The Proof of The ABC Conjecture - Part I: The Case $c=a+1$

Abdelmajid Ben Hadj Salem, Dipl.-Eng.

Abstract In this paper, we consider the $a b c$ conjecture in the case $c=a+1$. Firstly, we give the proof of the first conjecture that $c<\operatorname{rad}^{2}(a c)$. It is the key of the proof of the $a b c$ conjecture. Secondly, the proof of the $a b c$ conjecture is given for $\epsilon \geq 1$, then for $\epsilon \in] 0,1[$ for the two cases: $c \leq \operatorname{rad}(a c)$ and $c>\operatorname{rad}(a c)$.
We choose the constant $K(\epsilon)$ as $K(\epsilon)=e^{\left(\frac{1}{\epsilon^{2}}\right)}$. A numerical example is presented.

Keywords Elementary number theory • real functions of one variable.
Mathematics Subject Classification (2010) 11AXX • 26AXX

To the memory of my Father who taught me arithmetic To the memory of my colleague and friend Dr.Eng. Chedly Fezzani (1943-2019) for his important work in the field of Geodesy and the promotion of the geographic sciences in Africa

1 Introduction and notations

Let a a positive integer, $a=\prod_{i} a_{i}^{\alpha_{i}}, a_{i}$ prime integers and $\alpha_{i} \geq 1$ positive integers. We call radical of a the integer $\prod_{i} a_{i}$ noted by $\operatorname{rad}(a)$. Then a is written as :

$$
\begin{equation*}
a=\prod_{i} a_{i}^{\alpha_{i}}=\operatorname{rad}(a) . \prod_{i} a_{i}^{\alpha_{i}-1} \tag{1}
\end{equation*}
$$

[^0]We note:

$$
\begin{equation*}
\mu_{a}=\prod_{i} a_{i}^{\alpha_{i}-1} \Longrightarrow a=\mu_{a} \cdot \operatorname{rad}(a) \tag{2}
\end{equation*}
$$

The $a b c$ conjecture was proposed independently in 1985 by David Masser of the University of Basel and Joseph Esterlé of Pierre et Marie Curie University (Paris 6) (1). It describes the distribution of the prime factors of two integers with those of its sum. The definition of the $a b c$ conjecture is given below:

Conjecture 1 ($\boldsymbol{a b c}$ Conjecture): Let a, b, c positive integers relatively prime with $c=a+b$, then for each $\epsilon>0$, there exists a constant $K(\epsilon)$ such that:

$$
\begin{equation*}
c<K(\epsilon) \cdot \operatorname{rad}(a b c)^{1+\epsilon} \tag{3}
\end{equation*}
$$

$K(\epsilon)$ depending only of ϵ.
We know that numerically, $\frac{\operatorname{Logc}}{\log (\operatorname{rad}(a b c))} \leq 1.629912$ ([1]). A conjecture was proposed that $c<\operatorname{rad}^{2}(a b c)$ (2]). Here we will give the proof of it in the case $c=a+1$.

Conjecture 2 Let a, b, c positive integers relatively prime with $c=a+b$, then:

$$
\begin{equation*}
c<\operatorname{rad}^{2}(a b c) \Longrightarrow \frac{\log c}{\log (\operatorname{rad}(a b c))}<2 \tag{4}
\end{equation*}
$$

This result, I think is the key to obtain a proof of the veracity of the $a b c$ conjecture.

2 A Proof of the conjecture (2), Case : $c=a+1$

Let a, c positive integers, relatively prime, with $c=a+1$. If $c<\operatorname{rad}(a c)$ then we obtain:

$$
\begin{equation*}
c<\operatorname{rad}(a c)<\operatorname{rad}^{2}(a c) \tag{5}
\end{equation*}
$$

and the condition (4) is verified.
If $c=\operatorname{rad}(a c)$, then a, c are not relatively coprime.
In the following, we suppose that $c>\operatorname{rad}^{2}(a c) \Longrightarrow \mu_{a} \cdot \operatorname{rad}(a)+1>\operatorname{rad}^{2}(a) \cdot \operatorname{rad}^{2}(c) \Longrightarrow$ $1>\operatorname{rad}(a) \cdot\left(\operatorname{rad}(a) \operatorname{rad}^{2}(c)-\mu_{a}\right)$, we obtain :

- if $\left(\operatorname{rad}(a) \operatorname{rad}^{2}(c)-\mu_{a}\right)>0$, as $\operatorname{rad}(a) \geq 2 \Longrightarrow 1<\operatorname{rad}(a) .\left(\operatorname{rad}(a) \operatorname{rad}^{2}(c)-\right.$ μ_{a}), then the contradiction, hence $c<\operatorname{rad}^{2}(a c)$.
- if $\operatorname{rad}(a) \operatorname{rad}^{2}(c)-\mu_{a}=0 \Longrightarrow$ that a, c are not coprime, then the contradiction, hence $c<\operatorname{rad}^{2}(a c)$.
- if $\operatorname{rad}(a) \operatorname{rad}^{2}(c)-\mu_{a}<0 \Longrightarrow \mu_{a}>\operatorname{rad}(a) \operatorname{rad}^{2}(c)$. From $c=a+1$, we obtain $\operatorname{rad}(a)=\frac{c-1}{\mu_{a}}$. As it is supposed $c>\operatorname{rad}^{2}(a) \operatorname{rad}^{2}(c) \Longrightarrow c>$ $\frac{(c-1)^{2}}{\mu_{a}^{2}} \cdot r a d^{2}(c)$. We obtain that c verifies the inequality:

$$
\begin{equation*}
c^{2}-c\left(2+\left(\frac{\mu_{a}}{\operatorname{rad}(c)}\right)^{2}\right)+1<0 \tag{6}
\end{equation*}
$$

Then, we consider the equation :

$$
\begin{equation*}
P(X)=X^{2}-X\left(2+\left(\frac{\mu_{a}}{\operatorname{rad}(c)}\right)^{2}\right)+1=0 \tag{7}
\end{equation*}
$$

We verify that the discriminant of $P(X)$ is >0. The roots $X_{1}<X_{2}$ of $P(X)$ are given by:

$$
\begin{align*}
& X_{1}=\frac{1}{2}\left[2+\left(\frac{\mu_{a}}{\operatorname{rad}(c)}\right)^{2}-\sqrt{4\left(\frac{\mu_{a}}{\operatorname{rad}(c)}\right)^{2}+\left(\frac{\mu_{a}}{\operatorname{rad}(c)}\right)^{4}}\right]>0 \\
& X_{2}=\frac{1}{2}\left[2+\left(\frac{\mu_{a}}{\operatorname{rad}(c)}\right)^{2}+\sqrt{4\left(\frac{\mu_{a}}{\operatorname{rad}(c)}\right)^{2}+\left(\frac{\mu_{a}}{\operatorname{rad}(c)}\right)^{4}}\right]>0 \tag{8}
\end{align*}
$$

c verifies $\sqrt{6} \Longrightarrow c \in] X_{1}, X_{2}$, we obtain:

$$
\begin{equation*}
\mu_{a}\left(1-\sqrt{1+4 \frac{r a d^{2}(c)}{\mu_{a}^{2}}}\right)<2 \operatorname{rad}(a) \operatorname{rad}^{2}(c)<\mu_{a}\left(1+\sqrt{1+4 \frac{r a d^{2}(c)}{\mu_{a}^{2}}}\right) \tag{9}
\end{equation*}
$$

From the right member of the above inequality, we have :

$$
\begin{equation*}
\mu_{a}>2 \frac{\operatorname{rad}(a) \operatorname{rad}^{2}(c)}{1+\sqrt{1+4 \frac{\operatorname{rad}^{2}(c)}{\mu_{a}^{2}}}}=t \quad \text { with } \quad t<\operatorname{rad}(a) \operatorname{rad}^{2}(c) \tag{10}
\end{equation*}
$$

Then the contradiction with $\mu_{a}>\operatorname{rad}(a) \operatorname{rad}^{2}(c)$. We deduce that the condition $c>\operatorname{rad}^{2}(a) \operatorname{rad}^{2}(c)$ is false and $c<\operatorname{rad}^{2}(a) \operatorname{rad}^{2}(c)$.

We announce the theorem:
Theorem 1 (Abdelmajid Ben Hadj Salem, 2019) Let a, c positive integers relatively prime with $c=a+1, a \geq 2$, then $c<\operatorname{rad}^{2}(a b c)$.

3 The Proof of The $A B C$ Conjecture (1) Case: $c=a+1$

We denote $R=\operatorname{rad}(a c)$.

3.1 Case: $\epsilon \geq 1$

Using the result of the theorem above, we have $\forall \epsilon \geq 1$:

$$
\begin{equation*}
c<R^{2} \leq R^{1+\epsilon}<K(\epsilon) \cdot R^{1+\epsilon}, \quad K(\epsilon)=e^{\left(\frac{1}{\epsilon^{2}}\right)}, \epsilon \geq 1 \tag{11}
\end{equation*}
$$

We verify easily that $K(\epsilon)>1$ for $\epsilon \geq 1$ and it is a decreasing function from e the base of the neperian logarithm to 1 .
3.2 Case: $\epsilon<1$

3.2.1 Case: $c \leq R$

In this case, we can write :

$$
\begin{equation*}
c \leq R<R^{1+\epsilon}<K(\epsilon) \cdot R^{1+\epsilon}, \quad K(\epsilon)=e^{\left(\frac{1}{\epsilon^{2}}\right)}, \epsilon<1 \tag{12}
\end{equation*}
$$

here also $K(\epsilon)>1$ for $\epsilon<1$ and the $a b c$ conjecture is true.

3.2.2 Case: $c>R$

In this case, we confirm that :

$$
\begin{equation*}
c<K(\epsilon) \cdot R^{1+\epsilon}, \quad K(\epsilon)=e^{\left(\frac{1}{\epsilon^{2}}\right)}, 0<\epsilon<1 \tag{13}
\end{equation*}
$$

If not, then $\left.\exists \epsilon_{0} \in\right] 0,1[$, so that the triplets (a, c) checking $c>R$ and:

$$
\begin{equation*}
c \geq R^{1+\epsilon_{0}} . K\left(\epsilon_{0}\right) \tag{14}
\end{equation*}
$$

are in finite number. We have:

$$
\begin{array}{r}
c \geq R^{1+\epsilon_{0}} . K\left(\epsilon_{0}\right) \Longrightarrow R^{1-\epsilon_{0}} . c \geq R^{1-\epsilon_{0}} \cdot R^{1+\epsilon_{0}} . K\left(\epsilon_{0}\right) \Longrightarrow \\
\quad R^{1-\epsilon_{0}} . c \geq R^{2} . K\left(\epsilon_{0}\right)>c \cdot K\left(\epsilon_{0}\right) \Longrightarrow R^{1-\epsilon_{0}}>K\left(\epsilon_{0}\right) \tag{15}
\end{array}
$$

As $c>R$, we obtain:

$$
\begin{array}{r}
c^{1-\epsilon_{0}}>R^{1-\epsilon_{0}}>K\left(\epsilon_{0}\right) \Longrightarrow \\
c^{1-\epsilon_{0}}>K\left(\epsilon_{0}\right) \Longrightarrow c>K\left(\epsilon_{0}\right)\left(\frac{1}{1-\epsilon_{0}}\right) \tag{16}
\end{array}
$$

We deduce that it exists an infinity of triples $(a, 1, c)$ verifying (14), hence the contradiction. Then the proof of the $a b c$ conjecture in the case $c=a+1$ is finished. We obtain that $\forall \epsilon>0, c=a+1$ with a, c relatively coprime, $2 \leq a<c$:

$$
\begin{equation*}
c<K(\epsilon) \cdot \operatorname{rad}(a c)^{1+\epsilon} \quad \text { with } \quad K(\epsilon)=e^{\left(\frac{1}{\epsilon^{2}}\right)} \tag{17}
\end{equation*}
$$

4 Examples

In this section, we are going to verify some cases of one numerical example. The example is given by:

$$
\begin{equation*}
1+5 \times 127 \times(2 \times 3 \times 7)^{3}=19^{6} \tag{18}
\end{equation*}
$$

$a=5 \times 127 \times(2 \times 3 \times 7)^{3}=47045880 \Rightarrow \mu_{a}=2 \times 3 \times 7=42$ and $\operatorname{rad}(a)=$ $2 \times 3 \times 5 \times 7 \times 127$,
$b=1 \Rightarrow \mu_{b}=1$ and $\operatorname{rad}(b)=1$,
$c=19^{6}=47045880 \Rightarrow \operatorname{rad}(c)=19$. Then $\operatorname{rad}(a b c)=\operatorname{rad}(a c)=2 \times 3 \times 5 \times$ $7 \times 19 \times 127=506730$.

We have $c>\operatorname{rad}(a c)$ but $\operatorname{rad}^{2}(a c)=506730^{2}=256775292900>c=$ 47045880 .
4.0.1 Case $\epsilon=0.01$
$c<K(\epsilon) \cdot \operatorname{rad}(a c)^{1+\epsilon} \Longrightarrow 47045880 \stackrel{?}{<} e^{10000} .506730^{1.01}$. The expression of $K(\epsilon)$ becomes:

$$
K(\epsilon)=e^{\frac{1}{0.0001}}=e^{10000}=8,7477777149120053120152473488653 e+4342
$$

We deduce that $c \ll K(0.01) .506730^{1.01}$ and the equation 17 is verified.
4.0.2 Case $\epsilon=0.1$
$K(0.1)=e^{\frac{1}{0.01}}=e^{100}=2,6879363309671754205917012128876 e+43 \Longrightarrow c<$ $K(0.1) \times 506730^{1.01}$. And the equation 17 is verified.
4.0.3 Case $\epsilon=1$
$K(1)=e \Longrightarrow c=47045880<e \cdot r^{2} d^{2}(a c)=697987143184,212$. and the equation (17) is verified.
4.0.4 Case $\epsilon=100$

$$
\begin{array}{r}
K(100)=e^{0.0001} \Longrightarrow c=47045880 \stackrel{?}{<} e^{0.0001} .506730^{101}= \\
1,5222350248607608781853142687284 e+576
\end{array}
$$

and the equation 17 is verified.

5 Conclusion

This is an elementary proof of the $a b c$ conjecture in the case $c=a+1$. We can announce the important theorem:

Theorem 2 (David Masser, Joseph Esterlé \& Abdelmajid Ben Hadj Salem; 2019) Let a, c positive integers relatively prime with $c=a+1, a \geq$ then for each $\epsilon>0$, there exists $K(\epsilon)$ such that:

$$
\begin{equation*}
c<K(\epsilon) \cdot \operatorname{rad}(a c)^{1+\epsilon} \tag{20}
\end{equation*}
$$

where $K(\epsilon)$ is a constant depending of ϵ equal to $e^{\left(\frac{1}{\epsilon^{2}}\right) \text {. }}$

Acknowledgements The author is very grateful to Professors Mihăilescu Preda and Gérald Tenenbaum for their comments about errors found in previous manuscripts concerning proofs proposed of the $a b c$ conjecture.

References

1. Waldschmidt M.: On the abc Conjecture and some of its consequences presented at The 6th World Conference on 21st Century Mathematics, Abdus Salam School of Mathematical Sciences (ASSMS), Lahore (Pakistan), March 6-9, 2013. (2013)
2. Mihăilescu P.: Around ABC. European Mathematical Society Newsletter $\mathbf{N}^{\circ} \mathbf{9 3}$, September 2014. 29-34, (2014)

[^0]: Abdelmajid Ben Hadj Salem
 6, Rue du Nil, Cité Soliman Er-Riadh
 8020 Soliman
 Tunisia
 E-mail: abenhadjsalem@gmail.com

