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Abstract 

During mathematical modeling of real technical system we can meet any type 

and rate model uncertainty. Its reasons can be incognizance of modelers or 

data inaccuracy. So, classification of uncertainties, with respect to their 

sources, distinguishes between aleatory and epistemic ones. The aleatory 

uncertainty is an inherent data variation associated with the investigated 

system or its environment. Epistemic one is an uncertainty that is due to a 

lack of knowledge of quantities or processes of the system or the environment. 

In this short communication, we discuss quadruple neutrosophic numbers and 

their potential application for realistic modelling of physical systems, especially 

in the reliability assessment of engineering structures. 

 

Introduction 

We all know the quaternions, but quadruple neutrosophic numbers are 

different. 

In quaternions, a+bi + cj + dk you have i^2 = j^2 = k^2 = -1 = ijk, 

while on quadruple neutrosophic numbers we have:[1] 

 

N = a + bT + cI + dF one has: T^2 = T, I^2 = I, F^2 = F,                         (1) 

 

where a = known part of N, bT+cI+dF = unknown part of N, with T = degree of 

truth-membership, I = degree of indeterminate-membership, and F = degree of 

false-membership, and a, b, c, d are real (or complex) numbers, and an 

absorption law defined depending on expert and on application (so it varies); 
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if we consider for example the neutrosophic order T > I > F, then the stronger 

absorbs the weaker, i.e. 

 

TI = T, TF = T, and IF = I, TIF = T.                                                         (2) 

 

Other orders can also be employed, for example T < I < F: (see book [1], at page 

186.) Other interpretations can be given to T, I, F upon each application. 

 

Application: statistical uncertainty and beyond 

Engineers must deal with risks and uncertainties as a part of their professional 

work and, in particular, uncertainties are inherent to engineering models. 

Models play a central role in engineering. Models often represent an abstract 

and idealized version of the mathematical properties of a target. Using models, 

engineers can investigate and acquire understanding of how an object or 

phenomenon will perform under specified conditions.[6] 

Furthermore, according to Murphy & Gardoni & Harris Jr : 

“For engineers, dealing with risk and uncertainty is an important part of their 

professional work. Uncertainties are involved in understanding the natural 

world, such as knowing whether a particular event will occur, and in knowing 

the performance of engineering works, such as the behavior and response of a 

structure or infrastructure, the variability in material properties (e.g., 

characteristics of soil, steel, or concrete), geometry, and external boundary 

conditions (e.g., loads or physical constraints). Such uncertainties produce 

risks. In the standard account risk is the product of a set of possible 

consequences and their associated probabilities of occurrence (Kaplan and 

Gerrick 1981), where the probabilities quantify the likelihood of occurrence of 

the potential consequences in light of the underlying uncertainties. One 

important use of models in engineering risk analysis is to quantify the 

likelihood or probability of the occurrence of specific events or a set of 

consequences. Such models are often referred to as probabilistic models to 

highlight their specific function to account for and quantify uncertainties.”[6] 

Uncertainties come in many forms, for example: 

 “Uncertainty in Developing a Model 
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The uncertainties in developing a model are:  

• Model Inexactness. This type of uncertainty arises when approximations are 

introduced in the formulation of a model. There are two essential problems that 

may arise: error in the form of the model (e.g., a linear expression is used when 

the actual relation is nonlinear), and missing variables (i.e., the model contains 

only a subset of the variables that influence the quantity of interest). …  

• Mistaken Assumptions. Models are based on a set of assumptions. 

Uncertainties might be associated with the validity of such assumptions (e.g., 

problems arise when a model assumes normality or homoskedasticity when 

these assumptions are violated).  

• Measurement Error. The parameters in a model are typically calibrated using 

a sample of the measured quantities of interest and the basic variables 

considered in the model. These observed values, however, could be inexact due 

to errors in the measurement devices or procedures, which then leads to errors 

in the calibration process. …  

• Statistical Uncertainty. Statistical uncertainty arises from the sparseness of 

data used to calibrate a model. In particular, the accuracy of one’s inferences 

depends on the observation sample size. The smaller the sample size, the larger 

is the uncertainty in the estimated values of the parameters. …However, the 

confidence in the model would likely increase if it was calibrated using one 

thousand samples. The statistical uncertainty captures our degree of confidence 

in a model in light of the data used to calibrate the model.”[6] 

With regards to statistical uncertainty, according to Ditlevsen and Madsen: [3] 

“It is the purpose of any measuring method to generate information about a 

quantity related to the object of measurement. If the quantity is of a fluctuating 

nature so that it requires a probabilistic model for its description, the 

measuring method must make it possible to formulate quantitative information 

about the parameters of the chosen probabilistic model. It is obvious that a 

measured value of a single outcome of a non-degenerate random variable X only 

is sufficient for giving a crude estimate of the mean value of X and is 

insufficient for giving any information about the standard deviation of X. 

However, if a sample of X is given, that is, if measured values of a certain 

number of independently generated outcomes of X are given, these values can 

be used for calculating estimates for all parameters of the model. The reasons 

that such an estimation from a sample of X is possible and makes sense are to 

be found in the mathematical probability theory. The most elementary concepts 

and rules of the theory of statistics are assumed to be known to the reader. To 

illustrate the role of the statistical concepts in the reliability analysis it is 

worthwhile to repeat the most basic features of the description of the 

information that a sample of X of size n contains about the mean value E[X]. It 
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is sufficient for our purpose to make the simplifying assumption that X has a 

known standard deviation D[X] = σ.” 

Now, it seems possible to extend it further to include not only statistical 

uncertainty but also modelling error etc. It can be a good application of 

Quadruple Neutrosophic Numbers. 

 

Towards an improved model of engineering reliability  

Few days ago, we just got an idea regarding application of symbolic 

Neutrosophic quadruple numbers, where we can use it to extend the notion of 

standard deviation. 

As we know usually people wrote:  

 

X' = x + k.σ                                                                                           (3) 

 

Where X mean observation, σ standard deviation, and k is usually a constant 

to be determined by statistical bell curve, for example 1.64 for 95% accuracy.  

 

We can extend it by using symbolic quadruple operator:  

 

X' = x ± (k.σ + m.i + n.f)                                                                        (4) 

 

Where X' stands for actual prediction from a set of observed x data, σ is 

standard deviation, i is indeterminacy and f falsefood. 

 

That way modelling error (falsehood) and indeterminacy can be accounted for. 

 

Alternatively, one can write a better expression: 

 

X' = x ± (T.σ + I.σ + F.σ )                                                                       (5) 
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where T = the truth degree of s (standard deviation), I = degree of indeterminacy 

about s, and F = degree of falsehood about s. 

A slightly more general expression is the following: 

 

X' = x ± a (T.σ + I.σ + F.σ )                                                                     (6) 
 

where T = the truth degree of s (standard deviation), I = degree of indeterminacy 
about s, and F = degree of falsehood about s. 

 
Or 
 

X' = x ± (a.T.σ + b.I.σ + c.F.σ)                                                                (7) 
 
where T = the truth degree of s (standard deviation), I = degree of indeterminacy 

about s, and F = degree of falsehood about s, and a, b, c are constants to be 
determined. 
 

That way we reintroduce quadruple Neutrosophic numbers into the whole of 
statistics estimate. 

 

For further use in engineering use especially in reliability methods, readers can 

consult [3][4][5]. 
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