The origin of the Ultra-high-energy cosmic-ray particles

Fran De Aquino

Professor Emeritus of Physics, Maranĥao State University, UEMA. Titular Researcher (R) of National Institute for Space Research, INPE Copyright © 2019 by Fran De Aquino. All Rights Reserved.

In this paper, we show that the extremely-high energies of some cosmic-ray particles can be related to the strong increase of their *gravitational masses* when they have been generated. **Key words:** Cosmic-ray particles Energy, Gravitational Mass, Mini-blackholes.

1. Introduction

The energy spectrum of cosmic-ray particles extends to $\sim 10^{20}$ eV [1]. The origin of these ultra-high-energy cosmic-ray particles is not yet firmly established [1, 2, 3-6]. Actually, this is one of the great challenges of modern Astrophysics [7, 8]. In this paper, we show that the extremely-high energies of these cosmic particles can be related to the strong increase of their *gravitational masses* when they have been generated.

2. Theory

In 1974, Stephen Hawking shown that black holes could *emit particles* (neutrinos, electrons, protons, nucleons, etc.) and so evaporate [9]. The Hawking's theory [9, 10] establishes that the internal temperature (T) of a black hole, its lifetime (τ) and the number (N)of particles emitted from it, are respectively given by

$$T \approx \frac{10^{26}}{m} \tag{1}$$

$$\tau \approx 10^{-27} m^3 \tag{2}$$

and

$$N \approx 10^{11} m \tag{3}$$

where m (in grams) is the inertial mass of the black hole.

In a previous paper [11] it was shown that there is a correlation between the gravitational mass, m_g , and the *rest* inertial mass m_{i0} , which is given by

$$\chi = \frac{m_g}{m_{i0}} = \left\{ 1 - 2 \left[\sqrt{1 + \left(\frac{Un_r}{m_{i0}c^2}\right)^2} - 1 \right] \right\}$$
(4)

where U is the electromagnetic energy absorbed or emitted by the particle; n_r is the index of refraction of the particle and c is the light speed.

In the particular case of *thermal radiation*, it is usual to relate the energy of the photons to the temperature, through the relationship $\langle hv \rangle \approx kT$, where $k = 1.38 \times 10^{-23} J/K$ is the Boltzmann's constant. Thus, in that case, the energy *absorbed* by a particle will be $U = \eta \langle hv \rangle \approx \eta kT$, where η is a particledependent absorption coefficient ($\eta \approx 0.1$, see [12]). Therefore, Eq.(4) can be rewritten in the following form:

$$\frac{m_g}{m_{i0}} \approx \left\{ 1 - 2 \left[\sqrt{1 + \left(\frac{\eta k T n_r}{m_{i0} c^2}\right)^2 - 1} \right] \right\}$$
(5)

According to Eq. (1), the temperature (T) of *mini black holes* can be very high, in such way that the term $\eta k T n_r / m_{i0} c^2$ in Eq. (5), can become very greater than 1. In this case, Eq. (5) shows that, the *gravitational* masses of the *particles emitted* from a mini black hole will be given by:

$$m_g \approx -2 \left(\frac{\eta k T n_r}{c^2} \right) \approx -10^{-41} T \quad ; \quad (n_r \sim 1) \quad (6)$$

Thus, these particles will have energy, E, expressed by [11]:

$$E = \frac{m_g c^2}{\sqrt{1 - v^2/c^2}} \approx \frac{10^{-41} T c^2}{\sqrt{1 - v^2/c^2}}$$
(7)

For $v \ll c$, Eq. (7) reduces to

$$E \approx 10^{-24} T \tag{8}$$

In the case of *mini black holes* with inertial masses $m < 1000 g^*$, the temperature, T, according to Eq.(1), is $T > 10^{23} K$. Then, Eq. (8), tells us that the particles emitted from these mini black holes can have energy, E, given by

$$E > 0.1 \text{ joule } \approx 10^{19} \, eV \tag{9}$$

This energy corresponds to the extremely-high energies of the spectrum of the cosmic-ray particles. Consequently, we can conclude that, possibly the ultra-high-energy cosmic-ray particles can have originated in mini black holes.

In 1971 Hawking shows that many *mini black holes* $(m \ll 10^9 g)$ with masses down to ~10⁻⁵g could have be created in the initial stages of the formation of the Universe [13].

References

- Eichmann B., et. al., (2018) J. Cos. Astroparticle Physic, 2018, 036.
- [2] Hillas A.M., (1984) Ann. Rev. Astron. Astrophys., 22, 425.
- [3] Feng J.L., (2010) Ann. Rev. Astron. Astrophys., 48, 495.
- [4] Grib A.A., Pavlov Yu.V., (2009) *Gravitation and Cosmology*, 15, 44.
- [5] Belotsky K., et al., (2014) Advances in High Energy Physics, 2014 214258.
- [6] Belotsky K., Khlopov M., Laletin M., Kouvaris C., (2015) International Journal of Modern Physics D, 24 1545004.
- [7] Abraham J. et al. (Pierre Auger Collaboration) (2010) *Phys. Rev. Lett.*, 104, 091101.
- [8] DAMPE Collaboration: (2017) Nature, 552, 24475.
- [9] Hawking, S. W. (1974) Nature, 248, 30.
- [10] Carr, B. J. and Hawking, S. W. (1974) Mon. Not. R. Astr. Soc., 168, 399.
- [11] De Aquino, F. (2010) Mathematical Foundations of the Relativistic Theory of Quantum Gravity, Pacific Journal of Science and Technology,11 (1), pp. 173-232. Available at https://hal.archives-ouvertes.fr/hal-01128520
- [12] De Aquino,F. (1999)Gravitation and Electromagnetism Correlation and Grand Unification, gr-qc/ 9910036 or physics/9905003.
- [13] Hawking, S.W (1971) Mon. Not. R. Astron. Soc., 152, 75.