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Abstract. Although Fuzzy logic and Fuzzy Mathematics is a widespread subject and there is a vast literature about 

it, yet the use of Fuzzy issues like Fuzzy sets [18] and Fuzzy numbers was relatively rare in time concept. This could 

be seen in the Fuzzy time series [2],[13],[14]. In addition, some attempts are done in fuzzifying Turing Machines [1] 

but seemingly there is no need to fuzzify time. Throughout this article, we try to change this picture and show why 

it is helpful to consider the instants of time as Fuzzy numbers.  

 

Introduction 

In physics, though there are revolutionary ideas on the time concept like B theories in contrast 

to A theory [9] also about central concepts like space, momentum…  it is a long time that these 

concepts are changed, but time is considered classically in all well-known and established 

physics theories. Seemingly, we stick to the classical time concept in all fields of science and we 

have a vast inertia to change it. 

Our goal in this article is to provide some bases why it is rational and reasonable to change and 

modify this picture. Here, the central point is the modified version of “Unexpected Hanging” 

paradox as it is described in [3],[4],[5],[6]. As it is shown in [5], [6] this modified version leads us 

to a contradiction  and based on that it is presented there  why some problems in Theory of 

Computation are not solved yet. To resolve the difficulties arising there, we have two choices. 

Either “choosing” a new type of Logic like “Paraconsistent Logic” to tolerate contradiction or 

changing and improving the time concept and consequently to modify the “Turing 

Computational Model”. Throughout this paper, we select the second way for benefiting from 

saving some aspects of Classical Logic. 

Classically, in Physics the considered time model is real numbers R. In these types of models, 

any two intervals (a,b) and (c,d) in which b is bigger than c are disjoint intervals that shows the 

bounded intervals are usually disjoint sets (with probability 1). In an improved model type, 

which does not hold for the last property, the paradox is solved easily. In the case where the 

instants of time are not real numbers but the fuzzy numbers which are not finite support 

functions and are defined from positive to negative infinity, the paradox will not hold since we 

have not any separate or disjoint intervals. 

mailto:didehvar@aut.ac.ir


[Type here] 
 

Since we have no two disjoint intervals the paradox argument will not take shape.  

For instance, consider the first argument step in Unexpected Hanging Paradox. In the first step, 

we suppose that it is not executed since Saturday. Here, we have no disjoint interval of time, so 

we are not capable to have a similar phrase and argument in this model as we had in paradox 

by considering classical time, therefore the argument will not work in the new model. This 

solves the difficulties about the paradox, both the origin and the modified version of the 

paradox. 

This picture is somehow similar to the time concept as described by Brouwer [16], [17] when he 

introduces the time instants as engaged links of a chain, although Brouwerian concept of time 

will not solve this problem, Since the support of the associated functions to this theory are not 

infinite. 

 

 In sequel, since our computation model is based on the physics theory, the following question 

is a plausible one behind it: 

“Is there any Physics based explanation for considering the time instants as 

fuzzy numbers?” 

We proposed two different ways to solve this problem as explained in [5], [6]. Either, directly to 

change the Logic which leads us to a type of Logic such as Paraconsistent logic or changing the 

time concept and consequently Turing Computational Model to a new concept, as the above-

mentioned explanation. 

Interestingly, considering time as fuzzy number leads us to employing Fuzzy Mathematics and 

Fuzzy Logic. Indeed, depending on the definition of logical connectives we have different types 

of Intuitionistic Logic [11]. 

In sum, in both cases we are able to consider a modification in the associated Logic. More 

precisely, these two different paradox solving ways could lead us to two different approaches in 

Logic: Paraconsistent Logic & Intuitionism. Nevertheless, it is remarkable that in the second way 

it is not essential to change Classical Logic, we simply change the standard model of time. 

Now we face one important question: 

In the case when we accept Fuzzy time what will be the convenient Theory of Physics? If we 

have no right answer to this question, then our endeavors are in vain. Indeed, a convenient 

theory of Physics is required. 

Here, we try to propound a Physics theory based on that. Actually, our main target is Quantum 

Mechanics since the “Fuzzy Time” concept at the first glance seems more problematic there. 
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In addition, we show that Quantum Mechanics could be considered as an opportunity to 

calculate Fuzzy number associated to the instants of time. 

Quantum Mechanics Explanation 

In this chapter, we show that if we consider Fuzzy time, it means we have  a classical 

interpretation of Quantum Mechanics. In the literature there are attempts to connects Fuzzy 

Concepts and Quantum Mechanics [7],[12] in different ways, but here the way is to connect 

“Fuzzy time” and “Quantum Mechanics” in order to find a plausible fuzzy numbers for time 

instances and to compute it. 

In quantum mechanics, the corner stone of the Theory is based on the wave function 

(Schrodinger Equation): 

                                      𝑖ħ
𝜎

𝜎(𝑡)
 𝛹(𝑟⃑, 𝑡) =[

−ℎ2

2𝑚
 𝛻2 + 𝑉(𝑟, 𝑡)] 𝛹(𝑟⃑, 𝑡)       

 
From this equation, we find the particle probability associated function as 
described in Quantum Mechanics. 
This gives us a distribution while time is considered as a classical concept 
(Classical Model of quantum mechanics). We show that this distribution could be 
obtained by considering time as a Fuzzy concept, we called it either the second 
Model or second interpretation in contrast to the first model (Quantum 
mechanics Model). 
To describe the second Model, first we define a distribution on  𝑅4, the function 
𝑋(𝑡, 𝑥, 𝑦, 𝑧): 𝑅4 → 𝑅 probability fucnction. Mathematically, this is equal to ψ 
(wave function) which by our claim should be derived from Schrödinger equation 
but it is remarkable to mention ψ is defined in the first Model. 

𝛼𝑞1,𝑞2
=𝛼(𝑞1, 𝑞2) 

 
𝑞1 = (𝑡, 𝑥, 𝑦𝑧) 

𝑞2 = (𝑡′, 𝑥′, 𝑦′,𝑧′) 

𝛼𝑞1,𝑞2
  or 𝛼(𝑞1, 𝑞2)is the distribution probability of going from 𝑞1 to 𝑞2. 

Hence: 

 
𝑋(𝑡, 𝑥, 𝑦, 𝑧) =   ∭−∞

+∞
𝛼(𝑞1, 𝑞2)𝑑𝑡′𝑑𝑥′𝑑𝑦′𝑑𝑧′= 
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∫
𝑧′=+∞

𝑧′=−∞

∫
𝑦′=+∞

𝑦′=−∞

 ∫
𝑥′=+∞

𝑥′=−∞

 ∫
𝑡′=+∞

𝑡′=−∞

𝑋(𝑥′ − 𝑥, 𝑦′ − 𝑦, 𝑧′ − 𝑧, 𝑡′ − 𝑡)𝑓(𝑥′ − 𝑥, 𝑦′ − 𝑦, 𝑧′ − 𝑧, 𝑡′             − 𝑡)𝑑𝑡′𝑑𝑥′𝑑𝑦′𝑑𝑧′ 

(*). 

Since 𝑋(𝑡, 𝑥, 𝑦, 𝑧) =  𝛹(𝑥, 𝑦, 𝑧, 𝑡) (they are mathematically equal even 
though they are defined in two different models). 

So, we have the following system of equations: 

 

1.𝑖ħ
𝜎

𝜎(𝑡)
 𝛹(𝑟⃑, 𝑡) =[

−ℎ2

2𝑚
 𝛻2 + 𝑉(𝑟, 𝑡)] 𝛹(𝑟⃑, 𝑡)    

𝛹(𝑟⃑, 𝑡) = 𝛹(𝑥, 𝑦, 𝑧, 𝑡) = 

2.      ∫
𝑧′=+∞

𝑧′=−∞
∫

𝑦′=+∞

𝑦′=−∞
 ∫

𝑥′=+∞

𝑥′=−∞
 ∫

𝑡′=+∞

𝑡′=−∞
𝛹(𝑥′ − 𝑥, 𝑦′ − 𝑦, 𝑧′ − 𝑧, 𝑡′ − 𝑡)𝑓(𝑥′ −

𝑥, 𝑦′ − 𝑦, 𝑧′ − 𝑧, 𝑡′             − 𝑡)𝑑𝑡′𝑑𝑥′𝑑𝑦′𝑑𝑧′ = 𝛹(𝑡, 𝑥, 𝑦, 𝑧)  
 

We get 𝛹 from equation 1 and we solve the second problem. The second 
problem is a three-dimensional Volterra equation, we find function f by 
solving that. 
By following theorem, we conclude that f has an infinite support. 
 
Let {𝐶𝑖}𝑖𝜖𝑁 be a set of equi-center circles 𝐶𝑖 is a circle with radius 𝑖 and 𝜓𝑖 =

𝜓 ↾ 𝐶𝑖 − 𝐶𝑖−1. 
𝑓𝑖 Is a continues function derived from  𝜓𝑖 by solving the equation: 

𝑋(𝑡, 𝑥, 𝑦, 𝑧) = 

   ∫
𝑧′=+∞

𝑧′=−∞

∫
𝑦′=+∞

𝑦′=−∞

 ∫
𝑥′=+∞

𝑥′=−∞

 ∫
𝑡′=+∞

𝑡′=−∞

𝑋(𝑥′ − 𝑥, 𝑦′ − 𝑦, 𝑧′ − 𝑧, 𝑡′ − 𝑡)𝑓𝑖(𝑥′ − 𝑥, 𝑦′ − 𝑦, 𝑧′ − 𝑧, 𝑡′             

− 𝑡)𝑑𝑡′𝑑𝑥′𝑑𝑦′𝑑𝑧′ 

 
 
Theorem: By above conditions we have          

1. For each i ,  𝑓𝑖  is strictly positive.( 𝑓𝑖 > 0). 
2. 𝑓 = ∑∞

𝑖=1 𝑓𝑖  is a continuous function and the solution of (*). 
 
CONCLUSION: 𝑓 is strictly positive and its support is )-∞, +∞(.  
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The above conclusion shows the second model satisfies our expectation of 
the concept of time as a fuzzy number and this solves the problem with the 
paradox. 
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