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Abstract: In this paper, we consider the abc conjecture in the case c = a+1. Firstly, we give the
proof of the first conjecture that c < rad2(ac) using the polynomial functions. It is the key of the
proof of the abc conjecture. Secondly, the proof of the abc conjecture is given for ε ≥ 1, then
for ε ∈]0,1[ for the two cases: c ≤ rad(ac) and c > rad(ac). We choose the constant K(ε) as

K(ε) = e

(
1
ε2

)
. A numerical example is presented.
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A Proof of The Conjecture: C < rad2(ac)

A Final Tentative of The Proof of The ABC Conjecture - Case
c = a+1

To the memory of my Father who taught me arithmetic

To the memory of my colleague and friend Dr.Eng. Chedly Fezzani (1943-2019) for
his important work in the field of Geodesy and the promotion of the Geographic

Sciences in Africa

1. Introduction and notations

Let a a positive integer, a = ∏i aαi
i , ai prime integers and αi ≥ 1 positive integers. We call radical

of a the integer ∏i ai noted by rad(a). Then a is written as:

a = ∏
i

aαi
i = rad(a).∏

i
aαi−1

i (1.1)

We note:
µa = ∏

i
aαi−1

i =⇒ a = µa.rad(a) (1.2)

The abc conjecture was proposed independently in 1985 by David Masser of the University of Basel
and Joseph Œsterlé of Pierre et Marie Curie University (Paris 6) ([1]). It describes the distribution
of the prime factors of two integers with those of its sum. The definition of the abc conjecture is
given below:

Conjecture 1.3. ( abc Conjecture): Let a,b,c positive integers relatively prime with c = a+ b,
then for each ε > 0, there exists K(ε) such that :

c < K(ε).rad(abc)1+ε (1.4)

We know that numerically,
Logc

Log(rad(abc))
≤ 1.616751 ([2]). A conjecture was proposed that

c < rad2(abc) ([3]). Here we will give the proof of it, in the case c = a+ 1, using a polynomial
function.

Conjecture 1.5. Let a,b,c positive integers relatively prime with c = a+b, then:

c < rad2(abc) =⇒ Logc
Log(rad(abc))

< 2 (1.6)

This result, I think is the key to obtain a proof of the veracity of the abc conjecture.

2. A Proof of the conjecture (1.5) Case c = a+1

Let a,c positive integers, relatively prime, with c = a+1. If c < rad(ac) then we obtain:

c < rad(ac)< rad2(ac) (2.1)

and the condition (1.6) is verified.

In the following, we suppose that c≥ rad(ac).
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2.1 Notations

We note:

a = ∏
i

aαi
i =⇒ rad(a) = ∏

i
ai,µa = ∏

i
aαi−1

i , i = 1,Na (2.2)

c = ∏
j

cβ j
j =⇒ rad(c) = ∏

j
c j,µc = ∏

j
cβ j−1

j , j = 1,Nc (2.3)

with ai,c j prime integers and Na,Nc,α,β ≥ 1 positive integers. Let:

R = rad(a).rad(c) = rad(ac) (2.4)

R(x) =
Na

∏
i
(x+ai)

2.
Nc

∏
j
(x+ c j) =⇒R(x)> 0,∀x≥ 0 (2.5)

F(x) = R(x)−µc (2.6)

From the last equations we obtain:

F(0) = R(0)−µc = rad2(a).rad(c)−µc (2.7)

Then, our main task is to prove that F(0)> 0 =⇒ R2 > c.

2.1.1 The Proof of c < rad2(ac)

From the definition of the polynomial F(x), its degree is 2Na +Nc. We have :
1. limx−→+∞F(x) = +∞,

2. limx−→+∞

F(x)
x

=+∞, F is convex for x large,

3. if x1 is the great real root of F(x) = 0, and from the points 1., 2. we deduce that F”(x+1 )> 0,
4. if x1 < 0, then F(0)> 0.
Let us study F ′(x) and F”(x). We obtain:

F ′(x) = R ′(x)

R ′(x) =
[
∏

Na
i (x+ai)

2
]′
.∏

Nc
j (x+ c j)+∏

Na
i (x+ai)

2.
[
∏

Nc
j (x+ c j)

]′
=⇒[

∏
Na
i (x+ai)

2
]′
= 2∏

Na
i (x+ai)

2.

(
∑

i

1
x+ai

)
[
∏

Nc
j (x+ c j)

]′
= ∏

Nc
j (x+ c j)

(
j=Nb

∑
j=1

1
x+ c j

)
=⇒

R ′(x) = R(x).

(
Na

∑
i

2
x+ai

+
Nc

∑
j

1
x+ c j

)
> 0,∀x≥ 0 (2.8)

F ′(x) = R ′ = R(x)

(
Na

∑
i

2
x+ai

+
Nc

∑
j

1
x+ c j

)
> 0,∀x > 0 =⇒

F ′(0) = R(0).

(
Na

∑
i

2
ai
+

Nc

∑
j

1
c j

)
= rad2(a).rad(c).

(
Na

∑
i

2
ai
+

Nc

∑
j

1
c j

)
> 0 (2.9)
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For F”(x), we obtain:

F”(x) = R” = R ′(x)

(
Na

∑
i

2
x+ai

+
Nc

∑
j

1
x+ c j

)
−R(x)

(
Na

∑
i

2
(x+ai)2 +

Nc

∑
j

1
(x+ c j)2

)
=⇒(2.10)

F”(x) = R(x).

(Na

∑
i

2
x+ai

+
Nc

∑
j

1
x+ c j

)2

−
Na

∑
i

2
(x+ai)2 −

Nc

∑
j

1
(x+ c j)2

=⇒

F”(x)> 0,∀x≥ 0 (2.11)

We obtain also that F”(0)> 0.

Before we attack the proof, we take an example as: 1+8= 9=⇒ c= 9,a= 8,b= 1. We obtain
rad(a) = 2,rad(c) = 3,µc = 3,R= rad(ac) = 2×3= 6< (c= 9) and c= 9 verifies c< (R2 = 62 =

36). We write the polynomial F(x) = (x+2)2(x+3)−3 = x3 +7x2 +16x+9 > 0,∀x > 0. Then
F ′(x) = 3x2 + 14x+ 16, we verifies that F ′(x) = 0 has not real roots and F ′(x) > 0,∀x ∈ R. We
have also F”(x) = 6x+14. F”(x) = 0 =⇒ x =−7/3≈−2.33 =⇒ F(−7/3) =−79/27≈−2.92.
The point (−7/3,−79/27) is an inflexion point of the curve of y = F(x). We deduce that the curve
is convex for x ≥ −7/3. Let us now find the roots of F(x) = 0. As the degree of F is three, the
number of the real roots are 1 or 3. As there is one inflexion point, we will find one real root.

2.2 The Resolution of F(x) = 0

We want to resolve:
F(x) = x3 +7x2 +16x+9 = 0 (2.12)

Let the change of variables x = t−7/3, the equation (2.12) becomes:

t3− t
3
− 79

27
= 0 (2.13)

For the resolution of (2.13), we introduce two unknowns:

t = u+ v =⇒ (u+ v)(3uv− 1
3)+u3 + v3− 79

27 = 0 =⇒
u3 + v3 =

79
33

uv =
1
32

(2.14)

Then u3,v3 are solutions of the equation:

X2− 79
33 X +

1
36 = 0 (2.15)

and given below:

u3 =
1
2
.
79+9

√
77

33 =⇒



u1 =
3

√√√√1
2

(
79+9

√
77

33

)
≈ 0.97515

u2 = j.u1, j = −1+i
√

3
2 = ei 2π

3

u3 = j2u1 = j̄.u1

4



A Proof of The Conjecture: C < rad2(ac)

v3 =
1
2
.
79−9

√
77

33 =⇒



v1 =
3

√√√√1
2

(
79−9

√
77

33

)
≈ 0.00016

v2 = j2.v1 = j̄.v1

v3 = j.v1

(2.16)

Finally, taking into account the second condition of (2.14), we obtain the real root of (2.13):

t = u1 + v1 =
3

√√√√1
2

(
79+9

√
77

33

)
+ 3

√√√√1
2

(
79−9

√
77

33

)
≈ 0.97531

x1 = t−7/3≈−1.35802 (2.17)

Then the first root of F(x) = 0 is x1 ≈ −1.358 < 0, the correction to the first root of R(x) =
(x+2)2(x+3) = 0 is dx = x1− (−2) =−1.358− (−2) = +0.642. As in our example F ′(x)> 0,
the function F(x) is an increasing function having a parabolic branch as x −→ +∞, the curve
y = F(x) intersects the line x = 0 in the half-plane y≥ 0 =⇒ F(0)> 0 =⇒ c < rad2(ac) which is
verified numerically.

2.3 The General Case

Let us return to the general case c = a+ 1. We denote q = min(ai,c j). If we consider that
F(x) = R(x), the equation F(x) = 0 =⇒R(x) = 0 and the first real root is x1 = −q, the product
of all the roots is P = ∏

i
(xi)

2.∏
j
(x j) = (−1)2Na+Nc ∏

i
(ai)

2.∏
j
(c j). But F(x) = R(x)− µc, the

constant coefficient of F(x) will be ∏
i
(ai)

2.∏
j
(c j)− µc. The new product of the roots is P′ =

∏
i
(x′i)

2.∏
j
(x′j) = (−1)2Na+Nc(∏

i
(ai)

2.∏
j
(c j)− µc). The first root x1 = −q becomes x′1 = −q+

dx. To estimate dx, we can write to the order two that:

F(−q+dx) = R(−q+dx)−µc = 0 =⇒R(−q+dx) = µc =⇒

R(−q)+dx.R ′(−q)+
dx2

2
R”(−q) = µc (2.18)

Supposing that a1 = q = min(ai,c j), from the equations (2.5-2.8-2.10), we have :

R(−a1) = 0

R ′(−a1) = 0

R”(−a1) = 2
Na

∏
i=2

(ai−a1)
2.

Nc

∏
j=1

(c j−a1)> 0 =⇒ dx2 =
µc

∏
Na
i=2(ai−a1)2.∏

Nc
j=1(c j−a1)

(2.19)

We suppose that c > rad2(ac) =⇒ µc > rad2(a).rad(c) =⇒ µc > R(0). We deduce that F(0)< 0
and x′1 =−a1 +dx > 0 =⇒ dx > 0. We take the positive value of dx, then we obtain:

dx =
√

µc

Na

∏
i=2

(ai−a1).

√√√√ Nc

∏
j=1

(c j−a1)

(2.20)
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But µc = R(x′1) =
Na

∏
i
(x′1 +ai)

2.
Nc

∏
j
(x′1 + c j), we can write:

µc = dx2.
Na

∏
i=2

(dx+ai−a1)
2.

Nc

∏
j
(dx+ c j−a1) =⇒ µc > dx2.

Na

∏
i=2

(ai−a1)
2.

Nc

∏
j
(c j−a1) (2.21)

because all the terms ai− a1 and c j− a1 are positive numbers. Using the last inequality and the
expression of dx given by the equation (2.20), we obtain:

µc >
µc

Na

∏
i=2

(ai−a1)
2.

Nc

∏
j=1

(c j−a1)

.
Na

∏
i=2

(ai−a1)
2.

Nc

∏
j
(c j−a1) =⇒

1 > 1 =⇒ the contradiction =⇒ µc < rad2(a)rad(c) (2.22)

So, our supposition that c > rad2(ac) is false and we obtain the important result that c < rad2(ac)
and the conjecture (1.5) is verified.

2.3.1 Examples

In this section, we are going to verify the above remarks with a numerical example. The
example is given by:

1+5×127× (2×3×7)3 = 196

rad(a) = 2×3×5×7×127 = 26670

rad(c) = 19

c = 195 = 47045881, µc = 195 = 2476099 (2.23)

Using the notations of the paper, we obtain:

R(x) = (x+2)2(x+3)2(x+5)2(x+7)2(x+127)2(x+19)

F(x) = R(x)−µc

Let X = x+2, the expression of R(x) becomes:

R(X) = X2(X +1)2(X +3)2(X +5)2(X +125)2(X +17)

The calculations gives:

R(X) = X11 +285.X10 +24808.X9 +657728.X8 +7424722.X7 +42772898.X6

+134002080.X5 +223508940.X4 +187753125.X3 +597656251.X2 (2.24)

We want to estimate the first root of F(x) = 0, we write:

R(X)−µc = 0 =⇒
X11 +285.X10 +24808.X9 +657728.X8 +7424722.X7 +42772898.X6

+134002080.X5 +223508940.X4 +187753125.X3 +597656251.X2−2476099 = 0 (2.25)
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If x =−2 =⇒ X = 0 =⇒R(X)−µc < 0. If we take x1 =−1.936315 =⇒ X1 = 0.03685, then we
obtain that:

R(x1)−µc = R(X1)−µc ≈ 177.82 > 0 (2.26)

Then, ∃ ξ with −2 < ξ < x1 so that X ′ = 2+ ξ verifies R(X ′)− µc = 0 and ξ is the first root of
F(x) = 0 and ξ < 0 =⇒ F(0) > 0 =⇒ rad2(a)rad(c)− µc > 0 =⇒ R2 > c that is true. We have
also ξ =−2+dx = a1 +dx and 0 < dx < a1.

3. The Proof of The ABC Conjecture (1.3) Case: c = a+1

We denote R = rad(ac).

3.1 Case: ε ≥ 1

Using the result of the theorem above, we have ∀ε ≥ 1:

c < R2 ≤ R1+ε < K(ε).R1+ε , K(ε) = e

( 1
ε2

)
, ε ≥ 1 (3.1)

We verify easily that K(ε) > 1 for ε ≥ 1 and it is a decreasing function from e the base of the
neperian logarithm to 1.

3.2 Case: ε < 1

3.2.1 Case: c≤ R

In this case, we can write :

c≤ R < R1+ε < K(ε).R1+ε , K(ε) = e

(
1
ε2

)
, ε < 1 (3.2)

here also K(ε)> 1 for ε < 1 and the abc conjecture is true.

3.2.2 Case: c > R

In this case, we confirm that :

c < K(ε).R1+ε , K(ε) = e

(
1
ε2

)
,0 < ε < 1 (3.3)

If not, then ∃ε0 ∈]0,1[, so that the triplets (a,1,c) checking c > R and:

c≥ R1+ε0 .K(ε0) (3.4)

are in finite number. We have:

c≥ R1+ε0 .K(ε0) =⇒ R1−ε0 .c≥ R1−ε0 .R1+ε0 .K(ε0) =⇒
R1−ε0 .c≥ R2.K(ε0)> c.K(ε0) =⇒ R1−ε0 > K(ε0) (3.5)
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As c > R, we obtain:

c1−ε0 > R1−ε0 > K(ε0) =⇒

c1−ε0 > K(ε0) =⇒ c > K(ε0)

(
1

1− ε0

)
(3.6)

We deduce that it exists an infinity of triples (a,1,c) verifying (3.4), hence the contradiction. Then
the proof of the abc conjecture in the case c = a+1 is finished. We obtain that ∀ε > 0, c = a+1
with a,c relatively coprime, 2≤ a < c :

c < K(ε).rad(ac)1+ε with K(ε) = e

(
1
ε2

)
(3.7)

Q.E.D

4. Examples

In this section, we are going to verify some cases of one numerical example. The example is
given by:

1+5×127× (2×3×7)3 = 196 (4.1)

a = 5×127× (2×3×7)3 = 47045880⇒ µa = 2×3×7 = 42 and rad(a) = 2×3×5×7×127,
b = 1⇒ µb = 1 and rad(b) = 1,
c = 196 = 47045880⇒ rad(c) = 19. Then rad(abc) = rad(ac) = 2× 3× 5× 7× 19× 127 =

506730..
We have c > rad(ac) but rad2(ac) = 5067302 = 256775292900 > c = 47045880.

4.0.1 Case ε = 0.01

c < K(ε).rad(ac)1+ε =⇒ 47045880
?
< e10000.5067301.01. The expression of K(ε) becomes:

K(ε) = e
1

0.0001 = e10000 = 8,7477777149120053120152473488653e+4342 (4.2)

We deduce that c� K(0.01).5067301.01 and the equation (3.7) is verified.

4.0.2 Case ε = 0.1

K(0.1)= e
1

0.01 = e100 = 2,6879363309671754205917012128876e+43=⇒ c<K(0.1)×5067301.01.
And the equation (3.7) is verified.

4.0.3 Case ε = 1

K(1) = e =⇒ c = 47045880 < e.rad2(ac) = 697987143184,212. and the equation (3.7) is
verified.
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4.0.4 Case ε = 100

K(100) = e0.0001 =⇒ c = 47045880
?
< e0.0001.506730101 =

1,5222350248607608781853142687284e+576

and the equation (3.7) is verified.

5. Conclusion

This is an elementary proof of the abc conjecture in the case c = a+1. We can announce the
important theorem:

Theorem 1. Let a,c positive integers relatively prime with c = a+ 1, a ≥ 2 then for each ε > 0,
there exists K(ε) such that :

c < K(ε).rad(ac)1+ε (5.1)

where K(ε) is a constant depending of ε equal to e

(
1
ε2

)
.
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