Ramanujan value of $\operatorname{Ln}(x)$ when x tends to zero

Jesús Sánchez
Independent Researcher, Bilbao, Spain
Email: jesus.sanchez.bilbao@gmail.com
https://www.researchgate.net/profile/Jesus_Sanchez64
ORCID 0000-0002-5631-8195

Copyright © 2019 by author

Abstract

As we know, the natural logarithm at zero diverges, towards minus infinity:

$$
\lim _{x \rightarrow 0} \operatorname{Ln}(x)=-\infty
$$

But, as happens with other functions or series that diverge at some points, it has a Ramanujan or Cauchy principal value (a finite value) associated to that point. In this case, it will be calculated to be:

$$
\lim _{x \rightarrow 0} \operatorname{Ln}(x)=-\gamma
$$

Being γ the Euler-Mascheroni constant $0.577215 \ldots$ It will be shown that $\operatorname{Ln}(0)$ tends to the negative of the sum of the harmonic series (that of course, diverges). But the harmonic series has a Cauchy principal value that is γ, the Euler-Mascheroni constant. So the finite associated value to $\operatorname{Ln}(0)$ will be calculated as $-\gamma$.

Keywords

Natural Logarithm, divergent series, Ramanujan summation, Principal Cauchy Value, Euler-Mascheroni constant.

1. Introduction

In this paper, it will be calculated the Ramanujan value [1] of the $\operatorname{Ln}(x)$ when x tends to zero:

$$
\begin{equation*}
\lim _{x \rightarrow 0} \operatorname{Ln}(x)=-\gamma \tag{1}
\end{equation*}
$$

Being γ the Euler-Mascheroni constant 0.577215... [2]

2. Demonstration

We will use one of the series to calculate the natural logarithm [3]:

$$
\begin{equation*}
\operatorname{Ln}(x)=(x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3}-\cdots \quad(2 \geq x>0) \tag{2}
\end{equation*}
$$

This series is not valid for $x=0$, but we will follow the same procedure that Ramanujan used in divergent series [4]. We will use the exact value where the limit applies (we will force the convergence in the divergence limit). In this case, it corresponds to $x=0$. Substituting in (2), we get:

$$
\begin{equation*}
\lim _{x \rightarrow 0} \operatorname{Ln}(x)=-1-\frac{1}{2}-\frac{1}{3}-\cdots \tag{3}
\end{equation*}
$$

This is exactly the negative of the harmonic series [5]:

$$
\begin{equation*}
\lim _{x \rightarrow 0} \operatorname{Ln}(x)=-\left(1+\frac{1}{2}+\frac{1}{3}+\cdots\right) \tag{4}
\end{equation*}
$$

The harmonic series diverge. But they have associated a Cauchy principal value [6][7][1] that is the Euler-Mascheroni constant [2]:

$$
\begin{equation*}
1+\frac{1}{2}+\frac{1}{3}+\cdots=\gamma \tag{5}
\end{equation*}
$$

So, substituting in (4), we have:

$$
\begin{equation*}
\lim _{x \rightarrow 0} \operatorname{Ln}(x)=-\left(1+\frac{1}{2}+\frac{1}{3}+\cdots\right)=-\gamma \tag{6}
\end{equation*}
$$

As we wanted to prove.

3. Conclusions

Using a series of the natural logarithm and the fact that the Cauchy principal value of the harmonic series is the Euler-Mascheroni constant, we have calculated the Ramanujan value of the following equation:

$$
\begin{equation*}
\lim _{x \rightarrow 0} \operatorname{Ln}(x)=-\gamma \tag{1}
\end{equation*}
$$

Bilbao, 6th april 2019 (viXra-v1).

12. Acknowledgements

To my family and friends.

13. References

[1] https://en.wikipedia.org/wiki/Ramanujan_summation
[2] https://en.wikipedia.org/wiki/Euler\�\�\�Mascheroni_constant
[3] http://hyperphysics.phy-astr.gsu.edu/hbase/Math/lnseries.html
[4] https://en.wikipedia.org/wiki/Srinivasa_Ramanujan
[5] https://en.wikipedia.org/wiki/Harmonic_series_(mathematics)
[6] https://en.wikipedia.org/wiki/Cauchy_principal_value
[7] https://en.wikipedia.org/wiki/Riemann_zeta_function

