A Final Tentative of The Proof of The ABC Conjecture - Case $c=a+1$

Abdelmajid Ben Hadj Salem

6, Rue du Nil, Cité Soliman Er-Riadh, 8020 Soliman,
Tunisia
E-mail: abenhadjsalema@gmail.com

Abstract

In this paper, we consider the $a b c$ conjecture in the case $c=a+1$. Firstly, we give the proof of the first conjecture that $c<\operatorname{rad}^{2}(a c)$ using the polynomial functions. It is the key of the proof of the $a b c$ conjecture. Secondly, the proof of the $a b c$ conjecture is given for $\varepsilon \geq 1$, then for $\varepsilon \in] 0,1[$ for the two cases: $c \leq \operatorname{rad}(a c)$ and $c>\operatorname{rad}(a c)$. We choose the constant $K(\varepsilon)$ as $K(\varepsilon)=e^{\left(\frac{1}{\varepsilon^{2}}\right)}$. A numerical example is presented.

A Final Tentative of The Proof of The $A B C$ Conjecture - Case

$$
c=a+1
$$

To the memory of my Father who taught me arithmetic
To the memory of my colleague and friend Dr.Eng. Chedly Fezzani (1943-2019) for his important work in the field of Geodesy and the promotion of the Geographic

Sciences in Africa

1. Introduction and notations

Let a a positive integer, $a=\prod_{i} a_{i}^{\alpha_{i}}, a_{i}$ prime integers and $\alpha_{i} \geq 1$ positive integers. We call radical of a the integer $\prod_{i} a_{i}$ noted by $\operatorname{rad}(a)$. Then a is written as:

$$
\begin{equation*}
a=\prod_{i} a_{i}^{\alpha_{i}}=\operatorname{rad}(a) \cdot \prod_{i} a_{i}^{\alpha_{i}-1} \tag{1.1}
\end{equation*}
$$

We note:

$$
\begin{equation*}
\mu_{a}=\prod_{i} a_{i}^{\alpha_{i}-1} \Longrightarrow a=\mu_{a} \cdot \operatorname{rad}(a) \tag{1.2}
\end{equation*}
$$

The $a b c$ conjecture was proposed independently in 1985 by David Masser of the University of Basel and Joseph Esterlé of Pierre et Marie Curie University (Paris 6) ([1]). It describes the distribution of the prime factors of two integers with those of its sum. The definition of the $a b c$ conjecture is given below:

Conjecture 1.3. (abc Conjecture): Let a, b, c positive integers relatively prime with $c=a+b$, then for each $\varepsilon>0$, there exists $K(\varepsilon)$ such that :

$$
\begin{equation*}
c<K(\varepsilon) \cdot \operatorname{rad}(a b c)^{1+\varepsilon} \tag{1.4}
\end{equation*}
$$

We know that numerically, $\frac{\log c}{\log (\operatorname{rad}(a b c))} \leq 1.616751$ ([2]). A conjecture was proposed that $c<\operatorname{rad}^{2}(a b c)$ ([3]). Here we will give the proof of it, in the case $c=a+1$, using a polynomial function.

Conjecture 1.5. Let a, b, c positive integers relatively prime with $c=a+b$, then:

$$
\begin{equation*}
c<\operatorname{rad}^{2}(a b c) \Longrightarrow \frac{\log c}{\log (\operatorname{rad}(a b c))}<2 \tag{1.6}
\end{equation*}
$$

This result, I think is the key to obtain a proof of the veracity of the $a b c$ conjecture.

2. A Proof of the conjecture (1.5) Case $c=a+1$

Let a, c positive integers, relatively prime, with $c=a+1$. If $c<\operatorname{rad}(a c)$ then we obtain:

$$
\begin{equation*}
c<\operatorname{rad}(a c)<\operatorname{rad}^{2}(a c) \tag{2.1}
\end{equation*}
$$

and the condition (1.6) is verified.

In the following, we suppose that $c \geq \operatorname{rad}(a c)$.

2.1 Notations

We note:

$$
\begin{align*}
& a=\prod_{i} a_{i}^{\alpha_{i}} \Longrightarrow \operatorname{rad}(a)=\prod_{i} a_{i}, \mu_{a}=\prod_{i} a_{i}^{\alpha_{i}-1}, i=1, N_{a} \tag{2.2}\\
& c=\prod_{j} c_{j}^{\beta_{j}} \Longrightarrow \operatorname{rad}(c)=\prod_{j} c_{j}, \mu_{c}=\prod_{j} c_{j}^{\beta_{j}-1}, j=1, N_{c} \tag{2.3}
\end{align*}
$$

with a_{i}, c_{j} prime integers and $N_{a}, N_{c}, \alpha, \beta \geq 1$ positive integers. Let:

$$
\begin{array}{r}
R=\operatorname{rad}(a) \cdot \operatorname{rad}(c)=\operatorname{rad}(a c) \\
\mathscr{R}(x)=\prod_{i}^{N_{a}}\left(x+a_{i}\right)^{2} \cdot \prod_{j}^{N_{c}}\left(x+c_{j}\right) \Longrightarrow \mathscr{R}(x)>0, \forall x \geq 0 \\
F(x)=\mathscr{R}(x)-\mu_{c} \tag{2.6}
\end{array}
$$

From the last equations we obtain:

$$
\begin{equation*}
F(0)=\mathscr{R}(0)-\mu_{c}=\operatorname{rad}^{2}(a) \cdot \operatorname{rad}(c)-\mu_{c} \tag{2.7}
\end{equation*}
$$

Then, our main task is to prove that $F(0)>0 \Longrightarrow R^{2}>c$.
2.1.1 The Proof of $c<\operatorname{rad}^{2}(a c)$

From the definition of the polynomial $F(x)$, its degree is $2 N_{a}+N_{c}$. We have :

1. $\lim _{x \rightarrow+\infty} F(x)=+\infty$,
2. $\lim _{x \rightarrow+\infty} \frac{F(x)}{x}=+\infty$, F is convex for x large,
3. if x_{1} is the great real root of $F(x)=0$, and from the points 1 ., 2. we deduce that $F "\left(x_{1}^{+}\right)>0$, 4. if $x_{1}<0$, then $F(0)>0$.

Let us study $F^{\prime}(x)$ and $F^{\prime \prime}(x)$. We obtain:

$$
\begin{gather*}
F^{\prime}(x)=\mathscr{R}^{\prime}(x) \\
\mathscr{R}^{\prime}(x)=\left[\Pi_{i}^{N_{a}}\left(x+a_{i}\right)^{2}\right]^{\prime} \cdot \Pi_{j}^{N_{c}}\left(x+c_{j}\right)+\prod_{i}^{N_{a}}\left(x+a_{i}\right)^{2} \cdot\left[\prod_{j}^{N_{c}}\left(x+c_{j}\right)\right]^{\prime} \Longrightarrow \\
{\left[\prod_{i}^{N_{a}}\left(x+a_{i}\right)^{2}\right]^{\prime}=2 \prod_{i}^{N_{a}}\left(x+a_{i}\right)^{2} \cdot\left(\sum_{i} \frac{1}{x+a_{i}}\right)} \\
{\left[\Pi_{j}^{N_{c}}\left(x+c_{j}\right)\right]^{\prime}=\prod_{j}^{N_{c}}\left(x+c_{j}\right)\left(\sum_{j=1}^{j=N_{b}} \frac{1}{x+c_{j}}\right) \Longrightarrow} \\
\mathscr{R}^{\prime}(x)=\mathscr{R}(x) \cdot\left(\sum_{i}^{N_{a}} \frac{2}{x+a_{i}}+\sum_{j}^{N_{c}} \frac{1}{x+c_{j}}\right)>0, \forall x \geq 0 \tag{2.8}\\
F^{\prime}(x)=\mathscr{R}^{\prime}=\mathscr{R}(x)\left(\sum_{i}^{N_{a}} \frac{2}{x+a_{i}}+\sum_{j}^{N_{c}} \frac{1}{x+c_{j}}\right)>0, \forall x>0 \Longrightarrow \\
F^{\prime}(0)=\mathscr{R}(0) \cdot\left(\sum_{i}^{N_{a}} \frac{2}{a_{i}}+\sum_{j}^{N_{c}} \frac{1}{c_{j}}\right)=\operatorname{rad}^{2}(a) \cdot \operatorname{rad}(c) \cdot\left(\sum_{i}^{N_{a}} \frac{2}{a_{i}}+\sum_{j}^{N_{c}} \frac{1}{c_{j}}\right)>0 \tag{2.9}
\end{gather*}
$$

For $F^{\prime \prime}(x)$, we obtain:

$$
\begin{gather*}
F^{\prime \prime}(x)=\mathscr{R} \prime \prime=\mathscr{R}^{\prime}(x)\left(\sum_{i}^{N_{a}} \frac{2}{x+a_{i}}+\sum_{j}^{N_{c}} \frac{1}{x+c_{j}}\right)-\mathscr{R}(x)\left(\sum_{i}^{N_{a}} \frac{2}{\left(x+a_{i}\right)^{2}}+\sum_{j}^{N_{c}} \frac{1}{\left(x+c_{j}\right)^{2}}\right) \Longrightarrow(2.10) \\
F^{\prime \prime}(x)=\mathscr{R}(x) .\left[\left(\sum_{i}^{N_{a}} \frac{2}{x+a_{i}}+\sum_{j}^{N_{c}} \frac{1}{x+c_{j}}\right)^{2}-\sum_{i}^{N_{a}} \frac{2}{\left(x+a_{i}\right)^{2}}-\sum_{j}^{N_{c}} \frac{1}{\left(x+c_{j}\right)^{2}}\right] \Longrightarrow \\
F \prime(x)>0, \forall x \geq 0 \tag{2.11}
\end{gather*}
$$

We obtain also that $F^{\prime \prime}(0)>0$.
Before we attack the proof, we take an example as: $1+8=9 \Longrightarrow c=9, a=8, b=1$. We obtain $\operatorname{rad}(a)=2, \operatorname{rad}(c)=3, \mu_{c}=3, R=\operatorname{rad}(a c)=2 \times 3=6<(c=9)$ and $c=9$ verifies $c<\left(R^{2}=6^{2}=\right.$ 36). We write the polynomial $F(x)=(x+2)^{2}(x+3)-3=x^{3}+7 x^{2}+16 x+9>0, \forall x>0$. Then $F^{\prime}(x)=3 x^{2}+14 x+16$, we verifies that $F^{\prime}(x)=0$ has not real roots and $F^{\prime}(x)>0, \forall x \in \mathbb{R}$. We have also $F^{\prime \prime}(x)=6 x+14$. $F^{\prime \prime}(x)=0 \Longrightarrow x=-7 / 3 \approx-2.33 \Longrightarrow F(-7 / 3)=-79 / 27 \approx-2.92$. The point $(-7 / 3,-79 / 27)$ is an inflexion point of the curve of $y=F(x)$. We deduce that the curve is convex for $x \geq-7 / 3$. Let us now find the roots of $F(x)=0$. As the degree of F is three, the number of the real roots are 1 or 3 . As there is one inflexion point, we will find one real root.
2.2 The Resolution of $F(x)=0$

We want to resolve:

$$
\begin{equation*}
F(x)=x^{3}+7 x^{2}+16 x+9=0 \tag{2.12}
\end{equation*}
$$

Let the change of variables $x=t-7 / 3$, the equation (2.12) becomes:

$$
\begin{equation*}
t^{3}-\frac{t}{3}-\frac{79}{27}=0 \tag{2.13}
\end{equation*}
$$

For the resolution of (2.13), we introduce two unknowns:

$$
\begin{gather*}
t=u+v \Longrightarrow(u+v)\left(3 u v-\frac{1}{3}\right)+u^{3}+v^{3}-\frac{79}{27}=0 \Longrightarrow \\
\left\{\begin{array}{l}
u^{3}+v^{3}=\frac{79}{3^{3}} \\
u v=\frac{1}{3^{2}}
\end{array}\right. \tag{2.14}
\end{gather*}
$$

Then u^{3}, v^{3} are solutions of the equation:

$$
\begin{equation*}
X^{2}-\frac{79}{3^{3}} X+\frac{1}{3^{6}}=0 \tag{2.15}
\end{equation*}
$$

and given below:

$$
u^{3}=\frac{1}{2} \cdot \frac{79+9 \sqrt{77}}{3^{3}} \Longrightarrow\left\{\begin{array}{l}
u_{1}=\sqrt[3]{\frac{1}{2}\left(\frac{79+9 \sqrt{77}}{3^{3}}\right)} \approx 0.97515 \\
u_{2}=j \cdot u_{1}, \quad j=\frac{-1+i \sqrt{3}}{2}=e^{i \frac{2 \pi}{3}} \\
u_{3}=j^{2} u_{1}=\bar{j} \cdot u_{1}
\end{array}\right.
$$

$$
v^{3}=\frac{1}{2} \cdot \frac{79-9 \sqrt{77}}{3^{3}} \Longrightarrow\left\{\begin{array}{l}
v_{1}=\sqrt[3]{\frac{1}{2}\left(\frac{79-9 \sqrt{77}}{3^{3}}\right)} \approx 0.00016 \tag{2.16}\\
v_{2}=j^{2} \cdot v_{1}=\bar{j} \cdot v_{1} \\
v_{3}=j \cdot v_{1}
\end{array}\right.
$$

Finally, taking into account the second condition of (2.14), we obtain the real root of (2.13):

$$
\begin{array}{r}
t=u_{1}+v_{1}=\sqrt[3]{\frac{1}{2}\left(\frac{79+9 \sqrt{77}}{3^{3}}\right)}+\sqrt[3]{\frac{1}{2}\left(\frac{79-9 \sqrt{77}}{3^{3}}\right)} \approx 0.97531 \\
x_{1}=t-7 / 3 \approx-1.35802 \tag{2.17}
\end{array}
$$

Then the first root of $F(x)=0$ is $x_{1} \approx-1.358<0$, the correction to the first root of $\mathscr{R}(x)=$ $(x+2)^{2}(x+3)=0$ is $d x=x_{1}-(-2)=-1.358-(-2)=+0.642$. As in our example $F^{\prime}(x)>0$, the function $F(x)$ is an increasing function having a parabolic branch as $x \longrightarrow+\infty$, the curve $y=F(x)$ intersects the line $x=0$ in the half-plane $y \geq 0 \Longrightarrow F(0)>0 \Longrightarrow c<\operatorname{rad}^{2}(a c)$ which is verified numerically.

2.3 The General Case

Let us return to the general case $c=a+1$. We denote $q=\min \left(a_{i}, c_{j}\right)$. If we consider that $F(x)=\mathscr{R}(x)$, the equation $F(x)=0 \Longrightarrow \mathscr{R}(x)=0$ and the first real root is $x_{1}=-q$, the product of all the roots is $P=\prod_{i}\left(x_{i}\right)^{2} \cdot \prod_{j}\left(x_{j}\right)=(-1)^{2 N_{a}+N_{c}} \prod_{i}\left(a_{i}\right)^{2} \cdot \prod_{j}\left(c_{j}\right)$. But $F(x)=\mathscr{R}(x)-\mu_{c}$, the constant coefficient of $F(x)$ will be $\prod_{i}\left(a_{i}\right)^{2} \cdot \prod_{j}\left(c_{j}\right)-\mu_{c}$. The new product of the roots is $P^{\prime}=$ $\prod_{i}\left(x_{i}^{\prime}\right)^{2} \cdot \prod_{j}\left(x_{j}^{\prime}\right)=(-1)^{2 N_{a}+N_{c}}\left(\prod_{i}\left(a_{i}\right)^{2} \cdot \prod_{j}\left(c_{j}\right)-\mu_{c}\right)$. The first root $x_{1}=-q$ becomes $x_{1}^{\prime}=-q+$ $d x$. To estimate $d x$, we can write to the order two that:

$$
\begin{array}{r}
F(-q+d x)=\mathscr{R}(-q+d x)-\mu_{c}=0 \Longrightarrow \mathscr{R}(-q+d x)=\mu_{c} \Longrightarrow \\
\mathscr{R}(-q)+d x \cdot \mathscr{R}^{\prime}(-q)+\frac{d x^{2}}{2} \mathscr{R} "(-q)=\mu_{c} \tag{2.18}
\end{array}
$$

Supposing that $a_{1}=q=\min \left(a_{i}, c_{j}\right)$, from the equations (2.5-2.8-2.10), we have :

$$
\begin{align*}
\mathscr{R}\left(-a_{1}\right) & =0 \\
\mathscr{R}^{\prime}\left(-a_{1}\right) & =0 \\
\mathscr{R}^{\prime \prime}\left(-a_{1}\right)=2 \prod_{i=2}^{N_{a}}\left(a_{i}-a_{1}\right)^{2} \cdot \prod_{j=1}^{N_{c}}\left(c_{j}-a_{1}\right)>0 & \Longrightarrow d x^{2}=\frac{\mu_{c}}{\prod_{i=2}^{N_{a}}\left(a_{i}-a_{1}\right)^{2} \cdot \prod_{j=1}^{N_{c}}\left(c_{j}-a_{1}\right)}(2 \tag{2.19}
\end{align*}
$$

We suppose that $c>\operatorname{rad}^{2}(a c) \Longrightarrow \mu_{c}>\operatorname{rad}^{2}(a) \cdot \operatorname{rad}(c) \Longrightarrow \mu_{c}>\mathscr{R}(0)$. We deduce that $F(0)<0$ and $x_{1}^{\prime}=-a_{1}+d x>0 \Longrightarrow d x>0$. We take the positive value of $d x$, then we obtain:

$$
\begin{equation*}
d x=\frac{\sqrt{\mu_{c}}}{\prod_{i=2}^{N_{a}}\left(a_{i}-a_{1}\right) \cdot \sqrt{\prod_{j=1}^{N_{c}}\left(c_{j}-a_{1}\right)}} \tag{2.20}
\end{equation*}
$$

But $\mu_{c}=\mathscr{R}\left(x_{1}^{\prime}\right)=\prod_{i}^{N_{a}}\left(x_{1}^{\prime}+a_{i}\right)^{2} \cdot \prod_{j}^{N_{c}}\left(x_{1}^{\prime}+c_{j}\right)$, we can write:

$$
\begin{equation*}
\mu_{c}=d x^{2} \cdot \prod_{i=2}^{N_{a}}\left(d x+a_{i}-a_{1}\right)^{2} \cdot \prod_{j}^{N_{c}}\left(d x+c_{j}-a_{1}\right) \Longrightarrow \mu_{c}>d x^{2} \cdot \prod_{i=2}^{N_{a}}\left(a_{i}-a_{1}\right)^{2} \cdot \prod_{j}^{N_{c}}\left(c_{j}-a_{1}\right) \tag{2.21}
\end{equation*}
$$

because all the terms $a_{i}-a_{1}$ and $c_{j}-a_{1}$ are positive numbers. Using the last inequality and the expression of $d x$ given by the equation (2.20), we obtain:

$$
\begin{array}{r}
\mu_{c}>\frac{\mu_{c}}{\prod_{i=2}^{N_{a}}\left(a_{i}-a_{1}\right)^{2} \cdot \prod_{j=1}^{N_{c}}\left(c_{j}-a_{1}\right)} \cdot \prod_{i=2}^{N_{a}}\left(a_{i}-a_{1}\right)^{2} \cdot \prod_{j}^{N_{c}}\left(c_{j}-a_{1}\right) \Longrightarrow \\
1>1 \Longrightarrow \text { the contradiction } \Longrightarrow \mu_{c}<\operatorname{rad}^{2}(a) \operatorname{rad}(c) \tag{2.22}
\end{array}
$$

So, our supposition that $c>\operatorname{rad}^{2}(a c)$ is false and we obtain the important result that $c<\operatorname{rad}^{2}(a c)$ and the conjecture (1.5) is verified.

2.3.1 Examples

In this section, we are going to verify the above remarks with a numerical example. The example is given by:

$$
\begin{array}{r}
1+5 \times 127 \times(2 \times 3 \times 7)^{3}=19^{6} \\
\operatorname{rad}(a)=2 \times 3 \times 5 \times 7 \times 127=26670 \\
r a d(c)=19 \\
c=19^{5}=47045881, \quad \mu_{c}=19^{5}=2476099 \tag{2.23}
\end{array}
$$

Using the notations of the paper, we obtain:

$$
\begin{array}{r}
\mathscr{R}(x)=(x+2)^{2}(x+3)^{2}(x+5)^{2}(x+7)^{2}(x+127)^{2}(x+19) \\
F(x)=\mathscr{R}(x)-\mu_{c}
\end{array}
$$

Let $X=x+2$, the expression of $\mathscr{R}(x)$ becomes:

$$
\overline{\mathscr{R}}(X)=X^{2}(X+1)^{2}(X+3)^{2}(X+5)^{2}(X+125)^{2}(X+17)
$$

The calculations gives:

$$
\begin{align*}
\overline{\mathscr{R}}(X)= & X^{11}+285 . X^{10}+24808 . X^{9}+657728 . X^{8}+7424722 . X^{7}+42772898 . X^{6} \\
& +134002080 . X^{5}+223508940 . X^{4}+187753125 . X^{3}+597656251 . X^{2} \tag{2.24}
\end{align*}
$$

We want to estimate the first root of $F(x)=0$, we write:

$$
\begin{array}{r}
\bar{R}(X)-\mu_{c}=0 \Longrightarrow \\
X^{11}+285 \cdot X^{10}+24808 \cdot X^{9}+657728 \cdot X^{8}+7424722 \cdot X^{7}+42772898 \cdot X^{6} \\
+134002080 \cdot X^{5}+223508940 \cdot X^{4}+187753125 \cdot X^{3}+597656251 \cdot X^{2}-2476099=0 \tag{2.25}
\end{array}
$$

If $x=-2 \Longrightarrow X=0 \Longrightarrow \overline{\mathscr{R}}(X)-\mu_{c}<0$. If we take $x_{1}=-1.936315 \Longrightarrow X_{1}=0.03685$, then we obtain that:

$$
\begin{equation*}
\mathscr{R}\left(x_{1}\right)-\mu_{c}=\overline{\mathscr{R}}\left(X_{1}\right)-\mu_{c} \approx 177.82>0 \tag{2.26}
\end{equation*}
$$

Then, $\exists \xi$ with $-2<\xi<x_{1}$ so that $X^{\prime}=2+\xi$ verifies $\overline{\mathscr{R}}\left(X^{\prime}\right)-\mu_{c}=0$ and ξ is the first root of $F(x)=0$ and $\xi<0 \Longrightarrow F(0)>0 \Longrightarrow \operatorname{rad}^{2}(a) \operatorname{rad}(c)-\mu_{c}>0 \Longrightarrow R^{2}>c$ that is true. We have also $\xi=-2+d x=a_{1}+d x$ and $0<d x<a_{1}$.
3. The Proof of The $A B C$ Conjecture (1.3) Case: $c=a+1$

We denote $R=\operatorname{rad}(a c)$.

3.1 Case: $\varepsilon \geq 1$

Using the result of the theorem above, we have $\forall \varepsilon \geq 1$:

$$
\begin{equation*}
c<R^{2} \leq R^{1+\varepsilon}<K(\varepsilon) \cdot R^{1+\varepsilon}, \quad K(\varepsilon)=e^{\left(\frac{1}{\varepsilon^{2}}\right)}, \varepsilon \geq 1 \tag{3.1}
\end{equation*}
$$

We verify easily that $K(\varepsilon)>1$ for $\varepsilon \geq 1$ and it is a decreasing function from e the base of the neperian logarithm to 1 .

3.2 Case: $\varepsilon<1$

3.2.1 Case: $c \leq R$

In this case, we can write :

$$
\begin{equation*}
c \leq R<R^{1+\varepsilon}<K(\varepsilon) \cdot R^{1+\varepsilon}, \quad K(\varepsilon)=e^{\left(\frac{1}{\varepsilon^{2}}\right)}, \varepsilon<1 \tag{3.2}
\end{equation*}
$$

here also $K(\varepsilon)>1$ for $\varepsilon<1$ and the $a b c$ conjecture is true.

3.2.2 Case: $c>R$

In this case, we confirm that :

$$
\begin{equation*}
c<K(\varepsilon) \cdot R^{1+\varepsilon}, \quad K(\varepsilon)=e^{\left(\frac{1}{\varepsilon^{2}}\right)}, 0<\varepsilon<1 \tag{3.3}
\end{equation*}
$$

If not, then $\left.\exists \varepsilon_{0} \in\right] 0,1[$, so that the triplets $(a, 1, c)$ checking $c>R$ and:

$$
\begin{equation*}
c \geq R^{1+\varepsilon_{0}} . K\left(\varepsilon_{0}\right) \tag{3.4}
\end{equation*}
$$

are in finite number. We have:

$$
\begin{align*}
& c \geq R^{1+\varepsilon_{0}} \cdot K\left(\varepsilon_{0}\right) \Longrightarrow R^{1-\varepsilon_{0}} . c \geq R^{1-\varepsilon_{0}} \cdot R^{1+\varepsilon_{0}} \cdot K\left(\varepsilon_{0}\right) \Longrightarrow \\
& \quad R^{1-\varepsilon_{0}} . c \geq R^{2} . K\left(\varepsilon_{0}\right)>c . K\left(\varepsilon_{0}\right) \Longrightarrow R^{1-\varepsilon_{0}}>K\left(\varepsilon_{0}\right) \tag{3.5}
\end{align*}
$$

As $c>R$, we obtain:

$$
\begin{array}{r}
c^{1-\varepsilon_{0}}>R^{1-\varepsilon_{0}}>K\left(\varepsilon_{0}\right) \Longrightarrow \\
c^{1-\varepsilon_{0}}>K\left(\varepsilon_{0}\right) \Longrightarrow c>K\left(\varepsilon_{0}\right)\left(\frac{1}{1-\varepsilon_{0}}\right) \tag{3.6}
\end{array}
$$

We deduce that it exists an infinity of triples $(a, 1, c)$ verifying (3.4), hence the contradiction. Then the proof of the $a b c$ conjecture in the case $c=a+1$ is finished. We obtain that $\forall \varepsilon>0, c=a+1$ with a, c relatively coprime, $2 \leq a<c$:

$$
\begin{equation*}
c<K(\varepsilon) \cdot \operatorname{rad}(a c)^{1+\varepsilon} \quad \text { with } \quad K(\varepsilon)=e^{\left(\frac{1}{\varepsilon^{2}}\right)} \tag{3.7}
\end{equation*}
$$

Q.E.D

4. Examples

In this section, we are going to verify some cases of one numerical example. The example is given by:

$$
\begin{equation*}
1+5 \times 127 \times(2 \times 3 \times 7)^{3}=19^{6} \tag{4.1}
\end{equation*}
$$

$a=5 \times 127 \times(2 \times 3 \times 7)^{3}=47045880 \Rightarrow \mu_{a}=2 \times 3 \times 7=42$ and $\operatorname{rad}(a)=2 \times 3 \times 5 \times 7 \times 127$, $b=1 \Rightarrow \mu_{b}=1$ and $\operatorname{rad}(b)=1$,
$c=19^{6}=47045880 \Rightarrow \operatorname{rad}(c)=19$. Then $\operatorname{rad}(a b c)=\operatorname{rad}(a c)=2 \times 3 \times 5 \times 7 \times 19 \times 127=$ 506730..

We have $c>\operatorname{rad}(a c)$ but $\operatorname{rad}^{2}(a c)=506730^{2}=256775292900>c=47045880$.
4.0.1 Case $\varepsilon=0.01$
$c<K(\varepsilon) \cdot \operatorname{rad}(a c)^{1+\varepsilon} \Longrightarrow 47045880 \stackrel{?}{<} e^{10000} .506730^{1.01}$. The expression of $K(\varepsilon)$ becomes:

$$
\begin{equation*}
K(\varepsilon)=e^{\frac{1}{0.0001}}=e^{10000}=8,7477777149120053120152473488653 e+4342 \tag{4.2}
\end{equation*}
$$

We deduce that $c \ll K(0.01) .506730^{1.01}$ and the equation (3.7) is verified.

4.0.2 Case $\varepsilon=0.1$

$K(0.1)=e^{\frac{1}{0.01}}=e^{100}=2,6879363309671754205917012128876 e+43 \Longrightarrow c<K(0.1) \times 506730^{1.01}$. And the equation (3.7) is verified.

4.0.3 Case $\varepsilon=1$

$K(1)=e \Longrightarrow c=47045880<e \cdot \operatorname{rad}^{2}(a c)=697987143184,212$. and the equation (3.7) is verified.
4.0.4 Case $\varepsilon=100$

$$
\begin{array}{r}
K(100)=e^{0.0001} \Longrightarrow c=47045880 \stackrel{?}{<} e^{0.0001} .506730^{101}= \\
1,5222350248607608781853142687284 e+576
\end{array}
$$

and the equation (3.7) is verified.

5. Conclusion

This is an elementary proof of the $a b c$ conjecture in the case $c=a+1$. We can announce the important theorem:

Theorem 1. Let a, c positive integers relatively prime with $c=a+1, a \geq 2$ then for each $\varepsilon>0$, there exists $K(\varepsilon)$ such that :

$$
\begin{equation*}
c<K(\varepsilon) \cdot \operatorname{rad}(a c)^{1+\varepsilon} \tag{5.1}
\end{equation*}
$$

where $K(\varepsilon)$ is a constant depending of ε equal to $e^{\left(\frac{1}{\varepsilon^{2}}\right)}$.
Acknowledgements: The author is very grateful to Professors Mihăilescu Preda and Gérald Tenenbaum for their comments about errors found in previous manuscripts concerning proofs proposed of the $a b c$ conjecture.

References

[1] Waldschmidt M.: On the abc Conjecture and some of its consequences presented at The 6th World Conference on 21st Century Mathematics, Abdus Salam School of Mathematical Sciences (ASSMS), Lahore (Pakistan), March 6-9, 2013. (2013)
[2] Robert O., Stewart C.L. and Tenenbaum G.: A refinement of the abc conjecture. Bull. London Math. Soc. 46,6, 1156-1166 (2014).
[3] Mihăilescu P.: Around ABC. European Mathematical Society Newsletter \mathbf{N}° 93, September 2014. 29-34, (2014)

