
ATLAS Light Scattering off Light 

 

Light-by-light scattering is a very rare phenomenon in which two photons interact, 

producing another pair of photons. [29] 

The ATLAS collaboration has released its very first result utilising its entire Large Hadron 

Collider (LHC) Run 2 dataset, collected between 2015 and 2018. [28] 

The Antiproton Decelerator (AD), sometimes known as the Antimatter Factory, is the 

world's largest source of antimatter and has been operational since 2000. [27] 

Positronium atoms, which consist of an electron and a positron, are one type of 

antimatter atoms being considered to test whether antimatter falls at the same rate as 

matter in Earth's gravitational field. [26] 

Two new experiments at CERN, ALPHA-g and GBAR, have now started their journey 

towards answering this question.  [25] 

Mysterious radiation emitted from distant corners of the galaxy could finally be 

explained with efforts to recreate a unique state of matter that blinked into existence in 

the first moments after the Big Bang. [24] 

Researchers at Oregon State University have confirmed that last fall's union of two 

neutron stars did in fact cause a short gamma-ray burst. [23] 

Quark matter – an extremely dense phase of matter made up of subatomic particles 

called quarks – may exist at the heart of neutron stars. [22]  

When a massive astrophysical object, such as a boson star or black hole, rotates, it can 

cause the surrounding spacetime to rotate along with it due to the effect of frame 

dragging. [21] 

Rotating black holes and computers that use quantum-mechanical phenomena to process 

information are topics that have fascinated science lovers for decades, but even the most 

innovative thinkers rarely put them together. [20] 

If someone were to venture into one of these relatively benign black holes, they could 

survive, but their past would be obliterated and they could have an infinite number of 

possible futures. [19] 
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The group explains their theory in a paper published in the journal Physical Review 

Letters—it involves the idea of primordial black holes (PBHs) infesting the centers of 

neutron stars and eating them from the inside out. [18]  

But for rotating black holes, there’s a region outside the event horizon where strange 

and extraordinary things can happen, and these extraordinary possibilities are the focus 

of a new paper in the American Physical Society journal Physical Review Letters. [17]  

Astronomers have constructed the first map of the universe based on the positions of 

supermassive black holes, which reveals the large-scale structure of the universe. [16]  

Astronomers want to record an image of the heart of our galaxy for the first time: a 

global collaboration of radio dishes is to take a detailed look at the black hole which is 

assumed to be located there. [15]  

A team of researchers from around the world is getting ready to create what might be 

the first image of a black hole. [14]  

"There seems to be a mysterious link between the amount of dark matter a galaxy holds 

and the size of its central black hole, even though the two operate on vastly different 

scales," said Akos Bogdan of the Harvard-Smithsonian Center for Astrophysics (CfA). [13]  

If dark matter comes in both matter and antimatter varieties, it might accumulate inside 

dense stars to create black holes. [12]  

For a long time, there were two main theories related to how our universe would end. 

These were the Big Freeze and the Big Crunch. In short, the Big Crunch claimed that the 

universe would eventually stop expanding and collapse in on itself. This collapse would 

result in…well…a big crunch (for lack of a better term). Think “the Big Bang”, except just 

the opposite. That’s essentially what the Big Crunch is. On the other hand, the Big Freeze 

claimed that the universe would continue expanding forever, until the cosmos becomes a 

frozen wasteland. This theory asserts that stars will get farther and farther apart, burn 

out, and (since there are no more stars bring born) the universe will grown entirely cold 

and eternally black. [11]  

Newly published research reveals that dark matter is being swallowed up by dark 

energy, offering novel insight into the nature of dark matter and dark energy and what 

the future of our Universe might be. [10]  

The gravitational force attracting the matter, causing concentration of the matter in a 

small space and leaving much space with low matter concentration: dark matter and 

energy.   

There is an asymmetry between the mass of the electric charges, for example proton and 

electron, can understood by the asymmetrical Planck Distribution Law. This temperature 

dependent energy distribution is asymmetric around the maximum intensity, where the 



annihilation of matter and antimatter is a high probability event. The asymmetric sides 

are creating different frequencies of electromagnetic radiations being in the same 

intensity level and compensating each other. One of these compensating ratios is the 

electron – proton mass ratio. The lower energy side has no compensating intensity level, 

it is the dark energy and the corresponding matter is the dark matter.  
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ATLAS experiment observes light scattering off light 
Light-by-light scattering is a very rare phenomenon in which two photons interact, producing 

another pair of photons. This process was among the earliest predictions of quantum 

electrodynamics (QED), the quantum theory of electromagnetism, and is forbidden by classical 

physics theories (such as Maxwell's theory of electrodynamics).  

Direct evidence for light-by-light scattering at high energy had proven elusive for decades, until the 

Large Hadron Collider (LHC) began its second data-taking period (Run 2). Collisions of lead ions in 

the LHC provide a uniquely clean environment to study light-by-light scattering. Bunches of lead 

ions that are accelerated to very high energy are surrounded by an enormous flux of 

photons. Indeed, the coherent action from the large number of 82 protons in a lead atom with all 

the electrons stripped off (as is the case for the lead ions in the LHC) give rise to an electromagnetic 

field of up to 1025 Volt per metre. When two lead ions pass close by each other at the centre of the 

ATLAS detector, but at a distance greater than twice the lead ion radius, those photons can still 

interact and scatter off one another without any further interaction between the lead ions, as the 

reach of the (much stronger) strong force is bound to the radius of a single proton. These 

interactions are known as ultra-peripheral collisions.   

In a result published in Nature Physics in 2017, the ATLAS Experiment at CERN found thirteen 

candidate events for light-by-light scattering in lead-lead collision data recorded in 2015, for 2.6 

events expected from background processes. The corresponding significance of this result was 4.4 

standard deviations – making it the first direct evidence of high-energy light-by-light scattering. 
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On 17 March 2019, at the Rencontres de Moriond conference (La Thuile, Italy), the ATLAS 

Experiment reported the observation of light-by-light scattering with a significance of 8.2 

standard deviations. The result utilises data from the most recent heavy-ion run of the LHC, which 

took place in November 2018. About 3.6 times more events (1.73 nb−1) were collected compared to 

2015. The increased dataset, in combination with improved analysis techniques, allowed the 

measurement of the scattering of light-by-light with greatly improved precision. A total of 59 

candidate events were observed, for 12 events expected from background processes. From these 

numbers, the cross section of this process, restricted to the kinematic region considered in the 

analysis, was calculated as 78 ± 15 nb. 

Curiously, the signature of this process – two photons in an otherwise empty detector – is almost 

the opposite of the tremendously rich and complex events typically observed in high-

energy collisions of two lead nuclei. Observing it required the development of improved trigger 

algorithms for fast online event selection, as well as a specifically-adjusted photon-identification 

algorithm using a neural network, as the studied photons have about ten times less energy than 

the lowest energetic photons usually measured with the ATLAS detector. Being able to record these 

events demonstrates the power and flexibility of the ATLAS detector and its event reconstruction, 

which was designed for very different event topologies.  

This new measurement opens the door to further study of the light-by-light scattering process, 

which is not only interesting in itself as a manifestation of an extremely rare QED phenomenon, but 

may be sensitive to contributions from particles beyond the Standard Model. It allows for a new 

generation of searches for hypothetical light and neutral particles. [29] 

 

 

ATLAS Experiment releases first result with full LHC Run 2 dataset 
Could a Grand Unified Theory resolve the remaining mysteries of the Standard Model? If verified, it 

would provide an elegant description of the unification of Standard Model forces at very high 

energies, and might even explain the existence of dark matter and neutrino masses. Physicists at 

the ATLAS Experiment at CERN are searching for evidence of new heavy particles predicted by such 

theories, including a neutral Z' gauge boson. 

The ATLAS collaboration has released its very first result utilising its entire Large Hadron Collider 

(LHC) Run 2 dataset, collected between 2015 and 2018. This analysis searches for new heavy 

particles decaying into dilepton final states, where the leptons are either two electrons or two 

muons. This is one of the most sensitive decays to search for new physics, thanks to the ATLAS 

detector's excellent energy and momentum resolution for leptons and the strong signal-to-

background differentiation as a result of the simple two-lepton signature. 

The new ATLAS result also employs a novel data-driven approach for estimating the Standard 

Model background. While the previous analysis predominantly used simulations for the 

background prediction and was carried out with a fraction of the data, this new analysis takes 

advantage of the vast Run 2 dataset by fitting the observed data with a functional form motivated 

by and validated with our understanding of the Standard Model processes contributing to these 

events. If present, the new particles would appear as bumps on top of a smoothly falling 
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background shape, making them straightforward to identify (see Figure 2). This is similar to one of 

the ways that the Higgs boson was discovered in 2012, through its decay to two photons. 

 

Measured dielectron mass distribution for the data (black points), together with the total 

background fit result is shown (red continuous line), with various possible Z' signal distributions 

overlaid (dashed red line). The sub-panel shows …more 

In addition to probing unexplored territory in the search for new physics, a great deal of work in 

this analysis has gone into understanding the ATLAS detector and collaborating with the various 

detector performance groups to improve the identification of very high-energy electrons and 

muons. This included accounting for the multiplicity of tracks in the inner part of the detector, as it 

continuously increased due to the rising average number of proton-proton collisions per bunch 

crossing during Run 2. 

No significant sign of new physics has been observed thus far. The result sets stringent constraints 

on the production rate of various types of hypothetical Z' particles. As well as setting exclusion 

limits on specific theoretical models, the result has also been provided in a generic format that 

allows physicists to re-interpret the data under different theoretical assumptions. This study has 

deepened the exploration of physics at the energy frontier; ATLAS physicists are excited about 

further analysing the large Run 2 dataset. [28] 

 

 

LS2 report: rejuvenation for the antiproton decelerator  
The Antiproton Decelerator (AD), sometimes known as the Antimatter Factory, is the world's largest 

source of antimatter and has been operational since 2000. Here, antiprotons are slowed down and 

sent into the experiments, where they are combined with antielectrons to produce the most basic 
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antiatom: that of antihydrogen. Over the course of the second long shutdown of CERN's accelerator 

complex (LS2), the AD will receive several enhancements as well as repairs and refurbishments. 

The recently installed ELENA ring, which was commissioned over 2017 and 2018, is designed to 

slow down even further the antiprotons decelerated by AD to ensure that the experiments can trap 

up to 100 times more antiprotons than they could without it. At the moment, ELENA is only 

connected to one of the experiments within the AD hall, the new GBAR experiment. The main work 

being done on the AD during the next two years is to extend the beam line from ELENA to all of the 

existing experiments and get ELENA fully operational. The lines that took the particles from the AD 

to the experiments have now been fully dismantled to prepare for the new injection lines from 

ELENA. 

Other planned and ongoing activities involve the AD's 84 magnets, which focus and steer the 

whizzing antiprotons along their racetrack. Most of these magnets were recycled from previous 

accelerator facilities and are much older than the AD itself. They are in need of repairs and 

refurbishment, which started during the previous long shutdown (LS1) and was pursued during 

subsequent year-end technical stops (YETS). So far, nine of the magnets have been treated, and 20 

of them are scheduled for treatment during LS2. The remaining magnets will either be treated in 

situ or will undergo refurbishment during the next YETS and the third long shutdown (LS3). 

Removing the magnets to take them to the treatment facility is no easy task. The AD ring is encased 

in a large shielding tunnel made of concrete blocks. Therefore, the blocks making up the ceiling 

near the magnet in question have to first be removed and stored, allowing a crane to descend 

though the opening and extract the magnet (which weighs up to 26 tonnes), sometimes with a 

margin of only 1 cm. Related work is being done to consolidate other elements of the AD, such as 

the kicker magnets, the septa magnets and the radiofrequency cavities. 

One of the main tasks of LS2 that has already been achieved was the installation of a new cooling 

pump for the AD. Previously, a single set of pumps were operated, connected to both the AD itself 

and to its experiments. This meant that the pumping system was operational year round next to 

the AD ring, producing a constant noise at over 100 decibels in some places. The new dedicated 

pump allows the main pumping group to be turned off without affecting the experiments' cooling 

systems, saving money and improving working conditions for those who need to be in close 

proximity to the AD over the shutdown period. It also provides much-needed redundancy to the 

cooling circuits. 

By the end of LS2, the AD hall will look very different from what it does today, but the changes are 

not merely superficial. They will ensure that CERN's antimatter factory continues to operate with 

high efficiency and help explore the mysteries surrounding elusive antimatter. [27] 

 

Making long-lived positronium atoms for antimatter gravity 

experiments  
The universe is almost devoid of antimatter, and physicists haven't yet figured out why. Discovering 

any slight difference between the behaviour of antimatter and matter in Earth's gravitational field 

could shed light on this question. Positronium atoms, which consist of an electron and a positron, 

are one type of antimatter atoms being considered to test whether antimatter falls at the same 
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rate as matter in Earth's gravitational field. But they are short-lived, lasting a mere 142 

nanoseconds – too little to perform an antimatter gravity experiment. Researchers are therefore 

actively seeking tricks to make sources of positronium atoms that live longer. In a paper published 

today in the journal Physical Review A, the AEgIS collaboration at CERN describes a new way of 

making long-lived positronium. 

To be useful for antimatter gravity experiments, a source of positronium atoms needs to produce 

long-lived atoms in large numbers, and with known velocities that can be controlled and are 

unaffected by disturbances such as electric and magnetic fields. The new AEgIS source ticks all of 

these boxes, producing some 80 000 positronium atoms per minute that last 1140 nanoseconds 

each and have a known velocity (between 70 and 120 kilometres per second) that can be controlled 

with a high precision (10 kilometres per second). 

The trick? Using a special positron-to-positronium converter to produce the atoms and a single 

flash of ultraviolet laser light that kills two birds with one stone. The laser brings the atoms from 

the lowest-energy electronic state to a long-lived higher-energy state and can select among all of 

the atoms only those with a certain velocity. 

This is not the first time that researchers have produced a source of long-lived positronium atoms. 

There are other techniques that do so, including one that involves bringing the atoms to electronic 

states called Rydberg states, and which could also be used to perform gravity experiments with 

positronium. But all of these are very sensitive to electric and magnetic fields, which influence the 

atoms' velocity and would need to be factored into future gravity measurements. The new method 

devised by AEgIS is "cleaner," in that it is almost insensitive to these fields. 

The next step on the long path to measuring the effect of gravity on positronium with the new 

AEgIS source (the AEgIS team and other CERN collaborations mainly plan to take measurements 

with antihydrogen atoms) will be to confirm that the atoms produced are electrically neutral. 

CERN's accelerator complex is currently shut down for a major two-year upgrade programme, so 

most experiments at the Laboratory, which require a beam of protons, have ceased to operate 

during this period. An advantage of this positronium experiment is that it doesn't require protons, 

so it can continue to be operated during the shutdown. [26] 

 

New antimatter gravity experiments begin at CERN  
We learn it at high school: Release two objects of different masses in the absence of friction forces 

and they fall down at the same rate in Earth's gravity. What we haven't learned, because it hasn't 

been directly measured in experiments, is whether antimatter falls down at the same rate as 

ordinary matter or if it might behave differently. Two new experiments at CERN, ALPHA-g and 

GBAR, have now started their journey towards answering this question. 

ALPHA-g is very similar to the ALPHA experiment, which makes neutral antihydrogen atoms by 

taking antiprotons from the Antiproton Decelerator (AD) and binding them with positrons from a 

sodium-22 source. ALPHA then confines the resulting neutral antihydrogen atoms in a magnetic 

trap and shines laser light or microwaves onto them to measure their internal structure. The 

ALPHA-g experiment has the same type of antiatom making and trapping apparatus except that it is 

oriented vertically. With this vertical set-up, researchers can measure precisely the vertical 
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positions at which the antihydrogen atoms annihilate with normal matter once they switch off the 

trap's magnetic field and the atoms are under the sole influence of gravity. The values of these 

positions will allow them to measure the effect of gravity on the antiatoms. 

The GBAR experiment, also located in the AD hall, takes a different tack. It plans to use antiprotons 

supplied by the ELENA deceleration ring and positrons produced by a small linear accelerator to 

make antihydrogen ions, consisting of one antiproton and two positrons. Next, after trapping the 

antihydrogen ions and chilling them to an ultralow temperature (about 10 microkelvin), it will 

use laser light to strip them of one positron, turning them into neutral antiatoms. At this point, the 

neutral antiatoms will be released from the trap and allowed to fall from a height of 20 

centimetres, during which the researchers will monitor their behaviour. 

Jeffrey Hangst at the Antiproton Decelerator hall explaining the ALPHA-g setup in the run-up to the 

start of the experiment. Credit: Jacques Fichet/CERN 

After months of round-the-clock work by researchers and engineers to put together the 

experiments, ALPHA-g and GBAR have received the first beams of antiprotons, marking the 

beginning of both experiments. ALPHA-g began taking beam on 30 October, after receiving the 

necessary safety approvals. ELENA sent its first beam to GBAR on 20 July, and since then the 

decelerator and GBAR researchers have been trying to perfect the delivery of the beam. The 

ALPHA-g and GBAR teams are now racing to commission their experiments before CERN's 

accelerators shut down in a few weeks for a two-year period of maintenance work. Jeffrey Hangst, 

spokesperson of the ALPHA experiments, says: "We are hoping that we'll get the chance to make 

the first gravity measurements with antimatter, but it's a race against time." Patrice Pérez, 

spokesperson of GBAR, says: "The GBAR experiment is using an entirely new apparatus and 

an antiproton beam still in its commissioning phase. We hope to produce antihydrogen this year 

and are working towards being ready to measure the gravitational effects on antimatter when the 

antiprotons are back in 2021." 

Another experiment at the AD hall, AEgIS, which has been in operation for several years, is also 

working towards measuring the effect of gravity on antihydrogen using yet another approach. Like 

GBAR, AEgIS is also hoping to produce its first antihydrogen atoms this year. 

Discovering any difference between the behaviour of antimatter and matter in connection with 

gravity could point to a quantum theory of gravity and perhaps cast light on why the universe 

seems to be made of matter rather than antimatter. [25] 

 

Antimatter plasma reveals secrets of deep space signals  
Mysterious radiation emitted from distant corners of the galaxy could finally be explained with 

efforts to recreate a unique state of matter that blinked into existence in the first moments after 

the Big Bang. 

For 50 years, astronomers have puzzled over strange radio waves and gamma rays thrown out from 

the spinning remnants of dead stars called pulsars. 
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Researchers believe that these enigmatic, highly-energetic pulses of radiation are produced by 

bursts of electrons and their antimatter twins, positrons. The universe was briefly filled with these 

superheated, electrically charged particles in the seconds that followed the Big Bang before all 

antimatter vanished, taking the positrons with it. But astrophysicists think the conditions needed to 

forge positrons may still exist in the powerful electric and magnetic fields generated around 

pulsars. 

"These fields are so strong, and they twist and reconnect so violently, that they essentially apply 

Einstein's equation of E = mc2 and create matter and antimatter out of energy," said Professor Luis 

Silva at the Instituto Superior Técnico in Lisbon, Portugal. Together, the electrons and positrons are 

thought to form a super-heated form of matter known as a plasma around a pulsar. 

But the exact conditions necessary to produce a plasma containing positrons remain unclear. 

Scientists also still do not understand why the radio waves emitted by the plasma around pulsars 

have properties similar to light in a laser beam – a wave structure known as coherence. 

To find out, researchers are now turning to powerful computer simulations to model what might be 

going on. In the past, such simulations have struggled to mimic the staggering number of particles 

generated around pulsars. But Prof. Silva and his team, together with researchers at the University 

of California, Los Angeles in the United States, have adapted a computer model called OSIRIS so 

that it can run on supercomputers, allowing it to follow billions of particles simultaneously. 

The updated model, which forms part of the InPairs project, has identified the astrophysical 

conditions necessary for pulsars to generate electrons and positrons when magnetic fields are torn 

apart and reattached to their neighbours in a process known as magnetic reconnection. 

OSIRIS also predicted that the gamma rays released by electrons and positrons as they race across a 

magnetic field will shine in discontinuous spurts rather than smooth beams. 

The findings have added weight to theories that the enigmatic signals coming from pulsars are 

produced by the destruction of electrons as they recombine with positrons in the magnetic fields 

around these dead stars. 

Prof. Silva is now using the data from these simulations to search for similar burst signatures in past 

astronomical observations. The tell-tale patterns would reveal details on how magnetic fields 

evolve around pulsars, offering fresh clues about what is going on inside them. It will also help 

confirm the validity of the OSIRIS model for researchers trying to create antimatter in the 

laboratory. 

Blasting lasers 
Insights gained from the simulations are already being used to help design experiments that will use 

high-powered lasers to mimic the huge amounts of energy released by pulsars. The Extreme Light 

Infrastructure will blast targets no wider than a human hair with petawatts of laser power. Under 

this project, lasers are under construction at three facilities around Europe – in Măgurele in 

Romania, Szeged in Hungary, and Prague in the Czech Republic. If successful, the experiments could 

create billions of electron-positrons pairs. 
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"OSIRIS is helping researchers optimise laser properties to create matter and antimatter like pulsars 

do," said Prof. Silva. "The model offers a road map for future experiments." 

 

The OSIRIS computer model predicts how powerful magnetic fields around pulsars evolve, helping 

scientists understand where matter and antimatter can be created out of the vacuum of space. 

Credit: Fabio Cruz 

But there are some who are attempting to wield matter-antimatter plasmas in even more 

controlled ways so they can study them. 

Professor Thomas Sunn Pedersen, an applied physicist at the Max Planck Institute for Plasma 

Physics in Garching, Germany, is using charged metal plates to confine positrons alongside 

electrons as a first step towards creating a matter-antimatter plasma on a table top. 

Although Prof. Sunn Pedersen works with the most intense beam of low-energy positrons in the 

world, concentrating enough particles to ignite a matter-antimatter plasma remains challenging. 

Researchers use electro-magnetic 'cages' generated under vacuum to confine antimatter, but these 

require openings for the particles to be injected inside. These same openings allow particles to leak 

back out, however, making it difficult to build up enough particles for a plasma to form. 
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Prof. Sunn Pedersen has invented an electro-magnetic field with a 'trap door' that can let positrons 

in before closing behind them. Last year, the new design was able to boost the time the antimatter 

particles remained confined in the field by a factor of 20, holding them in place for over a second. 

"No one has ever achieved that in a fully magnetic trap," said Prof. Sunn Pedersen. "We have 

proven that the idea works." 

But holding these elusive antimatter particles in place is only one milestone towards creating a 

matter-antimatter plasma in the laboratory. As part of the PAIRPLASMA project, Prof. Sunn 

Pedersen is now increasing the quality of the vacuum and generating the field with a levitating ring 

to confine positrons for over a minute. Studying the properties of plasmas ignited under these 

conditions will offer valuable insights to neighbouring fields. 

In June, for example, Prof. Sunn Pedersen used a variation of this magnetic trap to set a new world 

record in nuclear fusion reactions ignited in conventional-matter plasmas. 

"Collective phenomena like turbulence currently complicate control over big fusion plasmas," said 

Prof. Sunn Pedersen. "A lot of that is driven by the fact that the ions are much heavier than the 

electrons in them." 

He hopes that by producing electron-positron plasmas like those created by the Big Bang, it may be 

possible to sidestep this complication because electrons and positrons have the exact same mass. If 

they can be controlled, such plasmas could help to validate complex models and recreate the 

conditions around pulsars so they can be studied up close in the laboratory for the first time. 

If successful it may finally give astronomers the answers they have puzzled over for so long. 

What is a pulsar? 
First discovered by astronomer Jocelyn Bell in 1967, pulsars are the highly magnetised, rotating 

remains of stars that have collapsed at the end of their life. They emit beams of gamma rays and 

radio waves that spin much like the light from a lighthouse. When viewed from Earth, this gives the 

impression of the radiation arriving in pulses. It is thought that the intense magnetic fields around 

these dead stars generate clouds of charged particles known as plasmas, which in turn generate the 

radiation. [24] 

 

 

 

Research shows short gamma-ray bursts do follow binary neutron star 

mergers  
Researchers at Oregon State University have confirmed that last fall's union of two neutron stars 

did in fact cause a short gamma-ray burst. 

The findings, published today in Physical Review Letters, represent a key step forward in 

astrophysicists' understanding of the relationship between binary neutron star 

mergers, gravitational waves and short gamma-ray bursts. 
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Commonly abbreviated as GRBs, gamma-ray bursts are narrow beams of electromagnetic waves of 

the shortest wavelengths in the electromagnetic spectrum. GRBs are the universe's most powerful 

electromagnetic events, occurring billions of light years from Earth and able to release as much 

energy in a few seconds as the sun will in its lifetime. 

GRBs fall into two categories, long duration and short duration. Long GRBs are associated with the 

death of a massive star as its core becomes a black hole and can last from a couple of seconds to 

several minutes. 

Short GRBs had been suspected to originate from the merger of two neutron stars, which also 

results in a new black hole—a place where the pull of gravity from super-dense matter is so strong 

that not even light can escape. Up to 2 seconds is the time frame of a short GRB. 

The term neutron star refers to the gravitationally collapsed core of a large star; neutron stars are 

the smallest, densest stars known. According to NASA, neutron stars' matter is packed so tightly 

that a sugar-cube-sized amount of it weighs in excess of a billion tons. 

In November 2017, scientists from U.S. and European collaborations announced they had detected 

an X-ray/gamma-ray flash that coincided with a blast of gravitational waves, followed by visible 

light from a new cosmic explosion called a kilonova. 

Gravitational waves, a ripple in the fabric of time-space, were first detected in September 2015, a 

red-letter event in physics and astronomy that confirmed one of the main predictions of Albert 

Einstein's 1915 general theory of relativity. 

"A simultaneous detection of gamma rays and gravitational waves from the same place in the sky 

was a major milestone in our understanding of the universe," said Davide Lazzati, a theoretical 

astrophysicist in the OSU College of Science. "The gamma rays allowed for a precise localization of 

where the gravitational waves were coming from, and the combined information from gravitational 

and electromagnetic radiation allows scientists to probe the binary neutron star system that's 

responsible in unprecedented ways." 

Prior to Lazzati's latest research, however, it had been an open question as to whether the 

detected electromagnetic waves were "a short gamma-ray burst, or just a short burst of gamma 

rays—the latter being a different, weaker phenomenon. 

In summer 2017, Lazzati's team of theorists had published a paper predicting that, contrary to 

earlier estimates by the astrophysics community, short gamma-ray bursts associated with the 

gravitational emission of binary neutron star coalescence could be observed even if the gamma-ray 

burst was not pointing directly at Earth. 

"X- and gamma rays are collimated, like the light of a lighthouse, and can be easily detected only if 

the beam points toward Earth," Lazzati said. "Gravitational waves, on the other hand, are almost 

isotropic and can always be detected." 

Isotropic refers to being evenly transmitted in all directions. 

"We argued that the interaction of the short gamma-ray burst jet with its surroundings creates a 

secondary source of emission called the cocoon," Lazzati said. "The cocoon is much weaker than 

https://phys.org/tags/neutron+stars/
https://phys.org/tags/neutron+stars/
https://phys.org/tags/stars/
https://phys.org/tags/stars/
https://phys.org/tags/electromagnetic+waves/
https://phys.org/tags/electromagnetic+waves/


the main beam and is undetectable if the main beam points toward our instruments. However, it 

could be detected for nearby bursts whose beam points away from us." 

In the months following the November 2017 gravitational wave detection, astronomers continued 

to observe the location from which the gravitational waves came. 

"More radiation came after the burst of gamma rays: radio waves and X-rays," Lazzati said. "It was 

different from the typical short GRB afterglow. Usually there's a short burst, a bright pulse, bright X-

ray radiation, then it decays with time. This one had a weak gamma-ray pulse, and the afterglow 

was faint, brightened very quickly, kept brightening, then turned off." 

"But that behavior is expected when you're seeing it from an off-axis observation point, when 

you're not staring down the barrel of the jet," he said. "The observation is exactly the behavior we 

predicted. We haven't seen the murder weapon, we don't have a confession, but the circumstantial 

evidence is overwhelming. This is doing exactly what we expected an off-axis jet would do and is 

convincing proof that binary neutron star mergers and short gamma-ray bursts are indeed related 

to each other." [23] 

 

Neutron stars cast light on quark matter  
Quark matter – an extremely dense phase of matter made up of subatomic particles called quarks – 

may exist at the heart of neutron stars. It can also be created for brief moments in particle colliders 

on Earth, such as CERN's Large Hadron Collider. But the collective behaviour of quark matter isn't 

easy to pin down. In a colloquium this week at CERN, Aleksi Kurkela from CERN's Theory 

department and the University of Stavanger, Norway, explained how neutron-star data have 

allowed him and his colleagues to place tight bounds on the collective behaviour of this extreme 

form of matter. 

Kurkela and colleagues used a neutron-star property deduced from the first observation by the 

LIGO and Virgo scientific collaborations of gravitational waves – ripples in the fabric of spacetime – 

emitted by the merger of two neutron stars. This property describes the stiffness of a star in 

response to stresses caused by the gravitational pull of a companion star, and is known technically 

as tidal deformability. 

To describe the collective behaviour of quark matter, physicists generally employ equations of 

state, which relate the pressure of a state of matter to other state properties. But they have yet to 

come up with a unique equation of state for quark matter; they have derived only families of such 

equations. By plugging tidal-deformability values of the neutron stars observed by LIGO and Virgo 

into a derivation of a family of equations of state for neutron-star quark matter, Kurkela and 

colleagues were able to dramatically reduce the size of that equation family. Such a reduced family 

provides more stringent limits on the collective properties of quark matter, and more generally 

on nuclear matterat high densities, than were previously available. 

Armed with these results, the researchers then flipped the problem around and used the quark-

matter limits to deduce neutron-star properties. Using this approach, the team obtained the 

relationship between the radius and mass of a neutron star, and found that the maximum radius of 

https://phys.org/tags/gravitational+wave+detection/
https://phys.org/tags/gravitational+wave+detection/
https://phys.org/tags/gamma+rays/
https://phys.org/tags/gamma+rays/
https://phys.org/tags/neutron/
https://phys.org/tags/neutron/
https://phys.org/tags/neutron+stars/
https://phys.org/tags/neutron+stars/
https://phys.org/tags/collective+behaviour/
https://phys.org/tags/collective+behaviour/
https://phys.org/tags/matter/
https://phys.org/tags/matter/
https://phys.org/tags/nuclear+matter/
https://phys.org/tags/nuclear+matter/


a neutron star that is 1.4 times more massive than the Sun should be between about 10 and 14 km. 

[22] 

 

 

 

How a particle may stand still in rotating spacetime  
When a massive astrophysical object, such as a boson star or black hole, rotates, it can cause the 

surrounding spacetime to rotate along with it due to the effect of frame dragging. In a new paper, 

physicists have shown that a particle with just the right properties may stand perfectly still in a 

rotating spacetime if it occupies a "static orbit"—a ring of points located a critical distance from the 

center of the rotating spacetime. 

The physicists, Lucas G. Collodel, Burkhard Kleihaus, and Jutta Kunz, at the University of Oldenburg 

in Germany, have published a paper in which they propose the existence of static orbits in rotating 

spacetimes in a recent issue of Physical Review Letters. 

"Our work presents with extreme simplicity a long-ignored feature of certain spacetimes that is 

quite counterintuitive," Collodel told Phys.org. "General relativity has been around for a bit more 

than a hundred years now and it never ceases to amaze, and exploring the ways that different 

distributions of energy can warp the geometry of spacetime in a non-trivial way is key to a deeper 

understanding." 

In their paper, the physicists identify two criteria for a particle to remain at rest with respect to a 

static observer in a rotating spacetime. First, the particle's angular momentum (basically its own 

rotation) must have just the right value so that it perfectly cancels out the rotation due to frame 

dragging. Second, the particle must be located precisely in the static orbit, a ring around the center 

of the rotating spacetime at which the particle is neither pulled toward the center nor pushed 

away. 

A key point is that not all astrophysical objects with rotating spacetimes have static orbits, which in 

the future may help researchers distinguish between different types of astrophysical objects. As the 

physicists explain, in order to have a static orbit, a rotating spacetime's metric (basically the 

function that describes spacetimes in general relativity) must have a local minimum, which 

corresponds to the critical distance at which the static orbit is located. In a sense, a particle may 

then be "trapped" at rest in this local minimum. 

The physicists identify several astrophysical objects that have static orbits, including boson stars 

(hypothetical stars made of bosonic matter that, like black holes, have immense gravity but do not 

emit light), wormholes, and hairy black holes (black holes with unique properties, such as additional 

charge). On the other hand, Kerr black holes (thought to be the most common kind of black hole) 

do not have metrics with local minima, and so do not have static orbits. So evidence for a static 

orbit could provide a way to distinguish between Kerr black holes and some of the less common 

objects with static orbits. 
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While the physicists acknowledge that it may be unlikely to expect a particle with just the right 

angular momentum to exist at just the right place in order to remain at rest in a 

rotating spacetime, it may still be possible to detect the existence of static orbits due to what 

happens nearby. Particles initially at rest near the static orbits are predicted to move more slowly 

than those located further away. So even if researchers never observe a particle standing still, they 

may observe slowly moving particles in the vicinity, indicating the existence of a nearby static 

orbit. 

"Acknowledging the existence of the static ring helps us appreciate better what to plan and expect 

from future observations," Collodel said. "For instance, we can search for the ring in order to 

identify possible exotic objects, such as the boson star, or even assure with confidence (upon 

observing the ring) that an AGN [active galactic nucleus] is not powered by a Kerr black hole. In the 

future we plan to investigate how the presence of the ring might affect accretion disks, which are at 

this stage much easier to observe, and if it could shield some objects from infalling matter." [21] 

 

Black holes, curved spacetime and quantum computing  
Rotating black holes and computers that use quantum-mechanical phenomena to process 

information are topics that have fascinated science lovers for decades, but even the most 

innovative thinkers rarely put them together. Now, however, theoretical physicist Ovidiu Racorean 

from the General Direction of Information Technology, Bucharest, Romania suggests that powerful 

X-rays emitted near these black holes have properties that make them ideal information carriers for 

quantum computing. This work was recently published in New Astronomy. 

The term 'black holes' is widely known, but not everyone knows exactly what they are. When stars 

come to the end of their lives, they can collapse in on themselves under their own weight, 

becoming denser and denser. Some may collapse into a point with essentially no volume and 

infinite density, with a gravitational field that not even light can escape from: this is a black hole. If 

the star that forms it rotates, as most stars do, the black hole will also spin. 

Material that gets close to a rotating black hole but does not fall into it will aggregate into a circular 

structure known as an accretion disk. Powerful forces acting on accretion disks raise their 

temperature so they emit X-rays, which can act as carriers of quantum information. 

The photons that make up the X-rays have two properties: polarisation and orbital angular 

momentum. Each of these can encode a qubit (quantum bit) of information, the standard 

information unit in quantum computing. "Lab-based researchers already use beam splitters and 

prisms to entangle these properties in X-ray photons and process quantum information," says 

Racorean. "It now seems that the curvature of spacetime around a black hole will play the same 

role as this apparatus." 

Thus far, however, this process is only a prediction. The final proof will come when the properties 

of X-rays near spinning black holes are observed, which could happen in the next decade. 

Two space probes with the same mission will be launched around 2022: the Imaging X-ray 

Polarimetry Explorer (IXPE) by NASA, and the X-ray Imaging Polarimetry Explorer (XIPE) by the 

European Space Agency. These will investigate the polarisation of all X-rays found in space, 
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including those emitted close to black holes. "If we find that the X-ray polarisation changes with 

distance from the black hole, with those in the central region being least polarised, we will have 

observed entangled states that can carry quantum information," says Racorean. 

This topic may seem esoteric, but it could have practical applications. "One day, we may even be 

able to use rotating black holes as quantum computers by sending [X-ray] photons on the right 

trajectory around these ghostly astronomical bodies," Racorean concludes. Additionally, scientists 

believe that simulation of unusual states of matter will be an important early application 

of quantum computing, and there are few more unusual states of matter than those found in the 

vicinity of black holes. [20] 

 

 

 

Some black holes erase your past  
In the real world, your past uniquely determines your future. If a physicist knows how the universe 

starts out, she can calculate its future for all time and all space. 

But a UC Berkeley mathematician has found some types of black holes in which this law breaks 

down. If someone were to venture into one of these relatively benign black holes, they could 

survive, but their past would be obliterated and they could have an infinite number of possible 

futures. 

Such claims have been made in the past, and physicists have invoked "strong cosmic censorship" to 

explain it away. That is, something catastrophic – typically a horrible death – would prevent 

observers from actually entering a region of spacetime where their future was not uniquely 

determined. This principle, first proposed 40 years ago by physicist Roger Penrose, keeps 

sacrosanct an idea – determinism – key to any physical theory. That is, given the past and present, 

the physical laws of the universe do not allow more than one possible future. 

But, says UC Berkeley postdoctoral fellow Peter Hintz, mathematical calculations show that for 

some specific types of black holes in a universe like ours, which is expanding at an accelerating rate, 

it is possible to survive the passage from a deterministic world into a non-deterministic black hole. 

What life would be like in a space where the future was unpredictable is unclear. But the finding 

does not mean that Einstein's equations of general relativity, which so far perfectly describe the 

evolution of the cosmos, are wrong, said Hintz, a Clay Research Fellow. 

"No physicist is going to travel into a black hole and measure it. This is a math question. But from 

that point of view, this makes Einstein's equations mathematically more interesting," he said. "This 

is a question one can really only study mathematically, but it has physical, almost philosophical 

implications, which makes it very cool." 

"This … conclusion corresponds to a severe failure of determinism in general relativity that cannot 

be taken lightly in view of the importance in modern cosmology" of accelerating expansion, said his 

colleagues at the University of Lisbon in Portugal, Vitor Cardoso, João Costa and Kyriakos Destounis, 

and at Utrecht University, Aron Jansen. 
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As quoted by Physics World, Gary Horowitz of UC Santa Barbara, who was not involved in the 

research, said that the study provides "the best evidence I know for a violation of strong cosmic 

censorship in a theory of gravity and electromagnetism." 

Hintz and his colleagues published a paper describing these unusual black holes last month in the 

journal Physical Review Letters. 

A reasonably realistic simulation of falling into a black hole shows how space and time are 

distorted, and how light is blue shifted as you approach the inner or Cauchy horizon, where most 

physicists think you would be annihilated. However, a UC …more 

Beyond the event horizon 
Black holes are bizarre objects that get their name from the fact that nothing can escape their 

gravity, not even light. If you venture too close and cross the so-called event horizon, you'll never 

escape. 

For small black holes, you'd never survive such a close approach anyway. The tidal forces close to 

the event horizon are enough to spaghettify anything: that is, stretch it until it's a string of atoms. 

But for large black holes, like the supermassive objects at the cores of galaxies like the Milky Way, 

which weigh tens of millions if not billions of times the mass of a star, crossing the event horizon 

would be, well, uneventful. 

Because it should be possible to survive the transition from our world to the black hole world, 

physicists and mathematicians have long wondered what that world would look like, and have 

turned to Einstein's equations of general relativity to predict the world inside a black hole. These 

equations work well until an observer reaches the center or singularity, where in theoretical 

calculations the curvature of spacetime becomes infinite. 

Even before reaching the center, however, a black hole explorer – who would never be able to 

communicate what she found to the outside world – could encounter some weird and deadly 

milestones. Hintz studies a specific type of black hole – a standard, non-rotating black hole with an 

electrical charge – and such an object has a so-called Cauchy horizon within the event horizon. 

The Cauchy horizon is the spot where determinism breaks down, where the past no longer 

determines the future. Physicists, including Penrose, have argued that no observer could ever pass 

through the Cauchy horizon point because they would be annihilated. 

As the argument goes, as an observer approaches the horizon, time slows down, since clocks tick 

slower in a strong gravitational field. As light, gravitational waves and anything else encountering 

the black hole fall inevitably toward the Cauchy horizon, an observer also falling inward would 

eventually see all this energy barreling in at the same time. In effect, all the energy the black hole 

sees over the lifetime of the universe hits the Cauchy horizon at the same time, blasting into 

oblivion any observer who gets that far. 
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A spacetime diagram of the gravitational collapse of a charged spherical star to form a charged 

black hole. An observer traveling across the event horizon will eventually encounter the Cauchy 

horizon, the boundary of the region of spacetime …more 

You can't see forever in an expanding universe 
Hintz realized, however, that this may not apply in an expanding universe that is accelerating, such 

as our own. Because spacetime is being increasingly pulled apart, much of the distant universe will 

not affect the black hole at all, since that energy can't travel faster than the speed of light. 

In fact, the energy available to fall into the black hole is only that contained within the observable 

horizon: the volume of the universe that the black hole can expect to see over the course of its 

existence. For us, for example, the observable horizon is bigger than the 13.8 billion light years we 

can see into the past, because it includes everything that we will see forever into the future. The 

accelerating expansion of the universe will prevent us from seeing beyond a horizon of about 46.5 

billion light years. 

In that scenario, the expansion of the universe counteracts the amplification caused by time 

dilation inside the black hole, and for certain situations, cancels it entirely. In those cases – 

specifically, smooth, non-rotating black holes with a large electrical charge, so-called Reissner-
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Nordström-de Sitter black holes – an observer could survive passing through the Cauchy horizon 

and into a non-deterministic world. 

"There are some exact solutions of Einstein's equations that are perfectly smooth, with no kinks, no 

tidal forces going to infinity, where everything is perfectly well behaved up to this Cauchy horizon 

and beyond," he said, noting that the passage through the horizon would be painful but brief. 

"After that, all bets are off; in some cases, such as a Reissner-Nordström-de Sitter black hole, one 

can avoid the central singularity altogether and live forever in a universe unknown." 

Admittedly, he said, charged black holes are unlikely to exist, since they'd attract oppositely 

charged matter until they became neutral. However, the mathematical solutions for charged black 

holes are used as proxies for what would happen inside rotating black holes, which are probably 

the norm. Hintz argues that smooth, rotating black holes, called Kerr-Newman-de Sitter black holes, 

would behave the same way. 

"That is upsetting, the idea that you could set out with an electrically charged star that undergoes 

collapse to a black hole, and then Alice travels inside this black hole and if the black hole 

parameters are sufficiently extremal, it could be that she can just cross the Cauchy horizon, survives 

that and reaches a region of the universe where knowing the complete initial state of the star, she 

will not be able to say what is going to happen," Hintz said. "It is no longer uniquely determined by 

full knowledge of the initial conditions. That is why it's very troublesome." 

He discovered these types of black holes by teaming up with Cardoso and his colleagues, who 

calculated how a black hole rings when struck by gravitational waves, and which of its tones and 

overtones lasted the longest. In some cases, even the longest surviving frequency decayed fast 

enough to prevent the amplification from turning the Cauchy horizon into a dead zone. 

Hintz's paper has already sparked other papers, one of which purports to show that most well-

behaved black holes will not violate determinism. But Hintz insists that one instance of violation is 

one too many. 

"People had been complacent for some 20 years, since the mid '90s, that strong cosmological 

censorship is always verified," he said. "We challenge that point of view." [19] 

 

 

 

New theory suggests heavy elements created when primordial black 

holes eat neutron stars from within  
A team of researchers at the University of California has come up with a new theory to explain how 

heavy elements such as metals came to exist. The group explains their theory in a paper published 

in the journal Physical Review Letters—it involves the idea of primordial black holes (PBHs) 

infesting the centers of neutron stars and eating them from the inside out.  

Space scientists are confident that they have found explanations for the origins of light and 

medium elements, but are still puzzling over how the heavier elements came to exist. Current 

theories suggest they most likely emerged during what researchers call an r-process—as in rapid. 



As part of the process, large numbers of neutrons would come under high densities, resulting in 

capture by atomic nuclei—clearly, an extreme environment. The most likely candidate for creating 

such an environment is a supernova, but there seem to be too few of them to account for the 

amounts of heavy elements that exist. In this new effort, the researchers offer a new idea. They 

believe it is possible that PBHs occasionally collide with neutron stars, and when that happens, the 

PBH becomes stuck in the center of the star. Once there, it begins pulling in material from the star's 

center.  

PBHs are still just theory, of course. They are believed to have developed shortly after the Big Bang. 

They are also believed to roam through the galaxies and might be tied to dark matter. In this new 

theory, if a PBH happened to bump into a neutron star, it would take up residence in its center and 

commence pulling in neutrons and other material. That would cause the star to spin rapidly, which 

in turn would fling material from its outermost layer into space. The hurled material, the 

researchers suggest, would be subjected to an environment that would meet the requirements for 

an r-process, leading to the creation of heavy metals.  

The theory assumes a certain number of such collisions could and did occur, and also that at least 

some small amount of dark matter is made up of black holes, as well. But it also offers a means for 

gathering real-world evidence that it is correct—by analyzing mysterious bursts of radio waves that 

could be neutron stars imploding after internal consumption by a PBH. [18]  

Spinning Black Holes Could Create Clouds of Mass  
Nothing, not even light, can come out of a black hole. At least, that’s the conventional wisdom, and 

it’s certainly true that—once the event horizon is crossed—there’s no going back. But for rotating 

black holes, there’s a region outside the event horizon where strange and extraordinary things can 

happen, and these extraordinary possibilities are the focus of a new paper in the American Physical 

Society journal Physical Review Letters.  

The study reports simulations of a phenomenon called superradiance, where waves and particles 

passing in the vicinity of a spinning black hole can extract some of its rotational energy. The 

authors propose that hypothetical ultralight particles, with masses far lower than that of a 

neutrino, could get caught in orbit around such a black hole, sapping away some of its angular 

momentum and being accelerated in the process. Because energy, like the black hole's rotational 

energy, can give rise to matter, this phenomenon—termed a superradiant instability—converts the 

black hole’s angular momentum into a massive cloud of these ultra-light particles.  

The reason these particles would have to be so much lighter than anything we've ever seen has to 

do with a quantity called the Compton wavelength. While electrons, protons, neutrinos, and other 

bits of matter usually behave like particles, they have wavelike properties as well—and just like 

with photons, the energy of the particles is related to their wavelength. The longer an 

electromagnetic wave is, the less energy it carries, and it's the same for massive particles; for 

instance, protons have a shorter Compton wavelength than electrons, because protons have more 

mass-energy.  

For a particle to get caught in this special type of resonant, self-amplifying orbit around a spinning 

black hole, it has to have a Compton wavelength roughly equal to the size of the event horizon. 



Even the smallest black holes are at least 15 miles across, which means that each particle would 

have to carry an extremely small amount of mass-energy; for comparison, the Compton 

wavelength of an electron at rest is something like two trillionths of a meter.  

Each individual particle would have an extremely small amount of energy, but the researchers’ 

simulations showed that, for particles with the right mass around a black hole spinning with close 

to its maximum angular momentum, almost 10% of the black hole’s initial effective mass could be 

extracted into the surrounding cloud. The process only stops when the black hole has spun down 

to the point where its rotation matches the rate at which the particles orbit it.  

Although it's unclear how such a massive and energetic cloud of ultralight particles would interact 

with ordinary matter, the study's authors predict that we may be able to detect them via their 

gravitational wave signature. If a black hole that plays host to one of these clouds is involved in a 

collision that's detected by LIGO or some future gravitational wave detector, the cloud's presence 

might be visible in the gravitational wave signal produced by the merger.  

Another possibility would be the direct detection of gravitational waves from this oscillating cloud 

of particles as they orbit the black hole. Gravitational waves are only produced by asymmetrical 

arrangements of mass in motion, so a spherical mass rotating wouldn't produce a strong signal. 

Neither does a geometric arrangement like the rings of Saturn. But the moon orbiting the earth, for 

example, does. (Richard Feynman's "Sticky Bead" thought experiment is a great tool for developing 

an intuition on this.) According to the new article, some scenarios could produce a highly coherent 

cloud of these particles—meaning they would orbit the black hole in phase, oscillating as a large 

clump that should release a noticeable gravitational wave signal (especially given that these clouds 

could theoretically contain up to ~10% of a black hole's initial effective mass).  

The paper may have implications for our study of the supermassive black holes that lie at the 

center of nearly every galaxy, and might serve to draw a link between them and the swaths of dark 

matter that seem to envelop us. Although such ultralight particles are purely hypothetical for the 

moment, they could share many of the properties of dark matter, which means that looking for 

evidence of clouds like this is one possible way to test for the existence of certain dark matter 

candidates.  

In fact, this finding combined with the observation of fast-spinning black holes has already helped 

rule out certain possibilities. Astronomers have observed black holes rotating at speeds close to 

their maximum angular velocity, which means they're clearly not susceptible to this kind of 

instability, or else they'd have spun out their energy into a massive cloud and slowed down. This 

means that, if we see a black hole spinning as fast as possible, ultralight particles with a Compton 

wavelength similar to that black hole's size must not exist.  

While the cloud seemed to remain stable over time in the researchers’ simulations, other 

possibilities exist—one of which is a bosenova—a fusion of the words boson and supernova (as 

well as a pun on the musical style of bossa nova). In a bosenova scenario, the massive cloud would 

be violently ejected from the vicinity of the black hole all at once after reaching a certain critical 

point. [17]  



Mapping super massive black holes in the distant universe  
Astronomers have constructed the first map of the universe based on the positions of 

supermassive black holes, which reveals the large-scale structure of the universe.  

The map precisely measures the expansion history of the universe back to when the universe was 

less than three billion years old. It will help improve our understanding of 'Dark Energy', the 

unknown process that is causing the universe's expansion to speed up.  

The map was created by scientists from the Sloan Digital Sky Survey (SDSS), an international 

collaboration including astronomers from the University of Portsmouth.  

As part of the SDSS Extended Baryon Oscillation Spectroscopic Survey (eBOSS), scientists measured 

the positions of quasars - extremely bright discs of matter swirling around supermassive black 

holes at the centres of distant galaxies. The light reaching us from these objects left at a time when 

the universe was between three and seven billion years old, long before the Earth even existed.  

The map findings confirm the standard model of cosmology that researchers have built over the 

last 20 years. In this model, the universe follows the predictions of Einstein's General Theory of 

Relativity but includes components that, while we can measure their effects, we do not understand 

what is causing them.  

Along with the ordinary matter that makes up stars and galaxies, Dark Energy is the dominant 

component at the present time, and it has special properties that mean that it causes the 

expansion of the universe to speed up.  

Will Percival, Professor of Cosmology at the University of Portsmouth, who is the eBOSS survey 

scientist said: "Even though we understand how gravity works, we still do not understand 

everything - there is still the question of what exactly Dark Energy is. We would like to understand 

Dark Energy further. Not with alternative facts, but with the scientific truth, and surveys such as 

eBOSS are helping us to build up our understanding of the universe."  

To make the map, scientists used the Sloan telescope to observe more than 147,000 quasars. These 

observations gave the team the quasars' distances, which they used to create a three-dimensional 

map of where the quasars are.  

But to use the map to understand the expansion history of the universe, astronomers had to go a 

step further and measure the imprint of sound waves, known as baryon acoustic oscillations 

(BAOs), travelling in the early universe. These sound waves travelled when the universe was much 

hotter and denser than the universe we see today. When the universe was 380,000 years old, 

conditions changed suddenly and the sound waves became 'frozen' in place. These frozen waves 

are left imprinted in the three-dimensional structure of the universe we see today.  

Using the new map, the observed size of the BAO can be used as a 'standard ruler' to measure 

distances in our universe. "You have metres for small units of length, kilometres or miles for 

distances between cities, and we have the BAO for distances between galaxies and quasars in 

cosmology," explained Pauline Zarrouk, a PhD student at the Irfu/CEA, University Paris-Saclay, who 

measured the distribution of the observed size of the BAO.  



The current results cover a range of times where they have never been observed before, measuring 

the conditions when the universe was only three to seven billion years old, more than two billion 

years before the Earth formed.  

The eBOSS experiment continues using the Sloan Telescope, at Apache Point Observatory in New 

Mexico, USA, observing more quasars and nearer galaxies, increasing the size of the map produced.  

After it is complete, a new generation of sky surveys will begin, including the Dark Energy 

Spectroscopic Instrument (DESI) and the European Space Agency Euclid satellite mission. These will 

increase the fidelity of the maps by a factor of ten compared with eBOSS, revealing the universe 

and Dark Energy in unprecedented detail. [16]  

Astronomers hoping to directly capture image of a black hole  
Astronomers want to record an image of the heart of our galaxy for the first time: a global 

collaboration of radio dishes is to take a detailed look at the black hole which is assumed to be 

located there. This Event Horizon Telescope links observatories all over the world to form a huge 

telescope, from Europe via Chile and Hawaii right down to the South Pole. IRAM's 30-metre 

telescope, an installation co-financed by the Max Planck Society, is the only station in Europe to be 

participating in the observation campaign. The Max Planck Institute for Radio Astronomy is also 

involved with the measurements, which are to run from 4 to 14 April initially.  

At the end of the 18th century, the naturalists John Mitchell and Pierre Simon de Laplace were 

already speculating about "dark stars" whose gravity is so strong that light cannot escape from 

them. The ideas of the two researchers still lay within the bounds of Newtonian gravitational 

theory and the corpuscular theory of light. At the beginning of the 20th century, Albert Einstein 

revolutionized our understanding of gravitation - and thus of matter, space and time - with his 

General Theory of Relativity. And Einstein also described the concept of black holes.  

These objects have such a large, extremely compacted mass that even light cannot escape from 

them. They therefore remain black – and it is impossible to observe them directly. Researchers 

have nevertheless proven the existence of these gravitational traps indirectly: by measuring 

gravitational waves from colliding black holes or by detecting the strong gravitational force they 

exert on their cosmic neighbourhood, for example. This force is the reason why stars moving at 

great speed orbit an invisible gravitational centre, as happens at the heart of our galaxy, for 

example.  

It is also possible to observe a black hole directly, however. Scientists call the boundary around this 

exotic object, beyond which light and matter are inescapably sucked in, the event horizon. At the 

very moment when the matter passes this boundary, the theory states it emits intense radiation, a 

kind of "death cry" and thus a last record of its existence. This radiation can be registered as radio 

waves in the millimetre range, among others. Consequently, it should be possible to image the 

event horizon of a black hole.  

The Event Horizon Telescope (EHT) is aiming to do precisely this. One main goal of the project is the 

black hole at the centre of our Milky Way, which is around 26,000 light years away from Earth and 

has a mass roughly equivalent to 4.5 million solar masses. Since it is so far away, the object appears 

at an extremely small angle.  



One solution to this problem is offered by interferometry. The principle behind this technique is as 

follows: instead of using one huge telescope, several observatories are combined together as if 

they were small components of a single gigantic antenna. In this way scientists can simulate a 

telescope which corresponds to the circumference of our Earth. They want to do this because the 

larger the telescope, the finer the details which can be observed; the so-called angular resolution 

increases.  

The EHT project exploits this observational technique and in April it is to carry out observations at a 

frequency of 230 gigahertz, corresponding to a wavelength of 1.3 millimetres, in interferometry 

mode. The maximum angular resolution of this global radio telescope is around 26 

microarcseconds. This corresponds to the size of a golf ball on the Moon or the breadth of a human 

hair as seen from a distance of 500 kilometres!  

These measurements at the limit of what is observable are only possible under optimum 

conditions, i.e. at dry, high altitudes. These are offered by the IRAM observatory, partially financed 

by the Max Planck Society, with its 30-metre antenna on Pico Veleta, a 2800-metre-high peak in 

Spain's Sierra  

Nevada. Its sensitivity is surpassed only by the Atacama Large Millimeter Array (ALMA), which 

consists of 64 individual telescopes and looks into space from the Chajnantor plateau at an altitude 

of 5000 metres in the Chilean Andes. The plateau is also home to the antenna known as APEX, 

which is similarly part of the EHT project and is managed by the Max Planck Institute for Radio 

Astronomy.  

The Max Planck Institute in Bonn is furthermore involved with the data processing for the Event  

Horizon Telescope. The researchers use two supercomputers (correlators) for this; one is located in 

Bonn, the other at the Haystack Observatory in Massachusetts in the USA. The intention is for the 

computers to not only evaluate data from the galactic black hole. During the observation campaign 

from 4 to 14 April, the astronomers want to take a close look at at least five further objects: the M 

87, Centaurus A and NGC 1052 galaxies as well as the quasars known as OJ 287 and 3C279.  

From 2018 onwards, a further observatory will join the EHT project: NOEMA, the second IRAM 

observatory on the Plateau de Bure in the French Alps. With its ten high-sensitivity antennas,  

NOEMA will be the most powerful telescope of the collaboration in the northern hemisphere. [15]  

Scientists readying to create first image of a black hole  
A team of researchers from around the world is getting ready to create what might be the first 

image of a black hole. The project is the result of collaboration between teams manning radio 

receivers around the world and a team at MIT that will assemble the data from the other teams 

and hopefully create an image.  

The project has been ongoing for approximately 20 years as project members have sought to piece 

together what has now become known as the Event Horizon Telescope (EHT). Each of the 12 

participating radio receiving teams will use equipment that has been installed for the project to 

record data received at a wavelength of 230GHz during April 5 through the 14th. The data will be 

recorded onto hard drives which will all be sent to MIT Haystack Observatory in Massachusetts, 

where a team will stitch the data together using a technique called very long baseline array 



interferometry—in effect, creating the illusion of a single radio telescope as large as the Earth. The 

black hole they will all focus on is the one believed to be at the center of the Milky Way galaxy— 

Sagittarius A*.  

A black hole cannot be photographed, of course, light cannot reflect or escape from it, thus, there 

would be none to capture. What the team is hoping to capture is the light that surrounds the black 

hole at its event horizon, just before it disappears.  

Sagittarius A* is approximately 26,000 light-years from Earth and is believed to have a mass 

approximately four million times greater than the sun—it is also believed that its event horizon is 

approximately 12.4 million miles across. Despite its huge size, it would still be smaller than a pin 

prick against our night sky, hence the need for the array of radio telescopes.  

The researchers believe the image that will be created will be based on a ring around a black blob, 

but because of the Doppler effect, it should look to us like a crescent. Processing at Haystack is 

expected to take many months, which means we should not expect to see an image released to the 

press until sometime in 2018. [17]  

"Unsolved Link" --Between Dark Matter and Supermassive Black Holes  
The research, released in February of 2015, was designed to address a controversy in the field. 

Previous observations had found a relationship between the mass of the central black hole and the 

total mass of stars in elliptical galaxies. However, more recent studies have suggested a tight 

correlation between the masses of the black hole and the galaxy's dark matter halo. It wasn't clear 

which relationship dominated.  

In our universe, dark matter outweighs normal matter - the everyday stuff we see all around us - by 

a factor of 6 to 1. We know dark matter exists only from its gravitational effects. It holds together 

galaxies and galaxy clusters. Every galaxy is surrounded by a halo of dark matter that weighs as 

much as a trillion suns and extends for hundreds of thousands of light-years.  

To investigate the link between dark matter halos and supermassive black holes, Bogdan and his 

colleague Andy Goulding (Princeton University) studied more than 3,000 elliptical galaxies. They 

used star motions as a tracer to weigh the galaxies' central black holes. X-ray measurements of hot 

gas surrounding the galaxies helped weigh the dark matter halo, because the more dark matter a 

galaxy has, the more hot gas it can hold onto.  

They found a distinct relationship between the mass of the dark matter halo and the black hole 

mass - a relationship stronger than that between a black hole and the galaxy's stars alone.  

This connection is likely to be related to how elliptical galaxies grow. An elliptical galaxy is formed 

when smaller galaxies merge, their stars and dark matter mingling and mixing together. Because 

the dark matter outweighs everything else, it molds the newly formed elliptical galaxy and guides 

the growth of the central black hole.  

"In effect, the act of merging creates a gravitational blueprint that the galaxy, the stars and the 

black hole will follow in order to build themselves," explains Bogdan. The research relied on data 

from the Sloan Digital Sky Survey and the ROSAT X-ray satellite's all-sky survey.  



The image at the top of the page is a composite image of data from NASA’s Chandra X-ray  

Observatory (shown in purple) and Hubble Space Telescope (blue) of the giant elliptical galaxy, NGC 

4649, located about 51 million light years from Earth. Although NGC 4649 contains one of the 

biggest black holes in the local Universe, there are no overt signs of its presence because the black 

hole is in a dormant state. The lack of a bright central point in either the X-ray or optical images 

shows that the supermassive black hole does not appear to be rapidly pulling in material towards 

its event horizon, nor generating copious amounts of light as it grows. Also, the very smooth 

appearance of the Chandra image shows that the hot gas producing the X-rays has not been 

disturbed recently by outbursts from a growing black hole.  

So, the presence and mass of the black hole in NGC 4649, and other galaxies like it, has to be 

studied more indirectly by tracking its effects on stars and gas surrounding it. By applying a clever 

technique for the first time, scientists used Chandra data to measure a mass for the black hole of 

about 3.4 billion times that of the Sun. The new technique takes advantage of the gravitational 

influence the black hole has on the hot gas near the center of the galaxy. As gas slowly settles 

towards the black hole, it gets compressed and heated. This causes a peak in the temperature of 

the gas right near the center of the galaxy. The more massive the black hole, the bigger the 

temperature peak detected by Chandra. [13]  

  

Dark Matter Black Holes Could Be Destroying Stars at the Milky Way’s 

Center  
If dark matter comes in both matter and antimatter varieties, it might accumulate inside dense 

stars to create black holes Dark matter may have turned spinning stars into black holes near the 

center of our galaxy, researchers say. There, scientists expected to see plenty of the dense, rotating 

stars called pulsars, which are fairly common throughout the Milky Way. Despite numerous 

searches, however, only one has been found, giving rise to the so-called “missing pulsar problem.” 

A possible explanation, according to a new study, is that dark matter has built up inside these stars, 

causing the pulsars to collapse into black holes. (These black holes would be smaller than the 

supermassive black hole that is thought to lurk at the very heart of the galaxy.)  

The universe appears to be teeming with invisible dark matter, which can neither be seen nor 

touched, but nonetheless exerts a gravitational pull on regular matter.   

Scientists have several ideas for what dark matter might be made of, but none have been proved. A 

leading option suggests that dark matter is composed of particles called weakly interacting massive 

particles (WIMPs), which are traditionally thought to be both matter and antimatter in one. The 

nature of antimatter is important for the story. When matter and antimatter meet they destroy 

one another in powerful explosions—so when two regular WIMPs collide, they would annihilate 

one another.  

But it is also possible that dark matter comes in two varieties—matter and antimatter versions, just 

like regular matter. If this idea—called asymmetric dark matter—is true, then two dark matter 

particles would not destroy one another nor would two dark antimatter particles, but if one of 

each type met, the two would explode. In this scenario both types of dark matter should have been 



created in abundance during the big bang (just as both regular matter and regular antimatter are 

thought to have been created) but most of these particles would have destroyed one another, and 

those that that remain now would be just the small excess of one type that managed to avoid 

being annihilated.  

If dark matter is asymmetric, it would behave differently from the vanilla version of WIMPs. For 

example, the dense centers of stars should gravitationally attract nearby dark matter. If dark 

matter is made of regular WIMPS, when two WIMPs meet at the center of a star they would 

destroy one another, because they are their own antimatter counterparts. But in the asymmetric 

dark matter picture, all the existing dark matter left today is made of just one of its two types—

either matter or antimatter. If two of these like particles met, they would not annihilate, so dark 

matter would simply build up over time inside the star. Eventually, the star’s core would become 

too heavy to support itself, thereby collapsing into a black hole. This is what may have happened to 

the pulsars at the Milky Way’s center, according to a study published November 3 in Physical 

Review Letters.  

The scenario is plausible, says Raymond Volkas, a physicist at the University of Melbourne who was 

not involved in the study, but the missing pulsar problem might easily turn out to have a mundane 

explanation through known stellar effects. “It would, of course, be exciting to have dramatic direct 

astrophysical evidence for asymmetric dark matter,” Volkas says. “Before believing an asymmetric 

dark matter explanation, I would want to be convinced that no standard explanation is actually 

viable.”  

The authors of the study, Joseph Bramante of the University of Notre Dame and Tim Linden of the 

Kavli Institute for Cosmological Physics at the University of Chicago, agree that it is too early to 

jump to a dark matter conclusion. For example, Linden says, maybe radio observations of the 

galactic center are not as thorough as scientists have assumed and the missing pulsars will show up 

with better searches. It is also possible some quirk of star formation has limited the number of 

pulsars that formed at the galactic center.  

The reason nearby pulsars would not be as affected by asymmetric dark matter is that dark matter, 

of any kind, should be densest at the cores of galaxies, where it should congregate under the force 

of its own gravity. And even there it should take dark matter a very long time to accumulate 

enough to destroy a pulsar because most dark particles pass right through stars without 

interacting. Only on the rare occasions when one flies extremely close to a regular particle can it 

collide, and then it will be caught there. In normal stars the regular particles at the cores are not 

dense enough to catch many dark matter ones. But in superdense pulsars they might accumulate 

enough to do damage. “Dark matter can’t collect as densely or as quickly at the center of regular 

stars,” Bramante says, “but in pulsars the dark matter would collect into about a two-meter ball. 

Then that ball collapses into a black hole and it sucks up the pulsar.”  

If this scenario is right, one consequence would be that pulsars should live longer the farther away 

they are from the dark matter–dense galactic center. At the far reaches of the Milky Way, for 

example, pulsars might live to ripe old ages; near the core, however, pulsars would be created and 

then quickly destroyed before they could age. “Nothing astrophysical predicts a very strong 

relation between the age of a pulsar and its distance from the center of a galaxy,” Linden says. 

“You would really see a stunning effect if this scenario held.” It is also possible, although perhaps 



not probable, that astronomers could observe a pulsar collapse into a black hole, verifying the 

theory. But once the black hole is created, it would be near impossible to detect: As dark matter 

and black holes are each unobservable, black holes made of dark matter would be doubly invisible. 

[12]  

Everything You Need to Know About Dark Energy  

  

For a long time, there were two main theories related to how our universe would end. These were 

the Big Freeze and the Big Crunch. In short, the Big Crunch claimed that the universe would 

eventually stop expanding and collapse in on itself. This collapse would result in…well…a big crunch 

(for lack of a better term). Think “the Big Bang”, except just the opposite. That’s essentially what 

the Big Crunch is. On the other hand, the Big Freeze claimed that the universe would continue 

expanding forever, until the cosmos becomes a frozen wasteland. This theory asserts that stars will 

get farther and farther apart, burn out, and (since there are no more stars bring born) the universe 

will grown entirely cold and eternally black.  

Now, we know that the expansion of the universe is not slowing. In fact, expansion is increasing. 

Edwin Hubble discovered that the farther an object was away from us the faster it was receding 

from us. In simplest terms, this means that the universe is indeed expanding, and this (in turn) 

means that the universe will likely end as a frozen, static wasteland. However, this can all change 

there is a reversal of dark energy’s current expansion effect. Sound confusing? To clear things up, 

let’s take a closer look at what dark energy is.  

How We Discovered That The Universe Is Expanding:  
The accelerating expansion of the universe was discovered when astronomers were doing research 

on type 1a supernova events. These stellar explosions play a pivotal role in discerning the distance 

between two celestial objects because all type 1a supernova explosions are remarkably similar in 

brightness. So if we know how bright a star should be, we can compare the apparent luminosity 

with the intrinsic luminosity, and we get a reliable figure for how far any given object is from us. To 

get a better idea of how these work, think about headlights. For the most part, car headlights all 

have the same luminosity. So if one car’s headlights are only 1/4 as bright as another car’s, then 

one car is twice as far away as the other.  



Incidentally, along with helping us make these key determinations about the locations of objects in 

the universe, these supernova explosions also gave us a sneak preview of one of the strangest 

observations ever made about the universe. To measure the approximate distance of an object, 

like a star, and how that distance has changed, astronomers analyze the spectrum of light emitted. 

Scientists were able to tell that the universe is increasing in expansion because, as the light waves 

make the incredibly long journey to Earth—billions of light-years away—the universe continues to 

expand. And as it expands, it stretches the light waves through a process called “redshifting” (the 

“red” is because the longest wavelength for light is in the red portion of the electromagnetic 

spectrum). The more redshifted this light is, the faster the expansion is going. Many years of 

painstaking observations (made by many different astronomers) have confirmed that this 

expansion is still ongoing and increasing because (as previously mentioned) the farther away an 

object is, the more redshifted it is, and (thus) the faster it is moving away from us.   

How Do We Know That Dark Energy Is Real?  
The existence of dark energy is required, in some form or another, to reconcile the measured 

geometry of space with the total amount of matter in the universe. This is because of the largely 

successful Planck satellite and Wilkenson Microwave Anisotropy Probe (WMAP) observations. The 

satellite’s observations of the cosmic microwave background radiation (CMB) indicate that the 

universe is geometrically flat, or pretty close to it.  

All of the matter that we believe exists (based on scientific data and inferences) combines to make 

up just about 30% of the total critical density of the observed universe. If it were geometrically flat, 

like the distribution suggests from the CMB, critical density of energy and matter should equal 

100%. WMAP’s seven year sky survey, and the more sophisticated Planck Satellite 2 year survey, 

both are very strong evidence of a flat universe. Current measurements from Planck put baryonic 

matter (atoms) at about 4%, dark matter at 23%, and dark energy making up the remainder at 73%.  

  

What’s more, an experiment called Wiggle Z galaxy sky survey in 2011 further supported the dark 

energy hypothesis by its observations of large scale structures of the universe (such as galaxies, 



quasars, galaxy clusters, etc). After observing more than 200,000 galaxies (by looking at their 

redshift and measuring the baryonic acoustic oscillations), the survey quantitatively put the age of 

when the universe started increasing its acceleration at a timeline of 7 billion years. After this time 

in the universe, the expansion started to speed up.  

How Does Dark Energy Work?  
According to Occam’s razor (which proposes that the hypothesis with the fewest amount of 

assumptions is the correct one), the scientific community has favored Einstein’s cosmological 

constant. Or in other words, the vacuum energy density of empty space, imbued with the same 

negative pressure value everywhere, eventually adds up with itself to speed up and suffuse the 

universe with more empty space, accelerating the entire process. This would kind of be similar to 

the energy pressure when talking about the “Casimir effect,” which is caused by virtual particles in 

socalled “empty space”, which is actually full of virtual particles coming in and out of existence.  

The Problem With Dark Energy:  
Called “the worst prediction in all of physics,” cosmologists predict that this value for the 

cosmological constant should be 10^ -120 Planck units. According to dark energy equation, the 

parameter value for w (for pressure and density) must equal -1. But according to the latest findings 

from Pan-STARRS (short for Panoramic Survey Telescope and Rapid Response System), this value is 

in fact -1.186. Pan-STARRS derived this value from combining the data it obtained with the 

observational data from Planck satellite (which measured these very specific type 1a supernovas, 

150 of them between 2009 and 2011, to be exact).  

“If w has this value, it means that the simplest model to explain dark energy is not true,” says 

Armin Rest of the Space Telescope Science Institute (STScI) in Baltimore. Armin Rest is the lead 

author of the Pan-STARRS team reporting these results to the astrophysics Web site arXiv (actual 

link to the paper) on October 22, 2013.   

  

The Significance:  
What exactly does the discrepancy in the value in the cosmological constant mean for our 

understanding of dark energy? At first glace, the community can dismiss these results as 

experimental uncertainty errors. It is a well accepted idea that telescope calibration, supernova 

physics, and galactic properties are large sources of uncertainties. This can throw off the 

cosmological constant value. Several astronomers have immediately spoken up, denying the 

validity of the results. Julien Guy of University Pierre and Marie Curie in Paris say the Pan-STARRS 

researchers may have underestimated their systematic error by ignoring a source of uncertainty 

from supernova light-curve models. They have been in contact with the team, who are looking into 

that very issue, and others are combing over the meticulous work on the Pan-STARRS team to see 

if they can find any holes in the study.  

Despite this, these results were very thorough and made by an experienced team, and work is 

already on its way to rule out any uncertainties. Not only that, but this is third sky survey to now 

produce experimental results that have dependencies for the pressure and density value of w 

being equal to 1, and it is starting to draw attention from cosmologists everywhere. In the next 



year or two, this result will be definitive, or it will be ruled out and disappear, with the 

cosmological constant continue being supported.  

Well, if the cosmological constant model is wrong, we have to look at alternatives. That is the 

beauty of science, it does not care what we wish to be true: if something disagrees with 

observations, it’s wrong. Plain and simple. [11]  

The Big Bang  
The Big Bang caused acceleration created radial currents of the matter, and since the matter is 

composed of negative and positive charges, these currents are creating magnetic field and 

attracting forces between the parallel moving electric currents. This is the gravitational force 

experienced by the matter, and also the mass is result of the electromagnetic forces between the 

charged particles. The positive and negative charged currents attracts each other or by the 

magnetic forces or by the much stronger electrostatic forces!?  

The gravitational force attracting the matter, causing concentration of the matter in a small space 

and leaving much space with low matter concentration: dark matter and energy.  

There is an asymmetry between the mass of the electric charges, for example proton and electron, 

can understood by the asymmetrical Planck Distribution Law. This temperature dependent energy 

distribution is asymmetric around the maximum intensity, where the annihilation of matter and 

antimatter is a high probability event. The asymmetric sides are creating different frequencies of 

electromagnetic radiations being in the same intensity level and compensating each other. One of 

these compensating ratios is the electron – proton mass ratio. The lower energy side has no 

compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.  

Study Reveals Indications That Dark Matter is Being Erased by Dark 

Energy  
  

Researchers in Portsmouth and Rome have found hints that dark matter, the cosmic scaffolding on 

which our Universe is built, is being slowly erased, swallowed up by dark energy.  

The findings appear in the journal Physical Review Letters, published by the American Physical 

Society. In the journal cosmologists at the Universities of Portsmouth and Rome, argue that the 

latest astronomical data favors a dark energy that grows as it interacts with dark matter, and this 

appears to be slowing the growth of structure in the cosmos.  

“Dark matter provides a framework for structures to grow in the Universe. The galaxies we see are 

built on that scaffolding and what we are seeing here, in these findings, suggests that dark matter 

is evaporating, slowing that growth of structure.”  

Cosmology underwent a paradigm shift in 1998 when researchers announced that the rate at 

which the Universe was expanding was accelerating. The idea of a constant dark energy throughout 

spacetime (the “cosmological constant”) became the standard model of cosmology, but now the 

Portsmouth and Rome researchers believe they have found a better description, including energy 

transfer between dark energy and dark matter. [10]  



  

Evidence for an accelerating universe   

One of the observational foundations for the big bang model of cosmology was the observed 

expansion of the universe. [9] Measurement of the expansion rate is a critical part of the study, and 

it has been found that the expansion rate is very nearly "flat". That is, the universe is very close to 

the critical density, above which it would slow down and collapse inward toward a future "big  

crunch". One of the great challenges of astronomy and astrophysics is distance measurement over 

the vast distances of the universe. Since the 1990s it has become apparent that type Ia supernovae 

offer a unique opportunity for the consistent measurement of distance out to perhaps 1000 Mpc. 

Measurement at these great distances provided the first data to suggest that the expansion rate of 

the universe is actually accelerating. That acceleration implies an energy density that acts in 

opposition to gravity which would cause the expansion to accelerate. This is an energy density 

which we have not directly detected observationally and it has been given the name "dark energy".  

The type Ia supernova evidence for an accelerated universe has been discussed by Perlmutter and 

the diagram below follows his illustration in Physics Today.   

  

 
  

The data summarized in the illustration above involve the measurement of the redshifts of the 

distant supernovae. The observed magnitudes are plotted against the redshift parameter z. Note 



that there are a number of Type 1a supernovae around z=.6, which with a Hubble constant of 71 

km/s/mpc is a distance of about 5 billion light years.   

Equation  

The cosmological constant Λ appears in Einstein's field equation [5] in the form of  

  

where R and g describe the structure of spacetime, T pertains to matter and energy affecting that 

structure, and G and c are conversion factors that arise from using traditional units of 

measurement.  

When Λ is zero, this reduces to the original field equation of general relativity. When T is zero, the 

field equation describes empty space (the vacuum).  

The cosmological constant has the same effect as an intrinsic energy density of the vacuum, ρvac 

(and an associated pressure). In this context it is commonly moved onto the right-hand side of the 

equation, and defined with a proportionality factor of 8π: Λ = 8πρvac, where unit conventions of 

general relativity are used (otherwise factors of G and c would also appear). It is common to quote 

values of energy density directly, though still using the name "cosmological constant".  

A positive vacuum energy density resulting from a cosmological constant implies a negative 

pressure, and vice versa. If the energy density is positive, the associated negative pressure will 

drive an accelerated expansion of the universe, as observed. (See dark energy and cosmic inflation 

for details.)  

  

Explanatory models  

Models attempting to explain accelerating expansion include some form of dark energy, dark fluid 

or phantom energy. The most important property of dark energy is that it has negative pressure 

which is distributed relatively homogeneously in space. The simplest explanation for dark energy is 

that it is a cosmological constant or vacuum energy; this leads to the Lambda-CDM model, which is 

generally known as the Standard Model of Cosmology as of 2003-2013, since it is the simplest 

model in good agreement with a variety of recent observations.  

Dark Matter and Energy  
Dark matter is a type of matter hypothesized in astronomy and cosmology to account for a large 

part of the mass that appears to be missing from the universe. Dark matter cannot be seen directly 

with telescopes; evidently it neither emits nor absorbs light or other electromagnetic radiation at 

any significant level. It is otherwise hypothesized to simply be matter that is not reactant to light. 

Instead, the existence and properties of dark matter are inferred from its gravitational effects on 

visible matter, radiation, and the large-scale structure of the universe. According to the Planck 



mission team, and based on the standard model of cosmology, the total mass–energy of the known 

universe contains 4.9% ordinary matter, 26.8% dark matter and 68.3% dark energy. Thus, dark 

matter is estimated to constitute 84.5% of the total matter in the universe, while dark energy plus 

dark matter constitute 95.1% of the total content of the universe. [6]   

Cosmic microwave background  
The cosmic microwave background (CMB) is the thermal radiation assumed to be left over from the 

"Big Bang" of cosmology. When the universe cooled enough, protons and electrons combined to 

form neutral atoms. These atoms could no longer absorb the thermal radiation, and so the 

universe became transparent instead of being an opaque fog. [7]  

Thermal radiation  
Thermal radiation is electromagnetic radiation generated by the thermal motion of charged 

particles in matter. All matter with a temperature greater than absolute zero emits thermal 

radiation. When the temperature of the body is greater than absolute zero, interatomic collisions  

cause the kinetic energy of the atoms or molecules to change. This results in charge-acceleration 

and/or dipole oscillation which produces electromagnetic radiation, and the wide spectrum of 

radiation reflects the wide spectrum of energies and accelerations that occur even at a single 

temperature. [8]  

 
  

Electromagnetic Field and Quantum Theory  
Needless to say that the accelerating electrons of the steady stationary current are a simple 

demystification of the magnetic field, by creating a decreasing charge distribution along the wire, 

maintaining the decreasing U potential and creating the A vector potential experienced by the 

electrons moving by v velocity relative to the wire. This way it is easier to understand also the time 

dependent changes of the electric current and the electromagnetic waves as the resulting fields 

moving by c velocity.   

It could be possible something very important law of the nature behind the self maintaining E 

accelerating force by the accelerated electrons. The accelerated electrons created electromagnetic 



fields are so natural that they occur as electromagnetic waves traveling with velocity c. It shows 

that the electric charges are the result of the electromagnetic waves diffraction.  

One of the most important conclusions is that the electric charges are moving in an accelerated 

way and even if their velocity is constant, they have an intrinsic acceleration anyway, the so called 

spin, since they need at least an intrinsic acceleration to make possible they movement .  

The bridge between the classical and quantum theory is based on this intrinsic acceleration of the 

spin, explaining also the Heisenberg Uncertainty Principle. The particle – wave duality of the 

electric charges and the photon makes certain that they are both sides of the same thing. Basing 

the gravitational force on the accelerating Universe caused magnetic force and the Planck 

Distribution Law of the electromagnetic waves caused diffraction gives us the basis to build a 

Unified Theory of the physical interactions. [4]  

  

Lorentz transformation of the Special Relativity  
In the referential frame of the accelerating electrons the charge density lowering linearly because 

of the linearly growing way they takes every next time period. From the referential frame of the 

wire there is a parabolic charge density lowering.  

The difference between these two referential frames, namely the referential frame of the wire and 

the referential frame of the moving electrons gives the relativistic effect. Important to say that the 

moving electrons presenting the time coordinate, since the electrons are taking linearly increasing 

way every next time period, and the wire presenting the geometric coordinate. The Lorentz 

transformations are based on moving light sources of the Michelson - Morley experiment giving a 

practical method to transform time and geometric coordinates without explaining the source of 

this mystery.   

The real mystery is that the accelerating charges are maintaining the accelerating force with their 

charge distribution locally. The resolution of this mystery that the charges are simply the results of 

the diffraction patterns, that is the charges and the electric field are two sides of the same thing. 

Otherwise the charges could exceed the velocity of the electromagnetic field.  

The increasing mass of the electric charges the result of the increasing inductive electric force 

acting against the accelerating force. The decreasing mass of the decreasing acceleration is the 

result of the inductive electric force acting against the decreasing force. This is the relativistic mass 

change explanation, especially importantly explaining the mass reduction in case of velocity 

decrease.  

The Classical Relativistic effect  
The moving charges are self maintain the electromagnetic field locally, causing their movement and 

this is the result of their acceleration under the force of this field.   

In the classical physics the charges will distributed along the electric current so that the electric 

potential lowering along the current, by linearly increasing the way they take every next time 

period because this accelerated motion.  



Electromagnetic inertia and Gravitational attraction  
Since the magnetic induction creates a negative electric field as a result of the changing 

acceleration, it works as an electromagnetic inertia, causing an electromagnetic mass.   

It looks clear that the growing acceleration results the relativistic growing mass - limited also with 

the velocity of the electromagnetic wave.    

Since E = hν and E = mc2, m = hν /c2 that is the m depends only on the ν frequency. It means that 

the mass of the proton and electron are electromagnetic and the result of the electromagnetic 

induction, caused by the changing acceleration of the spinning and moving charge! It could be that 

the mo inertial mass is the result of the spin, since this is the only accelerating motion of the electric 

charge. Since the accelerating motion has different frequency for the electron in the atom and the 

proton, they masses are different, also as the wavelengths on both sides of the diffraction pattern, 

giving equal intensity of radiation.  

If the mass is electromagnetic, then the gravitation is also electromagnetic effect caused by the 

accelerating Universe! The same charges would attract each other if they are moving parallel by 

the magnetic effect.  

The Planck distribution law explains the different frequencies of the proton and electron, giving 

equal intensity to different lambda wavelengths! Also since the particles are diffraction patterns 

they have some closeness to each other – can be seen as a gravitational force.  

Electromagnetic inertia and mass  

Electromagnetic Induction  
Since the magnetic induction creates a negative electric field as a result of the changing 

acceleration, it works as an electromagnetic inertia, causing an electromagnetic mass.  [1]  

Relativistic change of mass  
The increasing mass of the electric charges the result of the increasing inductive electric force 

acting against the accelerating force. The decreasing mass of the decreasing acceleration is the 

result of the inductive electric force acting against the decreasing force. This is the relativistic mass 

change explanation, especially importantly explaining the mass reduction in case of velocity 

decrease.  

The frequency dependence of mass  
Since E = hν and E = mc2, m = hν /c2 that is the m depends only on the ν frequency. It means that 

the mass of the proton and electron are electromagnetic and the result of the electromagnetic 

induction, caused by the changing acceleration of the spinning and moving charge! It could be that 

the mo inertial mass is the result of the spin, since this is the only accelerating motion of the electric 

charge. Since the accelerating motion has different frequency for the electron in the atom and the 

proton, they masses are different, also as the wavelengths on both sides of the diffraction pattern, 

giving equal intensity of radiation.  



Electron – Proton mass rate  
The Planck distribution law explains the different frequencies of the proton and electron, giving 

equal intensity to different lambda wavelengths! Also since the particles are diffraction patterns 

they have some closeness to each other – can be seen as a gravitational force. [1]  

There is an asymmetry between the mass of the electric charges, for example proton and electron, 

can understood by the asymmetrical Planck Distribution Law. This temperature dependent energy 

distribution is asymmetric around the maximum intensity, where the annihilation of matter and 

antimatter is a high probability event. The asymmetric sides are creating different frequencies of 

electromagnetic radiations being in the same intensity level and compensating each other. One of 

these compensating ratios is the electron – proton mass ratio. The lower energy side has no 

compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.  

Gravity from the point of view of quantum physics  

The Gravitational force  
The gravitational attractive force is basically a magnetic force.  

The same electric charges can attract one another by the magnetic force if they are moving parallel 

in the same direction. Since the electrically neutral matter is composed of negative and positive 

charges they need 2 photons to mediate this attractive force, one per charges. The Bing Bang 

caused parallel moving of the matter gives this magnetic force, experienced as gravitational force.  

Since graviton is a tensor field, it has spin = 2, could be 2 photons with spin = 1 together.  

You can think about photons as virtual electron – positron pairs, obtaining the necessary virtual 

mass for gravity.  

The mass as seen before a result of the diffraction, for example the proton – electron mass rate 

Mp=1840 Me. In order to move one of these diffraction maximum (electron or proton) we need to 

intervene into the diffraction pattern with a force appropriate to the intensity of this diffraction 

maximum, means its intensity or mass.  

  

The Big Bang caused acceleration created radial currents of the matter, and since the matter is 

composed of negative and positive charges, these currents are creating magnetic field and 

attracting forces between the parallel moving electric currents. This is the gravitational force 

experienced by the matter, and also the mass is result of the electromagnetic forces between the 

charged particles.  The positive and negative charged currents attracts each other or by the 

magnetic forces or by the much stronger electrostatic forces!?  

    

The Graviton  
In physics, the graviton is a hypothetical elementary particle that mediates the force of gravitation 

in the framework of quantum field theory. If it exists, the graviton is expected to be massless 

(because the gravitational force appears to have unlimited range) and must be a spin-2 boson. The 

spin follows from the fact that the source of gravitation is the stress-energy tensor, a second-rank 

tensor (compared to electromagnetism's spin-1 photon, the source of which is the four-current, a 



first-rank tensor). Additionally, it can be shown that any massless spin-2 field would give rise to a 

force indistinguishable from gravitation, because a massless spin-2 field must couple to (interact 

with) the stress-energy tensor in the same way that the gravitational field does. This result suggests 

that, if a massless spin-2 particle is discovered, it must be the graviton, so that the only 

experimental verification needed for the graviton may simply be the discovery of a massless spin-2 

particle. [2]  

Conclusions  
If dark matter comes in both matter and antimatter varieties, it might accumulate inside dense 

stars to create black holes. It is also possible, although perhaps not probable, that astronomers 

could observe a pulsar collapse into a black hole, verifying the theory. But once the black hole is 

created, it would be near impossible to detect: As dark matter and black holes are each 

unobservable, black holes made of dark matter would be doubly invisible. [12]  

For a long time, there were two main theories related to how our universe would end. These were 

the Big Freeze and the Big Crunch. In short, the Big Crunch claimed that the universe would 

eventually stop expanding and collapse in on itself. This collapse would result in…well…a big crunch 

(for lack of a better term). Think “the Big Bang”, except just the opposite. That’s essentially what 

the Big Crunch is. On the other hand, the Big Freeze claimed that the universe would continue 

expanding forever, until the cosmos becomes a frozen wasteland. This theory asserts that stars will 

get farther and farther apart, burn out, and (since there are no more stars bring born) the universe 

will grown entirely cold and eternally black. [11]  

Newly published research reveals that dark matter is being swallowed up by dark energy, offering 

novel insight into the nature of dark matter and dark energy and what the future of our Universe 

might be. [10]  

The changing temperature of the Universe will change the proportionality of the dark energy and 

the corresponding dark matter by the Planck Distribution Law, giving the base of this newly 

published research.  

The gravitational force attracting the matter, causing concentration of the matter in a small space 

and leaving much space with low matter concentration: dark matter and energy.   

There is an asymmetry between the mass of the electric charges, for example proton and electron, 

can understood by the asymmetrical Planck Distribution Law. This temperature dependent energy 

distribution is asymmetric around the maximum intensity, where the annihilation of matter and 

antimatter is a high probability event. The asymmetric sides are creating different frequencies of 

electromagnetic radiations being in the same intensity level and compensating each other. One of 

these compensating ratios is the electron – proton mass ratio. The lower energy side has no 

compensating intensity level, it is the dark energy and the corresponding matter is the dark matter. 

The electric currents causing self maintaining electric potential is the source of the special and 

general relativistic effects.  The Higgs Field is the result of the electromagnetic induction. The 

Graviton is two photons together. [3]  
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