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Abstract In this paper, we consider the abc conjecture in the case c = a+ 1.
Firstly, we give the proof of the first conjecture that c < rad2(ac). It is the key
of the proof of the abc conjecture. Secondly, the proof of the abc conjecture is
given for ε ≥ 1, then for ε ∈]0, 1[ for the two cases: c ≤ rad(ac) and c > rad(ac).

We choose the constant K(ε) as K(ε) = e

(
1

ε2

)
. A numerical example is

presented.
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1 Introduction and notations

Let a a positive integer, a =
∏
i a
αi
i , ai prime integers and αi ≥ 1 positive

integers. We call radical of a the integer
∏
i ai noted by rad(a). Then a is

written as :

a =
∏
i

aαi
i = rad(a).

∏
i

aαi−1
i (1)
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We note:

µa =
∏
i

aαi−1
i =⇒ a = µa.rad(a) (2)

The abc conjecture was proposed independently in 1985 by David Masser of
the University of Basel and Joseph Œsterlé of Pierre et Marie Curie University
(Paris 6) ([1]). It describes the distribution of the prime factors of two integers
with those of its sum. The definition of the abc conjecture is given below:

Conjecture 1 ( abc Conjecture): Let a, b, c positive integers relatively prime
with c = a+ b, then for each ε > 0, there exists a constant K(ε) such that :

c < K(ε).rad(abc)1+ε (3)

K(ε) depending only of ε.

We know that numerically,
Logc

Log(rad(abc))
≤ 1.629912 ([1]). A conjecture was

proposed that c < rad2(abc) ([2]). Here we will give the proof of it in the case
c = a+ 1.

Conjecture 2 Let a, b, c positive integers relatively prime with c = a+ b, then:

c < rad2(abc) =⇒ Logc

Log(rad(abc))
< 2 (4)

This result, I think is the key to obtain a proof of the veracity of the abc
conjecture.

2 A Proof of the conjecture (2), Case : c = a + 1

Let a, c positive integers, relatively prime, with c = a+ 1. If c < rad(ac) then
we obtain:

c < rad(ac) < rad2(ac) (5)

and the condition (4) is verified.

If c = rad(ac), then a, c are not relatively coprime.

In the following, we suppose that c > rad2(ac) =⇒ µa.rad(a)+1 > rad2(a).rad2(c) =⇒
1 > rad(a).(rad(a)rad2(c)− µa), we obtain :

- if (rad(a)rad2(c)−µa) > 0, as rad(a) ≥ 2 =⇒ 1 < rad(a).(rad(a)rad2(c)−
µa), then the contradiction, hence c < rad2(ac).

- if rad(a)rad2(c)− µa = 0 =⇒ that a, c are not coprime, then the contra-
diction, hence c < rad2(ac).
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- if rad(a)rad2(c) − µa < 0 =⇒ µa > rad(a)rad2(c). From c = a + 1,

we obtain rad(a) =
c− 1

µa
. As it is supposed c > rad2(a)rad2(c) =⇒ c >

(c− 1)2

µ2
a

.rad2(c). We obtain that c verifies the inequality:

c2 − c

(
2 +

(
µa

rad(c)

)2
)

+ 1 < 0 (6)

Then, we consider the equation :

P (X) = X2 −X

(
2 +

(
µa

rad(c)

)2
)

+ 1 = 0 (7)

We verify that the discriminant of P (X) is > 0. The roots X1 < X2 of P (X)
are given by:

X1 =
1

2

2 +

(
µa

rad(c)

)2

−

√
4

(
µa

rad(c)

)2

+

(
µa

rad(c)

)4
 > 0

X2 =
1

2

2 +

(
µa

rad(c)

)2

+

√
4

(
µa

rad(c)

)2

+

(
µa

rad(c)

)4
 > 0 (8)

c verifies (6) =⇒ c ∈]X1, X2[, we obtain:

µa

(
1−

√
1 + 4

rad2(c)

µ2
a

)
< 2rad(a)rad2(c) < µa

(
1 +

√
1 + 4

rad2(c)

µ2
a

)
(9)

From the right member of the above inequality, we have :

µa > 2
rad(a)rad2(c)

1 +
√

1 + 4 rad
2(c)
µ2
a

= t with t < rad(a)rad2(c) (10)

Then the contradiction with µa > rad(a)rad2(c). We deduce that the condi-
tion c > rad2(a)rad2(c) is false and c < rad2(a)rad2(c).

We announce the theorem:

Theorem 1 (Abdelmajid Ben Hadj Salem, 2019) Let a, c positive inte-
gers relatively prime with c = a+ 1, a ≥ 2, then c < rad2(abc).

3 The Proof of The ABC Conjecture (1) Case: c = a + 1

We denote R = rad(ac).
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3.1 Case: ε ≥ 1

Using the result of the theorem above, we have ∀ε ≥ 1:

c < R2 ≤ R1+ε < K(ε).R1+ε, K(ε) = e

(
1

ε2

)
, ε ≥ 1 (11)

We verify easily that K(ε) > 1 for ε ≥ 1 and it is a decreasing function from
e the base of the neperian logarithm to 1.

3.2 Case: ε < 1

3.2.1 Case: c ≤ R

In this case, we can write :

c ≤ R < R1+ε < K(ε).R1+ε, K(ε) = e

(
1

ε2

)
, ε < 1 (12)

here also K(ε) > 1 for ε < 1 and the abc conjecture is true.

3.2.2 Case: c > R

In this case, we confirm that :

c < K(ε).R1+ε, K(ε) = e

(
1

ε2

)
, 0 < ε < 1 (13)

If not, then ∃ε0 ∈]0, 1[, so that the triplets (a, c) checking c > R and:

c ≥ R1+ε0 .K(ε0) (14)

are in finite number. We have:

c ≥ R1+ε0 .K(ε0) =⇒ R1−ε0 .c ≥ R1−ε0 .R1+ε0 .K(ε0) =⇒
R1−ε0 .c ≥ R2.K(ε0) > c.K(ε0) =⇒ R1−ε0 > K(ε0) (15)

As c > R, we obtain:

c1−ε0 > R1−ε0 > K(ε0) =⇒

c1−ε0 > K(ε0) =⇒ c > K(ε0)

(
1

1− ε0

)
(16)

We deduce that it exists an infinity of triples (a, 1, c) verifying (14), hence
the contradiction. Then the proof of the abc conjecture in the case c = a + 1
is finished. We obtain that ∀ε > 0, c = a + 1 with a, c relatively coprime,
2 ≤ a < c :

c < K(ε).rad(ac)1+ε with K(ε) = e

(
1

ε2

)
(17)

Q.E.D
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4 Examples

In this section, we are going to verify some cases of one numerical example.
The example is given by:

1 + 5× 127× (2× 3× 7)3 = 196 (18)

a = 5× 127× (2× 3× 7)3 = 47 045 880⇒ µa = 2× 3× 7 = 42 and rad(a) =
2× 3× 5× 7× 127,

b = 1⇒ µb = 1 and rad(b) = 1,

c = 196 = 47 045 880 ⇒ rad(c) = 19. Then rad(abc) = rad(ac) = 2 × 3 × 5 ×
7× 19× 127 = 506 730..

We have c > rad(ac) but rad2(ac) = 506 7302 = 256 775 292 900 > c =
47 045 880.

4.0.1 Case ε = 0.01

c < K(ε).rad(ac)1+ε =⇒ 47 045 880
?
< e10000.506 7301.01. The expression of

K(ε) becomes:

K(ε) = e
1

0.0001 = e10000 = 8, 7477777149120053120152473488653e+4342 (19)

We deduce that c� K(0.01).506 7301.01 and the equation (17) is verified.

4.0.2 Case ε = 0.1

K(0.1) = e
1

0.01 = e100 = 2, 6879363309671754205917012128876e + 43 =⇒ c <
K(0.1)× 506 7301.01. And the equation (17) is verified.

4.0.3 Case ε = 1

K(1) = e =⇒ c = 47 045 880 < e.rad2(ac) = 697 987 143 184, 212. and the
equation (17) is verified.

4.0.4 Case ε = 100

K(100) = e0.0001 =⇒ c = 47 045 880
?
< e0.0001.506 730101 =

1, 5222350248607608781853142687284e+ 576

and the equation (17) is verified.
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5 Conclusion

This is an elementary proof of the abc conjecture in the case c = a + 1. We
can announce the important theorem:

Theorem 2 (David Masser, Joseph Œsterlé & Abdelmajid Ben Hadj Salem;
2019) Let a, c positive integers relatively prime with c = a + 1, a ≥ then for
each ε > 0, there exists K(ε) such that :

c < K(ε).rad(ac)1+ε (20)

where K(ε) is a constant depending of ε equal to e

(
1

ε2

)
.
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Tenenbaum for their comments about errors found in previous manuscripts concerning proofs
proposed of the abc conjecture.

References

1. Waldschmidt M.: On the abc Conjecture and some of its consequences presented at The
6th World Conference on 21st Century Mathematics, Abdus Salam School of Mathe-
matical Sciences (ASSMS), Lahore (Pakistan), March 6-9, 2013. (2013)
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