{i}^{N_a} (x+a_i)^2 \cdot \prod_{j}^{N_c} (x+c_j) \Longrightarrow \mathscr{R}(x) > 0, \forall x \ge 0$$
(2.5)

$$F(x) = \mathscr{R}(x) - \mu_c \tag{2.6}$$

From the last equations we obtain:

$$F(0) = \mathscr{R}(0) - \mu_c = rad^2(a).rad(c) - \mu_c$$
(2.7)

Then, our main task is to prove that $F(0) > 0 \Longrightarrow R^2 > c$.

2.1.1 The Proof of $c < rad^{2}(ac)$

From the definition of the polynomial F(x), its degree is $2N_a + N_c$. We have :

- 1. $lim_{x \to +\infty}F(x) = +\infty$,
- 2. $\lim_{x \to +\infty} \frac{F(x)}{x} = +\infty$, F is convex for x large,

3. if x_1 is the great real root of F(x) = 0, and from the points 1., 2. we deduce that $F''(x_1^+) > 0$, 4. if $x_1 < 0$, then F(0) > 0.

Let us study F'(x) and F''(x). We obtain:

$$F'(x) = \mathscr{R}'(x)$$
$$\mathscr{R}'(x) = \left[\prod_{i}^{N_a} (x+a_i)^2 \right]' \cdot \prod_{j}^{N_c} (x+c_j) + \prod_{i}^{N_a} (x+a_i)^2 \cdot \left[\prod_{j}^{N_c} (x+c_j) \right]' \Longrightarrow$$
$$\left[\prod_{i}^{N_a} (x+a_i)^2 \right]' = 2 \prod_{i}^{N_a} (x+a_i)^2 \cdot \left(\sum_{i} \frac{1}{x+a_i} \right)$$
$$\left[\prod_{j}^{N_c} (x+c_j) \right]' = \prod_{j}^{N_c} (x+c_j) \left(\sum_{j=1}^{j=N_b} \frac{1}{x+c_j} \right) \Longrightarrow$$
$$\mathscr{R}'(x) = \mathscr{R}(x) \cdot \left(\sum_{i}^{N_a} \frac{2}{x+a_i} + \sum_{j}^{N_c} \frac{1}{x+c_j} \right) > 0, \forall x \ge 0$$
(2.8)

$$F'(x) = \mathscr{R}' = \mathscr{R}(x) \left(\sum_{i}^{N_a} \frac{2}{x+a_i} + \sum_{j}^{N_c} \frac{1}{x+c_j} \right) > 0, \forall x > 0 \Longrightarrow$$
$$F'(0) = \mathscr{R}(0). \left(\sum_{i}^{N_a} \frac{2}{a_i} + \sum_{j}^{N_c} \frac{1}{c_j} \right) = rad^2(a).rad(c). \left(\sum_{i}^{N_a} \frac{2}{a_i} + \sum_{j}^{N_c} \frac{1}{c_j} \right) > 0$$
(2.9)

For F''(x), we obtain:

$$F''(x) = \mathscr{R}'' = \mathscr{R}'(x) \left(\sum_{i}^{N_a} \frac{2}{x+a_i} + \sum_{j}^{N_c} \frac{1}{x+c_j} \right) - \mathscr{R}(x) \left(\sum_{i}^{N_a} \frac{2}{(x+a_i)^2} + \sum_{j}^{N_c} \frac{1}{(x+c_j)^2} \right) \Longrightarrow$$

$$F''(x) = \mathscr{R}(x) \cdot \left[\left(\sum_{i}^{N_a} \frac{2}{x+a_i} + \sum_{j}^{N_c} \frac{1}{x+c_j} \right)^2 - \sum_{i}^{N_a} \frac{2}{(x+a_i)^2} - \sum_{j}^{N_c} \frac{1}{(x+c_j)^2} \right] \Longrightarrow$$

$$F''(x) > 0, \forall x \ge 0$$
(2.11)

We obtain also that F''(0) > 0.

Before we attack the proof, we take an example as: $1+8=9 \implies c=9, a=8, b=1$. We obtain $rad(a) = 2, rad(c) = 3, \mu_c = 3, R = rad(ac) = 2 \times 3 = 6 < (c=9)$ and c=9 verifies $c < (R^2 = 6^2 = 36)$. We write the polynomial $F(x) = (x+2)^2(x+3) - 3 = x^3 + 7x^2 + 16x + 9 > 0, \forall x > 0$. Then $F'(x) = 3x^2 + 14x + 16$, we verifies that F'(x) = 0 has not real roots and $F'(x) > 0, \forall x \in \mathbb{R}$. We have also F''(x) = 6x + 14. $F''(x) = 0 \implies x = -7/3 \approx -2.33 \implies F(-7/3) = -79/27 \approx -2.92$. The point (-7/3, -79/27) is an inflexion point of the curve of y = F(x). We deduce that the curve is convex for $x \ge -7/3$. Let us now find the roots of F(x) = 0. As the degree of F is three, the number of the real roots are 1 or 3. As there is one inflexion point, we will find one real root.

2.2 The Resolution of F(x) = 0

We want to resolve:

$$F(x) = x^3 + 7x^2 + 16x + 9 = 0$$
(2.12)

Let the change of variables x = t - 7/3, the equation (2.12) becomes:

$$t^3 - \frac{t}{3} - \frac{79}{27} = 0 \tag{2.13}$$

For the resolution of (2.13), we introduce two unknowns:

$$t = u + v \Longrightarrow (u + v)(3uv - \frac{1}{3}) + u^3 + v^3 - \frac{79}{27} = 0 \Longrightarrow$$

$$\begin{cases} u^3 + v^3 = \frac{79}{3^3} \\ uv = \frac{1}{3^2} \end{cases}$$
(2.14)

Then u^3 , v^3 are solutions of the equation:

$$X^2 - \frac{79}{3^3}X + \frac{1}{3^6} = 0 \tag{2.15}$$

and given below:

$$u^{3} = \frac{1}{2} \cdot \frac{79 + 9\sqrt{77}}{3^{3}} \Longrightarrow \begin{cases} u_{1} = \sqrt[3]{\frac{1}{2} \left(\frac{79 + 9\sqrt{77}}{3^{3}}\right)} \approx 0.97515\\ u_{2} = j \cdot u_{1}, \quad j = \frac{-1 + i\sqrt{3}}{2} = e^{i\frac{2\pi}{3}}\\ u_{3} = j^{2}u_{1} = \bar{j} \cdot u_{1} \end{cases}$$

$$v^{3} = \frac{1}{2} \cdot \frac{79 - 9\sqrt{77}}{3^{3}} \Longrightarrow \begin{cases} v_{1} = \sqrt[3]{\frac{1}{2} \left(\frac{79 - 9\sqrt{77}}{3^{3}}\right)} \approx 0.00016\\ v_{2} = j^{2} \cdot v_{1} = \bar{j} \cdot v_{1}\\ v_{3} = j \cdot v_{1} \end{cases}$$

$$(2.16)$$

Finally, taking into account the second condition of (2.14), we obtain the real root of (2.13):

$$t = u_1 + v_1 = \sqrt[3]{\frac{1}{2}\left(\frac{79 + 9\sqrt{77}}{3^3}\right)} + \sqrt[3]{\frac{1}{2}\left(\frac{79 - 9\sqrt{77}}{3^3}\right)} \approx 0.97531$$
$$x_1 = t - 7/3 \approx -1.35802$$
(2.17)

Then the first root of F(x) = 0 is $x_1 \approx -1.358 < 0$, the correction to the first root of $\Re(x) = (x+2)^2(x+3) = 0$ is $dx = x_1 - (-2) = -1.358 - (-2) = +0.642$. As in our example F'(x) > 0, the function F(x) is an increasing function having a parabolic branch as $x \longrightarrow +\infty$, the curve y = F(x) intersects the line x = 0 in the half-plane $y \ge 0 \Longrightarrow F(0) > 0 \Longrightarrow c < rad^2(ac)$ which is verified numerically.

2.3 The General Case

Let us return to the general case c = a + 1. We denote $q = min(a_i, c_j)$. If we consider that $F(x) = \mathscr{R}(x)$, the equation $F(x) = 0 \Longrightarrow \mathscr{R}(x) = 0$ and the first real root is $x_1 = -q$, the product of all the roots is $P = \prod_i (x_i)^2 \cdot \prod_j (x_j) = (-1)^{2N_a + N_c} \prod_i (a_i)^2 \cdot \prod_j (c_j)$. But $F(x) = \mathscr{R}(x) - \mu_c$, the constant coefficient of F(x) will be $\prod_i (a_i)^2 \cdot \prod_j (c_j) - \mu_c$. The new product of the roots is $P' = \prod_i (x_i')^2 \cdot \prod_j (x_j') = (-1)^{2N_a + N_c} (\prod_i (a_i)^2 \cdot \prod_j (c_j) - \mu_c)$. The first root $x_1 = -q$ becomes $x_1' = -q + dx$. To estimate dx, we can write to the order two that:

$$F(-q+dx) = \mathscr{R}(-q+dx) - \mu_c = 0 \Longrightarrow \mathscr{R}(-q+dx) = \mu_c \Longrightarrow$$
$$\mathscr{R}(-q) + dx \cdot \mathscr{R}'(-q) + \frac{dx^2}{2} \mathscr{R}''(-q) = \mu_c \tag{2.18}$$

Supposing that $a_1 = q = min(a_i, c_j)$, from the equations (2.5-2.8-2.10), we have :

$$\mathscr{R}(-a_1) = 0$$
$$\mathscr{R}'(-a_1) = 0$$
$$\mathscr{R}'(-a_1) = 2\prod_{i=2}^{N_a} (a_i - a_1)^2 \cdot \prod_{j=1}^{N_c} (c_j - a_1) > 0 \Longrightarrow dx^2 = \frac{\mu_c}{\prod_{i=2}^{N_a} (a_i - a_1)^2 \cdot \prod_{j=1}^{N_c} (c_j - a_1)} (2.19)$$

We suppose that $c > rad^2(ac) \Longrightarrow \mu_c > rad^2(a).rad(c) \Longrightarrow \mu_c > \mathscr{R}(0)$. We deduce that F(0) < 0and $x'_1 = -a_1 + dx > 0 \Longrightarrow dx > 0$. We take the positive value of dx, then we obtain:

$$dx = \frac{\sqrt{\mu_c}}{\prod_{i=2}^{N_a} (a_i - a_1) \cdot \sqrt{\prod_{j=1}^{N_c} (c_j - a_1)}}$$
(2.20)

But
$$\mu_c = \mathscr{R}(x_1') = \prod_i^{N_a} (x_1' + a_i)^2 \cdot \prod_j^{N_c} (x_1' + c_j)$$
, we can write:
 $\mu_c = dx^2 \cdot \prod_{i=2}^{N_a} (dx + a_i - a_1)^2 \cdot \prod_j^{N_c} (dx + c_j - a_1) \Longrightarrow \mu_c > dx^2 \cdot \prod_{i=2}^{N_a} (a_i - a_1)^2 \cdot \prod_j^{N_c} (c_j - a_1)$ (2.21)

because all the terms $a_i - a_1$ and $c_j - a_1$ are positive numbers. Using the last inequality and the expression of dx given by the equation (2.20), we obtain:

$$\mu_c > \frac{\mu_c}{\prod_{i=2}^{N_a} (a_i - a_1)^2 \cdot \prod_{j=1}^{N_c} (c_j - a_1)} \cdot \prod_{i=2}^{N_a} (a_i - a_1)^2 \cdot \prod_j^{N_c} (c_j - a_1) \Longrightarrow$$

$$1 > 1 \Longrightarrow \text{ the contradiction} \Longrightarrow \mu_c < rad^2(a) rad(c) \tag{2.22}$$

So, our supposition that $c > rad^2(ac)$ is false and we obtain the important result that $c < rad^2(ac)$ and the conjecture (1.5) is verified.

2.3.1 Examples

In this section, we are going to verify the above remarks with a numerical example. The example is given by:

$$1 + 5 \times 127 \times (2 \times 3 \times 7)^{3} = 19^{6}$$

$$rad(a) = 2 \times 3 \times 5 \times 7 \times 127 = 26670$$

$$rad(c) = 19$$

$$c = 19^{5} = 47045881, \quad \mu_{c} = 19^{5} = 2476099$$
(2.23)

Using the notations of the paper, we obtain:

$$\mathcal{R}(x) = (x+2)^2 (x+3)^2 (x+5)^2 (x+7)^2 (x+127)^2 (x+19)$$
$$F(x) = \mathcal{R}(x) - \mu_c$$

Let X = x + 2, the expression of $\mathscr{R}(x)$ becomes:

$$\overline{\mathscr{R}}(X) = X^2 (X+1)^2 (X+3)^2 (X+5)^2 (X+125)^2 (X+17)$$

The calculations gives:

$$\overline{\mathscr{R}}(X) = X^{11} + 285.X^{10} + 24808.X^9 + 657728.X^8 + 7424722.X^7 + 42772898.X^6 + 134002080.X^5 + 223508940.X^4 + 187753125.X^3 + 597656251.X^2$$
(2.24)

We want to estimate the first root of F(x) = 0, we write:

$$\mathscr{R}(X) - \mu_c = 0 \Longrightarrow$$

$$X^{11} + 285.X^{10} + 24808.X^9 + 657728.X^8 + 7424722.X^7 + 42772898.X^6$$

$$+ 134002080.X^5 + 223508940.X^4 + 187753125.X^3 + 597656251.X^2 - 2476099 = 0 (2.25)$$

If $x = -2 \Longrightarrow X = 0 \Longrightarrow \overline{\mathscr{R}}(X) - \mu_c < 0$. If we take $x_1 = -1.936315 \Longrightarrow X_1 = 0.03685$, then we obtain that:

$$\mathscr{R}(x_1) - \mu_c = \overline{\mathscr{R}}(X_1) - \mu_c \approx 177.82 > 0 \tag{2.26}$$

Then, $\exists \xi$ with $-2 < \xi < x_1$ so that $X' = 2 + \xi$ verifies $\overline{\mathscr{R}}(X') - \mu_c = 0$ and ξ is the first root of F(x) = 0 and $\xi < 0 \Longrightarrow F(0) > 0 \Longrightarrow rad^2(a)rad(c) - \mu_c > 0 \Longrightarrow R^2 > c$ that is true. We have also $\xi = -2 + dx = a_1 + dx$ and $0 < dx < a_1$.

3. The Proof of The *ABC* Conjecture (1.3) Case: c = a + 1

We denote R = rad(ac).

3.1 Case: $\varepsilon \ge 1$

Using the result of the theorem above, we have $\forall \varepsilon \geq 1$:

$$c < R^2 \le R^{1+\varepsilon} < K(\varepsilon).R^{1+\varepsilon}, \quad K(\varepsilon) = e^{\left(\frac{1}{\varepsilon^2}\right)}, \ \varepsilon \ge 1$$
 (3.1)

We verify easily that $K(\varepsilon) > 1$ for $\varepsilon \ge 1$ and it is a decreasing function from *e* the base of the neperian logarithm to 1.

3.2 Case: $\varepsilon < 1$

3.2.1 Case: $c \leq R$

In this case, we can write :

$$c \le R < R^{1+\varepsilon} < K(\varepsilon).R^{1+\varepsilon}, \quad K(\varepsilon) = e^{\left(\frac{1}{\varepsilon^2}\right)}, \quad \varepsilon < 1$$
(3.2)

here also $K(\varepsilon) > 1$ for $\varepsilon < 1$ and the *abc* conjecture is true.

3.2.2 Case: *c* > *R*

In this case, we confirm that :

$$c < K(\varepsilon) \cdot R^{1+\varepsilon}, \quad K(\varepsilon) = e^{\left(\frac{1}{\varepsilon^2}\right)}, \quad 0 < \varepsilon < 1$$
(3.3)

If not, then $\exists \varepsilon_0 \in]0, 1[$, so that the triplets (a, 1, c) checking c > R and:

$$c \ge R^{1+\varepsilon_0}.K(\varepsilon_0) \tag{3.4}$$

are in finite number. We have:

$$c \ge R^{1+\varepsilon_0}.K(\varepsilon_0) \Longrightarrow R^{1-\varepsilon_0}.c \ge R^{1-\varepsilon_0}.R^{1+\varepsilon_0}.K(\varepsilon_0) \Longrightarrow$$
$$R^{1-\varepsilon_0}.c \ge R^2.K(\varepsilon_0) > c.K(\varepsilon_0) \Longrightarrow R^{1-\varepsilon_0} > K(\varepsilon_0)$$
(3.5)

As c > R, we obtain:

$$c^{1-\varepsilon_{0}} > R^{1-\varepsilon_{0}} > K(\varepsilon_{0}) \Longrightarrow$$

$$c^{1-\varepsilon_{0}} > K(\varepsilon_{0}) \Longrightarrow c > K(\varepsilon_{0}) \left(\frac{1}{1-\varepsilon_{0}}\right)$$
(3.6)

We deduce that it exists an infinity of triples (a, 1, c) verifying (3.4), hence the contradiction. Then the proof of the *abc* conjecture in the case c = a + 1 is finished. We obtain that $\forall \varepsilon > 0$, c = a + 1with *a*, *c* relatively coprime, $2 \le a < c$:

$$c < K(\varepsilon).rad(ac)^{1+\varepsilon}$$
 with $K(\varepsilon) = e^{\left(\frac{1}{\varepsilon^2}\right)}$ (3.7)

4. Examples

In this section, we are going to verify some cases of one numerical example. The example is given by:

$$1 + 5 \times 127 \times (2 \times 3 \times 7)^3 = 19^6 \tag{4.1}$$

 $a = 5 \times 127 \times (2 \times 3 \times 7)^3 = 47045880 \Rightarrow \mu_a = 2 \times 3 \times 7 = 42 \text{ and } rad(a) = 2 \times 3 \times 5 \times 7 \times 127,$ $b = 1 \Rightarrow \mu_b = 1 \text{ and } rad(b) = 1,$ $c = 19^6 = 47045880 \Rightarrow rad(c) = 19. \text{ Then } rad(abc) = rad(ac) = 2 \times 3 \times 5 \times 7 \times 19 \times 127 = 506730.$

We have c > rad(ac) but $rad^2(ac) = 506730^2 = 256775292900 > c = 47045880$.

4.0.1 Case $\varepsilon = 0.01$

$$c < K(\varepsilon).rad(ac)^{1+\varepsilon} \Longrightarrow 47\,045\,880 \stackrel{?}{<} e^{10000}.506\,730^{1.01}$$
. The expression of $K(\varepsilon)$ becomes:

$$K(\varepsilon) = e^{\frac{1}{0.0001}} = e^{10000} = 8,7477777149120053120152473488653e + 4342$$
(4.2)

We deduce that $c \ll K(0.01).506730^{1.01}$ and the equation (3.7) is verified.

4.0.2 Case $\varepsilon = 0.1$

 $K(0.1) = e^{\frac{1}{0.01}} = e^{100} = 2,6879363309671754205917012128876e + 43 \Longrightarrow c < K(0.1) \times 506730^{1.01}.$ And the equation (3.7) is verified.

4.0.3 Case $\varepsilon = 1$

 $K(1) = e \implies c = 47\,045\,880 < e.rad^2(ac) = 697\,987\,143\,184,212$. and the equation (3.7) is verified.

4.0.4 Case $\varepsilon = 100$

$$K(100) = e^{0.0001} \Longrightarrow c = 47\,045\,880 \stackrel{?}{<} e^{0.0001}.506\,730^{101} = 1,5222350248607608781853142687284e + 576$$

and the equation (3.7) is verified.

5. Conclusion

This is an elementary proof of the *abc* conjecture in the case c = a + 1. We can announce the important theorem:

Theorem 1. Let *a*, *c* positive integers relatively prime with c = a + 1, $a \ge 2$ then for each $\varepsilon > 0$, there exists $K(\varepsilon)$ such that :

$$c < K(\varepsilon) . rad(ac)^{1+\varepsilon}$$
(5.1)
where $K(\varepsilon)$ is a constant depending of ε equal to $e^{\left(\frac{1}{\varepsilon^2}\right)}$.

Acknowledgements: The author is very grateful to Professors Mihăilescu Preda and Gérald Tenenbaum for their comments about errors found in previous manuscripts concerning proofs proposed of the *abc* conjecture.

References

- Waldschmidt M.: On the abc Conjecture and some of its consequences presented at The 6th World Conference on 21st Century Mathematics, Abdus Salam School of Mathematical Sciences (ASSMS), Lahore (Pakistan), March 6-9, 2013. (2013)
- [2] Robert O., Stewart C.L. and Tenenbaum G.: A refinement of the abc conjecture. Bull. London Math. Soc. 46,6, 1156-1166 (2014).
- [3] Mihăilescu P.: Around ABC. European Mathematical Society Newsletter N° 93, September 2014.
 29-34, (2014)