The Proof of The *ABC* Conjecture - Part I: The Case c = a + 1

Abdelmajid Ben Hadj Salem, Dipl.-Eng.

Received: date / Accepted: date

Abstract In this paper, we consider the *abc* conjecture in the case c = a + 1. Firstly, we give the proof of the first conjecture that $c < rad^2(ac)$. It is the key of the proof of the *abc* conjecture. Secondly, the proof of the *abc* conjecture is given for $\epsilon \ge 1$, then for $\epsilon \in]0, 1[$ for the two cases: $c \le rad(ac)$ and c > rad(ac).

We choose the constant $K(\epsilon)$ as $K(\epsilon) = e^{\left(\frac{1}{\epsilon^2}\right)}$. A numerical example is presented.

Keywords Elementary number theory \cdot real functions of one variable.

Mathematics Subject Classification (2010) 11AXX · 26AXX

To the memory of my Father who taught me arithmetic To the memory of my colleague and friend Dr.Eng. Chedly Fezzani (1943-2019) for his important work in the field of Geodesy and the promotion of the geographic sciences in Africa

1 Introduction and notations

Let a a positive integer, $a = \prod_i a_i^{\alpha_i}$, a_i prime integers and $\alpha_i \ge 1$ positive integers. We call *radical* of a the integer $\prod_i a_i$ noted by rad(a). Then a is written as :

$$a = \prod_{i} a_i^{\alpha_i} = rad(a) \cdot \prod_{i} a_i^{\alpha_i - 1} \tag{1}$$

Abdelmajid Ben Hadj Salem 6, Rue du Nil, Cité Soliman Er-Riadh 8020 Soliman Tunisia E-mail: abenhadjsalem@gmail.com We note:

$$\mu_a = \prod_i a_i^{\alpha_i - 1} \Longrightarrow a = \mu_a.rad(a) \tag{2}$$

The *abc* conjecture was proposed independently in 1985 by David Masser of the University of Basel and Joseph (Esterlé of Pierre et Marie Curie University (Paris 6) ([1]). It describes the distribution of the prime factors of two integers with those of its sum. The definition of the *abc* conjecture is given below:

Conjecture 1 (**abc** Conjecture): Let a, b, c positive integers relatively prime with c = a + b, then for each $\epsilon > 0$, there exists a constant $K(\epsilon)$ such that :

$$c < K(\epsilon).rad(abc)^{1+\epsilon} \tag{3}$$

 $K(\epsilon)$ depending only of ϵ .

We know that numerically, $\frac{Logc}{Log(rad(abc))} \leq 1.629912$ ([1]). A conjecture was proposed that $c < rad^2(abc)$ ([2]). Here we will give the proof of it in the case c = a + 1.

Conjecture 2 Let a, b, c positive integers relatively prime with c = a + b, then:

$$c < rad^2(abc) \Longrightarrow \frac{Logc}{Log(rad(abc))} < 2$$
 (4)

This result, I think is the key to obtain a proof of the veracity of the abc conjecture.

2 A Proof of the conjecture (2), Case : c = a + 1

Let a, c positive integers, relatively prime, with c = a + 1. If c < rad(ac) then we obtain:

$$c < rad(ac) < rad^2(ac) \tag{5}$$

and the condition (4) is verified.

If c = rad(ac), then a, c are not relatively coprime.

In the following, we suppose that $c > rad^2(ac) \Longrightarrow \mu_a.rad(a) + 1 > rad^2(a).rad^2(c) \Longrightarrow 1 > rad(a).(rad(a)rad^2(c) - \mu_a)$, we obtain :

- if $(rad(a)rad^2(c)-\mu_a) > 0$, as $rad(a) \ge 2 \Longrightarrow 1 < rad(a).(rad(a)rad^2(c)-\mu_a)$, then the contradiction, hence $c < rad^2(ac)$.

- if $rad(a)rad^2(c) - \mu_a = 0 \implies$ that a, c are not coprime, then the contradiction, hence $c < rad^2(ac)$.

- if $rad(a)rad^{2}(c) - \mu_{a} < 0 \implies \mu_{a} > rad(a)rad^{2}(c)$. From c = a + 1, we obtain $rad(a) = \frac{c-1}{\mu_{a}}$. As it is supposed $c > rad^{2}(a)rad^{2}(c) \implies c > \frac{(c-1)^{2}}{\mu_{a}^{2}}.rad^{2}(c)$. We obtain that c verifies the inequality:

$$c^{2} - c\left(2 + \left(\frac{\mu_{a}}{rad(c)}\right)^{2}\right) + 1 < 0$$

$$\tag{6}$$

Then, we consider the equation :

$$P(X) = X^{2} - X\left(2 + \left(\frac{\mu_{a}}{rad(c)}\right)^{2}\right) + 1 = 0$$
(7)

We verify that the discriminant of P(X) is > 0. The roots $X_1 < X_2$ of P(X) are given by:

$$X_{1} = \frac{1}{2} \left[2 + \left(\frac{\mu_{a}}{rad(c)}\right)^{2} - \sqrt{4\left(\frac{\mu_{a}}{rad(c)}\right)^{2} + \left(\frac{\mu_{a}}{rad(c)}\right)^{4}} \right] > 0$$
$$X_{2} = \frac{1}{2} \left[2 + \left(\frac{\mu_{a}}{rad(c)}\right)^{2} + \sqrt{4\left(\frac{\mu_{a}}{rad(c)}\right)^{2} + \left(\frac{\mu_{a}}{rad(c)}\right)^{4}} \right] > 0$$
(8)

c verifies $(6) \Longrightarrow c \in]X_1, X_2[$, we obtain:

$$\mu_a \left(1 - \sqrt{1 + 4\frac{rad^2(c)}{\mu_a^2}} \right) < 2rad(a)rad^2(c) < \mu_a \left(1 + \sqrt{1 + 4\frac{rad^2(c)}{\mu_a^2}} \right)$$
(9)

From the right member of the above inequality, we have :

$$\mu_a > 2 \frac{rad(a)rad^2(c)}{1 + \sqrt{1 + 4\frac{rad^2(c)}{\mu_a^2}}} = t \quad with \quad t < rad(a)rad^2(c)$$
(10)

Then the contradiction with $\mu_a > rad(a)rad^2(c)$. We deduce that the condition $c > rad^2(a)rad^2(c)$ is false and $c < rad^2(a)rad^2(c)$.

We announce the theorem:

Theorem 1 (Abdelmajid Ben Hadj Salem, 2019) Let a, c positive integers relatively prime with $c = a + 1, a \ge 2$, then $c < rad^2(abc)$.

3 The Proof of The ABC Conjecture (1) Case: c = a + 1

We denote R = rad(ac).

3.1 Case: $\epsilon \geq 1$

Using the result of the theorem above, we have $\forall \epsilon \geq 1$:

$$c < R^2 \le R^{1+\epsilon} < K(\epsilon).R^{1+\epsilon}, \quad K(\epsilon) = e^{\left(\frac{1}{\epsilon^2}\right)}, \ \epsilon \ge 1$$
 (11)

We verify easily that $K(\epsilon) > 1$ for $\epsilon \ge 1$ and it is a decreasing function from e the base of the neperian logarithm to 1.

3.2 Case: $\epsilon < 1$

3.2.1 Case: $c \leq R$

In this case, we can write :

$$c \le R < R^{1+\epsilon} < K(\epsilon).R^{1+\epsilon}, \quad K(\epsilon) = e^{\left(\frac{1}{\epsilon^2}\right)}, \ \epsilon < 1$$
 (12)

,

here also $K(\epsilon) > 1$ for $\epsilon < 1$ and the *abc* conjecture is true.

3.2.2 Case: c > R

In this case, we confirm that :

c

$$< K(\epsilon).R^{1+\epsilon}, \quad K(\epsilon) = e^{\left(\frac{1}{\epsilon^2}\right)}, \quad 0 < \epsilon < 1$$
 (13)

If not, then $\exists \epsilon_0 \in]0,1[$, so that the triplets (a,c) checking c > R and:

$$c \ge R^{1+\epsilon_0}.K(\epsilon_0) \tag{14}$$

are in finite number. We have:

$$c \ge R^{1+\epsilon_0}.K(\epsilon_0) \Longrightarrow R^{1-\epsilon_0}.c \ge R^{1-\epsilon_0}.R^{1+\epsilon_0}.K(\epsilon_0) \Longrightarrow$$
$$R^{1-\epsilon_0}.c \ge R^2.K(\epsilon_0) > c.K(\epsilon_0) \Longrightarrow R^{1-\epsilon_0} > K(\epsilon_0)$$
(15)

As c > R, we obtain:

$$c^{1-\epsilon_0} > R^{1-\epsilon_0} > K(\epsilon_0) \Longrightarrow$$

$$c^{1-\epsilon_0} > K(\epsilon_0) \Longrightarrow c > K(\epsilon_0) \left(\frac{1}{1-\epsilon_0}\right)$$
 (16)

We deduce that it exists an infinity of triples (a, 1, c) verifying (14), hence the contradiction. Then the proof of the *abc* conjecture in the case c = a + 1is finished. We obtain that $\forall \epsilon > 0$, c = a + 1 with a, c relatively coprime, $2 \le a < c$:

$$c < K(\epsilon).rad(ac)^{1+\epsilon}$$
 with $K(\epsilon) = e^{\left(\frac{1}{\epsilon^2}\right)}$ Q.E.D (17)

4 Examples

In this section, we are going to verify some cases of one numerical example. The example is given by:

$$1 + 5 \times 127 \times (2 \times 3 \times 7)^3 = 19^6 \tag{18}$$

 $a = 5 \times 127 \times (2 \times 3 \times 7)^3 = 47\,045\,880 \Rightarrow \mu_a = 2 \times 3 \times 7 = 42 \text{ and } rad(a) = 2 \times 3 \times 5 \times 7 \times 127,$ $b = 1 \Rightarrow \mu_b = 1 \text{ and } rad(b) = 1,$

 $c=19^6=47\,045\,880\Rightarrow rad(c)=19.$ Then $rad(abc)=rad(ac)=2\times3\times5\times7\times19\times127=506\,730..$

We have c > rad(ac) but $rad^2(ac) = 506730^2 = 256775292900 > c = 47045880.$

4.0.1 Case $\epsilon=0.01$

 $c < K(\epsilon).rad(ac)^{1+\epsilon} \Longrightarrow 47\,045\,880 \stackrel{?}{<} e^{10000}.506\,730^{1.01}.$ The expression of $K(\epsilon)$ becomes:

$$K(\epsilon) = e^{\frac{1}{0.0001}} = e^{10000} = 8,7477777149120053120152473488653e + 4342$$
(19)

We deduce that $c \ll K(0.01).506\,730^{1.01}$ and the equation (17) is verified.

4.0.2 Case $\epsilon = 0.1$

 $K(0.1) = e^{\frac{1}{0.01}} = e^{100} = 2,6879363309671754205917012128876e + 43 \implies c < K(0.1) \times 506730^{1.01}$. And the equation (17) is verified.

4.0.3 Case $\epsilon = 1$

 $K(1) = e \Longrightarrow c = 47\,045\,880 < e.rad^2(ac) = 697\,987\,143\,184,212.$ and the equation (17) is verified.

4.0.4 Case $\epsilon=100$

$$K(100) = e^{0.0001} \Longrightarrow c = 47\,045\,880 \stackrel{?}{<} e^{0.0001}.506\,730^{101} = 1,5222350248607608781853142687284e + 576$$

and the equation (17) is verified.

5 Conclusion

This is an elementary proof of the *abc* conjecture in the case c = a + 1. We can announce the important theorem:

Theorem 2 (David Masser, Joseph Æsterlé & Abdelmajid Ben Hadj Salem; 2019) Let a, c positive integers relatively prime with c = a + 1, $a \ge$ then for each $\epsilon > 0$, there exists $K(\epsilon)$ such that :

$$c < K(\epsilon).rad(ac)^{1+\epsilon} \tag{20}$$

where $K(\epsilon)$ is a constant depending of ϵ equal to $e^{\left(\frac{1}{\epsilon^2}\right)}$.

Acknowledgements The author is very grateful to Professors Mihăilescu Preda and Gérald Tenenbaum for their comments about errors found in previous manuscripts concerning proofs proposed of the *abc* conjecture.

References

- Waldschmidt M.: On the abc Conjecture and some of its consequences presented at The 6th World Conference on 21st Century Mathematics, Abdus Salam School of Mathematical Sciences (ASSMS), Lahore (Pakistan), March 6-9, 2013. (2013)
- Mihăilescu P.: Around ABC. European Mathematical Society Newsletter N° 93, September 2014. 29-34, (2014)