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Abstract

The Richardson thermal effect is considered for the situation where the thermal
electrons are inserted into the homogenous magnetic field. The electron flow in
magnetic field produces the synchrotron radiation. We calculate the spectral distri-
bution of the synchrotron photons.
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1 Introduction

Thermionic emission is the thermally induced flow of charged particles from a surface,

or, over a potential-energy barrier. This occurs because the thermal energy given to the

particles overcomes the work function of the material. The charge carriers can be electrons

or ions, referred earlier as thermions. If the emitter is connected to a battery, the charge

left behind is neutralized by charge supplied by the battery as the emitted charge particles

move away from the emitter, and finally the emitter will be in the same state as it was

before emission.

The classical example of thermionic emission is the emission of of electrons from a hot

cathode into a vacuum known as the Edison effect in a vacuum tube. The hot cathode can

be a metal filament, a coated metal filament, or a separate structure of metal or carbides

or borides of transition metals. Vacuum emission from metals tends to become significant

only for temperatures over T = 10000 K.

Richardson writes (Richardson, 1929): ”In 1901 I was able to show that each unit area

of a platinum surface emitted a limited number of electrons. This number increased very

rapidly with the temperature, so that the maximum current i at any absolute temperature

T was governed by the law
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i = A
√
Te−

w
kT . (1)

In this equation k is Boltzmann constant, and A and w are specific constants of the

material. This equation was completely accounted for by the simple hypothesis that the

freely moving electrons in the interior of the hot conductor escaped when they reached the

surface provided that the part of their energy which depended on the component of velocity

normal to the surface was greater than the work function w.”

Later, Richardson writes (Richardson, 1929): ”In 1911 as a result of pursuing some

difficulties in connection with the thermodynamic theory of electron emission I came to

the conclusion that

i = AT 2e−
w
kT (2)

was a theoretically preferable form of the temperature emission equation to Eq. (1) with, of

course, different values of the constants A and w from those used with (1). It is impossible

to distinguish between these two equations by experimenting.”

From band theory, there are one or two electrons per atom in a solid that are free to

move from atom to atom. This is sometimes collectively referred to as a sea of electrons.

Their velocities follow a statistical distribution, and occasionally an electron will have

enough velocity to exit the metal without being pulled back in. The minimum amount

of energy needed for an electron to leave a surface is called the work function. The work

function is characteristic of the material and for most metals is on the order of several

electronvolts (Lide, 2008). Thermionic currents can be increased by decreasing the work

function. This often-desired goal can be achieved by applying various oxide coatings to

the wire. Now, it is proposed that the emission law should have the mathematical form

(Crowell, 1965)

J = AGT
2e−

W
kT , (3)

where J is the emission current density, T is the temperature of the metal, W is the work

function of the metal, k is the Boltzmann constant, and AG is a parameter and there is

still no clear what is the exact expression of AG , but there is agreement that AG must

be written in the form AG = λRA0 where λR is a material-specific correction factor that

is typically of order 0.5, and A0 is a universal constant given by Crowell (1965). Or,

A0 =
4πmk2e

h3
. (4)

2 The Richardson formula from the band model

Electron which is in the free zone of conductivity has zero kinetic energy. His total energy

is the potential one.
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The working function W is the work necessary for the escaping of an electron in solid

state to vacuum without giving it some kinetical energy.

Let be the metal placed in the coordinate system in area with x ≤ 0. Electron with

energy

mv2x
2

≥ W (5)

can escape from the surface of this metal and its energy is

mv2x
2

+ EC = E ≥ 0, (6)

where EC is the chemical potential.

The formula of the current density jx of an electron escaping to vacuum is obviously

given as follows (Kireev, 1969):

jx = e
∫ ∞

vx−min

∫ ∞

−∞

∫ ∞

−∞
vx2

m

h3
e−

E−F
kT dvxdvydvz =

= em
∫ ∞

vx−min

∫ ∞

−∞

∫ ∞

−∞
e−

E−F
kT vx

dτ

h3
, (7)

which formula is derived on the assumption that there are 2dτ/h3 states ocupied by

electrons with probability

f0(E, T ) =
1

e−
E−F
kT

≈ e−
E−F
kT , (8)

where the approximation is valid for E − F ≫ kT .

Using

E =
mv2

2
+ EC = EC +

m

2
(v2x + v2y + v2z) ≥ 0, (9)

we get

jx = 2e
e−

E−F
kT

h3

∫ ∞

−∞
e−

mv2y
2kT dvy

∫ ∞

−∞
e−

mv2z
2kT dvz

∫ ∞

vx−min

vxe
−mv2x

2kT dvx. (10)

With regard to identity

∫ ∞

−∞
e−ξ2dξ =

√
π, (11)

we get with transformation

mv2y
2kT

= ξ2; dvy =

√
2kT

m
dξ (12)

the following formulas:
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∫ ∞

−∞
e−

mv2y
2kT dvy =

∫ ∞

−∞
e−

mv2z
2kT dvz =

√
2kπT

m
. (13)

The integration over vx gives (Kireev, 1969)

∫ ∞

vx−min

vxe
−mv2x

2kT dvx =
kT

m

∫ ∞

vx−min

e−
mv2x
2kT d

(
mv2x
2kT

)
=

kT

m
.e−

W
kT =

kT

m
e−

EC
kT . (14)

So,

jx =
4πem2k2T 2

h3
e−

−F−EC+EC
kT = AT 2e

F
kT (15)

with

A =
4πem2k2

h3
. (16)

If we identify F with the thermodynamical work Φ, or, F = −Φ, then we get

jx = AT 2e
−Φ
kT . (17)

Numerically, the thermodynamical work Φ is equal to the work necessary for the escap-

ing of an electron from the Fermi level to vacuum. Formula (17) is so called Richardson-

Dushman law of the thermoelectrical emission.

Let us remark that there is the equilibrium between escaping electron and the electrons

returning to the metal. So, in order to measure the current of escaping electron it is

necessary introduce the external field to suck the thermoelectric electrons and at the

same to compensate the charge loss by metal.

The thermoelectrical emission depends as it is seen on then temperature T . For

Φ = 2, 5 eV and T = 3000 K, we have jT = 10−36 Amper/cm2 and for T = 15000 K, we

have jT = 0, 8 Amper/cm2.

3 Thermal electrons in magnetic field

The quantity Φ is called the thermodynamic work of the escaped electron from the metal.

Numerically it is equal to the work necessary for escaping of electrons being on the Fermi

level. In real conditions emission current cannot have the value JT . It is possible under

special conditions. The surface over the metal with escaping electron is charged. The

field can be considered as the homogenous electric field.

If we now insert the metal in the magnetic field then electrons move in the electro-

magnetic field and it is easy to see that the situation can be described by the synchrotron

equation. In such a way the electrons radiates the synchrotron radiation and the known

formulas can be applied to the Richardson problem. The experimental goal is to determine

the spectrum of the synchrotron radiation and compare it with the theoretical values.
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The power spectral formula for the synergic synchrotron-Čerenkov radiation was de-

rived by the Schwinger source methods in the form (Schwinger et al., 1976):

P (ω, t) = − ω

4π2

µ

n2

∫ ∫ ∫
dxdx′dt′

sin
[
nω
c
|x− x′|

]
|x− x′|

cos[ω(t− t′)]×

×
{
ϱ(x, t)ϱ(x′, t′)− n2

c2
J(x, t) · J(x′, t′)

}
. (18)

Now, we apply the last formula to the case of an electron moving in a magnetic

field and then we generalize the derived results in case of thermal electrons forming the

Richardson constelation.

We write for the charge density ϱ and for the current density, J, the equations con-

cerning only the circular motion of the electron and then we will show how to apply the

derived formulas for the circular motion of an electron. We write for the circular motion

(Schwinger et al., 1976):

ϱ(x, t) = eδ(x−R(t)), J(x, t) = ev(t)δ(x−R(t)) (19)

with

R(t) = R(i cos(ω0t) + j sin(ω0t)). (20)

In this specific case, we have:

v(t) = dR/dt, ω0 = v/R, β = v/c, v = |v|. (21)

After insertion of eq. (19) into eq. (18), we get

P (ω, t) =
∞∑
l=1

δ(ω − lω0)Pl(ω, t) (22)

with

Pl(ω, t) =
e2

4π2n2

ωµω0

v

(
2n2β2J ′

2l(2lnβ)− (1− n2β2)
∫ 2lnβ

0
dxJ2l(x)

)
(23)

where during the derivation of eq. (23), we have used the relations:

t′ − t = τ, dt′ = dτ (24)

|R(t+ τ)−R(t)| = 2R
∣∣∣∣sin 1

2
ω0τ

∣∣∣∣ (25)

v(t) · v(t+ τ) = v2 cosω0τ (26)
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ω0τ = φ+ 2πl, φ ∈ (−π, π), l = 0, ±1, ±2, .... (27)

Using the formulas

J ′
2l(2lnβ) ∼

1√
3

1

π

(
3

2ln

)2/3

K2/3(l/ln), l ≫ 1 (28)

∫ 2lnβ

0
J2l(y)dy ∼ 1√

3

1

π

∫ ∞

l/ln
K1/3(y)dy, l ≫ 1 (29)

ln =
3

2
(1− n2β2)−3/2, (30)

K ′
2/3 = −1

2
(K1/3 +K5/3), (31)

κ(ξ) = ξ
∫ ∞

ξ
K5/3(y)dy, ξ = l/ln (32)

and

κ(ξ) ≈
√
π

2
ξ1/2e−ξ, ξ ≫ 1, (33)

we obtain, for the specific situation 2n2β2 ≈ 1, the following l-harmonics (Schwinger et

al., 1976):

Pl(ω, t) =
ωµe2

4π2n2R

√
π

6

(
3

2l

)2/3

ξ1/6e−ξ. (34)

Every circular trajectory of electron with velocity in the intervals dvx, dvy in the

magneto-thermal field with H||z is realized with the thermal probability

2e
e−

E−F
kT

h3
e−

mv2x
2kT e−

mv2y
2kT dvxdvy (35)

So, the intensity of the synchrotron radiation of all trajectories with l-harmonics de-

noted by Πl is given by the formula vx−min = v0

Πl(ω, t) = 2e
e−

E−F
kT

h3

∫ ∞

v0

∫ ∞

−∞
e−

mv2x
2kT e−

mv2y
2kT dvxdvy×

ωµe2

4π2n2R

√
π

6

(
3

2l

)2/3

ξ1/6e−ξ, (36)

where (
mv20
2

+ EC = E ≥ 0) and

ξ = l/ln =
2l

3
(1− n2β2)3/2 β2 = (v2x + v2x)/c

2 (37)

and
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ξ1/6 =

[
2l

3
(1− n2β2)3/2

]1/6
(38)

e−ξ = exp

[
−2l

3
(1− n2β2)3/2

]
. (39)

If we go to cylindric coordinates ϱ, φ, then

∫ ∞

v0

∫ ∞

−∞
f(vx, vy)dvxdvy →

∫ ∞

v0

∫ π/2

−π/2
f(ϱ, φ)ϱdϱdφ. (40)

After the φ-integration → π, we get final spectral power formula for Richardson emis-

sion of electron in magnetic field: Πl(ω, t):

Πl(ω, t) = 2e
e−

Φ
kT

h3
π
∫ ∞

v0
e−

mϱ2

2kT ϱdϱ
ωµe2

4π2n2R

√
π

6

(
3

2l

)2/3

ξ1/6e−ξ;

ξ1/6 =

[
2l

3
(1− n2ϱ2)3/2

]1/6
; e−ξ = exp

[
−2l

3
(1− n2ϱ2)3/2

]
. (41)

4 Discussion

We can see that the thermoelectric effect substantially differs from the blackbody photon

emission derived by Planck from the modification of the thermodynamical entropy, and

later, by Einstein from the Bohr model of atom with two postulates: 1. every atom

can exist in the discrete series of states in which electrons do not radiate even if they are

moving at acceleration (the postulate of the stationary states), 2. transiting electron from

the stationary state to other, emits the energy according to the law h̄ω = Em−En, called

the Bohr formula, where Em is the energy of an electron in the initial state, and En is the

energy of the final state of an electron to which the transition is made and Em > En.

Einstein introduced coefficients of spontaneous and stimulated emission and in case

of spontaneous emission, the excited atomic state decays without external stimulus as an

analogue of the natural radioactivity decay. In the process of the stimulated emission,

the atom is induced by the external stimulus to make the same transition. The external

stimulus is a blackbody photon that has an energy given by the Bohr formula. So, we see

the substantial difference between black body emission and thermal electron emission.

There exists the thermionic emission from a single-layer graphene which has been

verified with an experiment (Liang et al., 2015). So our theory can be immediately applied

to the graphhene physics. In 2003 author suggested an invention called the magnetronic

laser (Pardy, 2003). In case that we in this laser use the thermal electrons, we get so

called thermal magnetronic laser and it is not excluded that such new laser will play the

substational role in the laser physics.
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