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Abstract 

This paper shows for the first time that exact and general solution for the quintic Duffing 

oscillator equation may be computed in a straightforward manner within the framework of the 

generalized Sundman transformation theory introduced recently by authors of this work. A 

major advantage of the applied method is that it intimately relates such an oscillator equation 

to the quadratic anharmonic oscillator equation with well-known exact solutions. 

1. Introduction  

 The quintic Duffing oscillator equation has been intensively investigated in the literature by 

several authors [1-4]. According to [3, 4] such an oscillator equation is not exactly integrable. 

Thus, until now, only approximate and special solutions are calculated. However the purpose 

of this paper is to show that exact and  general  solution to the quintic Duffing oscillator 

equation may be computed in a simple way, without resorting to the notion of conservative 

systems. Let the quintic Duffing oscillator equation be in the general form  
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where a  and c are arbitrary parameters. To compute the exact and  general solution of 

equation (1), it appears firstly to show that equation (1) is a nonlocal transformation of the 

well-known quadratic anharmonic oscillator equation (section 2) so that the desired solution 

may be obtained from that of the quadratic polynomial differential equation secondly (section 

3). Finally a conclusion is addressed for the work. 

2. Nonlcal transformation of the quadratic anharmonic oscillator equation  

On the basis of the nonlinear differential equation theory developped by Akande et al. [5], 

consider the  quadratic anharmonic oscillator equation 
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Then the following theorem may be proved. 

Theorem 1. Consider the generalized Sundman transformation  
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Then the application of (3) to equation (2) may yield 
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Proof. From (3) the first derivative of )(y  may be written as 
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so that one may compute the second derivative of )(y  in the form 
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Substituting (6) into equation (2) and taking into account (3), yields 
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Now making ),(ln)( xglx   where ,0)( xg  leads to equation (4) of the theorem. 

Theorem 1 allows the possibility to show that equation (1) is a nonlocal transformation of 

equation (2). To that end, consider the theorem 2. 

Theorem 2. Let ,)( 2xxg   and .
2

1
l  Then equation (4) reduces to equation (1).  

Proof. By application of ,)( 2xxg   equation (4) becomes 
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Setting 
2

1
l , yields immediately  the quintic Duffing oscillator equation (1). Therefore the 

theorem is proved. To compute then its exact and general solution, it is convenient to consider 

the solution to equation (2). 

3. Exact and general solution to equation (1) 

According to [6], the exact and general solution of the quadratic  anharmonic  oscillator 

equation (2) may read 
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where the  constants 2a and 3a satisfy the system of equations  
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by defining ,1a 2a and 3a  as the real roots of the cubic polynomial equation [6] 
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and 1K  as a constant of integration,  so that  
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In this regard the nonlocal transformation (3) leads to 
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which yields  the desired exact and general solution )(tx  of the  quintic  Duffing oscillator 

equation (1) as  
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where  the parameter   is given by  
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where  1 , 2K  is a constant  of integration  and ),( kzsn  is  a Jacobian elliptic function. 

Conclusion 

In this work the quintic Duffing oscillator equation  is investigated. It is shown for the first 

time that   the exact and general solution of such an equation may be computed in a 

straightforward manner. The work has shown that the quintic Duffing oscillator equation is 

nothing but the nonlocal transformation of the quadratic anharmonic oscillator equation with 

well-known exact analytical properties.  
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