I try to write the differential equation for a continuous electric circuit (an electric circuit with the meshses that tend to zero dimension), so that I can write the continuous Kirchhoff's laws like a differential equation for the currents and voltages: a wave equation must be exist for the continuous circuit (similarly to the electromagnetic wave for Maxwell's equations).

An optimal circuit can be built (for example an optimal band-pass filter), changing the complex impedances in the space: the continuous RLC circuit. It should be possible to study lattices with inhomogeneous ions, or metal coating (for example superconductors) using the mechanical-electrical analogy (rlc circuit like an ion interaction analogy)

The continuous Kirchhoff's laws are:

$$
\begin{cases}\nabla \cdot \mathbf{I}=0 \quad \text { Kirchhoff's current law } \\ \nabla \times \mathbf{V}=0 \text { Kirchhoff's voltage law }\end{cases}
$$

if there is a continuous variation of the impedances:

$$
\begin{gathered}
\mathbf{V}(\mathbf{x}, \omega)=Z(\mathbf{x}, \omega) \mathbf{I}(\mathbf{x}, \omega) \\
\left\{\begin{array}{c}
\nabla \cdot \mathbf{I}=0 \\
\nabla \times(Z \mathbf{I})=0
\end{array}\right.
\end{gathered}
$$

if the voltages are irrotational, then

$$
\begin{gathered}
\mathbf{V}=Z \mathbf{I}=\nabla \phi \\
\mathbf{I}=Y \nabla \phi \\
\nabla \cdot(Y \nabla \phi)=0 \\
\nabla Y \cdot \nabla \phi+Y \Delta \phi=0
\end{gathered}
$$

$$
\nabla \phi \cdot \nabla \ln Y+\Delta \phi=0
$$

this is the Kirchhoff's law for a continuous circuit.
There is a solution in a neighbourhood of \mathbf{x} :

$$
\begin{gathered}
\phi(\mathbf{x}+\epsilon)=e^{i \mathbf{k} \cdot \epsilon} \\
\mathbf{k} \cdot \nabla \ln Y(\mathbf{x}, \omega)+\mathbf{k} \cdot \mathbf{k} \simeq 0 \\
\mathbf{k} \cdot[\nabla \ln Y(\mathbf{x}, \omega)+\mathbf{k}]=0
\end{gathered}
$$

there are two solutions for \mathbf{k} :

$$
\begin{gathered}
\mathbf{k}=\mathbf{0} \\
\mathbf{k}=-\nabla \ln Y(\mathbf{x}, \omega)
\end{gathered}
$$

then the local wave solution is:

$$
\phi(\mathbf{x}+\epsilon) \simeq e^{-i \epsilon \cdot \nabla \ln Y\left(\mathbf{x}_{0}, \omega\right)+i \omega t}
$$

the velocity of the local wave equation is:

$$
c(\mathbf{x}, \omega)=\frac{\omega}{|\nabla \ln Y(\mathbf{x}, \omega)|}
$$

and the wave equation for the local current is:

$$
\Delta \phi-\frac{|\nabla \ln Y|^{2}}{\omega^{2}} \partial_{t t} \phi=0
$$

the current value, for local wave equation is:

$$
\begin{gathered}
\mathbf{I}=Y \nabla \phi=\phi Y \nabla \ln Y=\phi \nabla Y \\
\mathbf{I}=\nabla \phi=\phi \nabla \ln Y
\end{gathered}
$$

There is a solution for constant current, and constant voltages:

$$
\begin{gathered}
\phi=\mathbf{k} \cdot \mathbf{x} \\
\mathbf{V}=\nabla \phi=\mathbf{k} \\
\mathbf{I}=Y \nabla \mathbf{V}=Y \mathbf{k}
\end{gathered}
$$

for stationary currents, the current divergence is null: this is a solution for coaxial cable, or telegraphic cable.

If there is a periodic variability of the impedance

$$
Y(\mathbf{x})=e^{i \omega \mathbf{p} \cdot \mathbf{x}}
$$

then there is a periodicity of the currents for the Kirchhoff's continuous law (with not zero gradient, and progressive and regressive waves): the phonons.

