# A Note About the ABC Conjecture - A Proof of The Conjecture: $C<\operatorname{rad}^{2}(A B C)$ 

## Abdelmajid Ben Hadj Salem

6, Rue du Nil, Cité Soliman Er-Riadh, 8020 Soliman,
Tunisia
E-mail: abenhadjsalema@gmail.com

Abstract: In this paper, we consider the $A B C$ conjecture, then we give a proof of the conjecture $C<\operatorname{rad}^{2}(A B C)$ that it will be the key of the proof of the $A B C$ conjecture.

# A Note About the $A B C$ Conjecture - A Proof of The <br> Conjecture: $C<\operatorname{rad}^{2}(A B C)$ 

To the memory of my Father who taught me arithmetic To the memory of Jean Bourgain (1954-2018) for his mathematical work notably in the field of Number Theory

## 1. Introduction and notations

Let $a$ a positive integer, $a=\prod_{i} a_{i}^{\alpha_{i}}, a_{i}$ prime integers and $\alpha_{i} \geq 1$ positive integers. We call radical of $a$ the integer $\prod_{i} a_{i}$ noted by $\operatorname{rad}(a)$. Then $a$ is written as:

$$
\begin{equation*}
a=\prod_{i} a_{i}^{\alpha_{i}}=\operatorname{rad}(a) \cdot \prod_{i} a_{i}^{\alpha_{i}-1} \tag{1.1}
\end{equation*}
$$

We note:

$$
\begin{equation*}
\mu_{a}=\prod_{i} a_{i}^{\alpha_{i}-1} \Longrightarrow a=\mu_{a} \cdot \operatorname{rad}(a) \tag{1.2}
\end{equation*}
$$

The ABC conjecture was proposed independently in 1985 by David Masser of the University of Basel and Joseph EEsterlé of Pierre et Marie Curie University (Paris 6) ([1]). It describes the distribution of the prime factors of two integers with those of its sum. The definition of the ABC conjecture is given below:

Conjecture 1.3. ( $\boldsymbol{A B C}$ Conjecture): Let $a, b, c$ positive integers relatively prime with $c=a+b$, then for each $\varepsilon>0$, there exists $K(\varepsilon)$ such that :

$$
\begin{equation*}
c<K(\varepsilon) \cdot \operatorname{rad}(a b c)^{1+\varepsilon} \tag{1.4}
\end{equation*}
$$

We know that numerically, $\frac{\log c}{\log (\operatorname{rad}(a b c))} \leq 1.616751$ ([2]). A conjecture was proposed that $c<\operatorname{rad}^{2}(a b c)$ ([3]). Here we will give a proof of it.

Conjecture 1.5. Let $a, b, c$ positive integers relatively prime with $c=a+b$, then:

$$
\begin{equation*}
c<\operatorname{rad}^{2}(a b c) \Longrightarrow \frac{\log c}{\log (\operatorname{rad}(a b c))}<2 \tag{1.6}
\end{equation*}
$$

This result, I think is the key to obtain a proof of the veracity of the $A B C$ conjecture.

## 2. A Proof of the conjecture (1.5)

Let $a, b, c$ positive integers, relatively prime, with $c=a+b$. We suppose that $b<a$. If $c<\operatorname{rad}(a b)$ then we obtain:

$$
\begin{equation*}
c<\operatorname{rad}(a b)<\operatorname{rad}^{2}(a b c) \tag{2.1}
\end{equation*}
$$

and the condition (1.6) is verified.

In the following, we suppose that $c \geq \operatorname{rad}(a b)$.

### 2.1 Case $c=a+1$

$$
\begin{equation*}
c=a+1=\mu_{a} r a d(a)+1 \stackrel{?}{<} \operatorname{rad}^{2}(a c) \tag{2.2}
\end{equation*}
$$

### 2.1.1 $\mu_{a}=1$

In this case, $a=\operatorname{rad}(a)$, it is immediately truth that :

$$
\begin{equation*}
c=a+1<2 a<\operatorname{rad}(a) \operatorname{rad}(c)<\operatorname{rad}^{2}(a c) \tag{2.3}
\end{equation*}
$$

Then (2.2) is verified.
2.1.2 $\mu_{a} \neq 1, \mu_{a}<\operatorname{rad}(a)$
we obtain :

$$
\begin{equation*}
c=a+1<2 \mu_{a} \cdot \operatorname{rad}(a) \Rightarrow c<2 \operatorname{rad}^{2}(a) \Rightarrow c<\operatorname{rad}^{2}(a c) \tag{2.4}
\end{equation*}
$$

Then (2.2) is verified.

### 2.1.3 $\mu_{a} \geq \operatorname{rad}(a)$

We have $c=a+1=\mu_{a} \cdot \operatorname{rad}(a)+1 \leq \mu_{a}^{2}+1 \stackrel{?}{<} \operatorname{rad}^{2}(a c)$. We suppose that $\mu_{a}^{2}+1 \geq \operatorname{rad}^{2}(a c) \Longrightarrow$ $\mu_{a}^{2}>\operatorname{rad}^{2}(a) \cdot \operatorname{rad}(c)>\operatorname{rad}^{2}(a)$ as $\operatorname{rad}(c)>1$, then $\mu_{a}>\operatorname{rad}(a)$, that is the contradiction with $\mu_{a} \geq \operatorname{rad}(a)$. We deduce that $c<\mu_{a}^{2}+1<\operatorname{rad}^{2}(a c)$ and the condition (2.2) is verified.
$2.2 c=a+b$
We can write that $c$ verifies:

$$
\begin{align*}
c= & a+b=\operatorname{rad}(a) \cdot \mu_{a}+\operatorname{rad}(b) \cdot \mu_{b}=\operatorname{rad}(a) \cdot \operatorname{rad}(b)\left(\frac{\mu_{a}}{\operatorname{rad}(b)}+\frac{\mu_{b}}{\operatorname{rad}(a)}\right) \\
& \Longrightarrow c=\operatorname{rad}(a) \cdot \operatorname{rad}(b) \cdot \operatorname{rad}(c)\left(\frac{\mu_{a}}{\operatorname{rad}(b) \cdot \operatorname{rad}(c)}+\frac{\mu_{b}}{\operatorname{rad}(a) \cdot \operatorname{rad}(c)}\right) \tag{2.5}
\end{align*}
$$

We can write also:

$$
\begin{equation*}
c=\operatorname{rad}(a b c)\left(\frac{\mu_{a}}{\operatorname{rad}(b) \cdot \operatorname{rad}(c)}+\frac{\mu_{b}}{\operatorname{rad}(a) \cdot \operatorname{rad}(c)}\right) \tag{2.6}
\end{equation*}
$$

To obtain a proof of (1.6), one method is to prove that:

$$
\begin{equation*}
\frac{\mu_{a}}{\operatorname{rad}(b) \cdot \operatorname{rad}(c)}+\frac{\mu_{b}}{\operatorname{rad}(a) \cdot \operatorname{rad}(c)}<\operatorname{rad}(a b c) \tag{2.7}
\end{equation*}
$$

2.2.1 $\mu_{a}=\mu_{b}=1$

In this case, it is immediately truth that :

$$
\begin{equation*}
\frac{1}{\operatorname{rad}(a)}+\frac{1}{\operatorname{rad}(b)} \leq \frac{5}{6}<\operatorname{rad}(c) \cdot \operatorname{rad}(a b c) \tag{2.8}
\end{equation*}
$$

Then (1.6) is verified.
2.2.2 $\mu_{a}=1$ and $\mu_{b}>1$

As $b<a \Longrightarrow \mu_{b} \operatorname{rad}(b)<\operatorname{rad}(a) \Longrightarrow \frac{\mu_{b}}{\operatorname{rad}(a)}<\frac{1}{\operatorname{rad}(b)}$, then we deduce that:

$$
\begin{equation*}
\frac{1}{\operatorname{rad}(b)}+\frac{\mu_{b}}{\operatorname{rad}(a)}<\frac{2}{\operatorname{rad}(b)}<\operatorname{rad}(c) \cdot \operatorname{rad}(a b c) \tag{2.9}
\end{equation*}
$$

Then (1.6) is verified.

### 2.2.3 $\mu_{b}=1$ and $\mu_{a} \leq(b=\operatorname{rad}(b))$

In this case we obtain:

$$
\begin{equation*}
\frac{1}{\operatorname{rad}(a)}+\frac{\mu_{a}}{\operatorname{rad}(b)} \leq \frac{1}{\operatorname{rad}(a)}+1<\operatorname{rad}(c) \cdot \operatorname{rad}(a b c) \tag{2.10}
\end{equation*}
$$

Then (1.6) is verified.

### 2.2.4 $\mu_{b}=1$ and $\mu_{a}>(b=\operatorname{rad}(b))$

As $\mu_{a}>\operatorname{rad}(b)$, we can write $\mu_{a}=\operatorname{rad}(b)+n$ where $n \geq 1$. We obtain:

$$
\begin{equation*}
c=\mu_{a} \operatorname{rad}(a)+\operatorname{rad}(b)=(\operatorname{rad}(b)+n) \operatorname{rad}(a)+\operatorname{rad}(b)=\operatorname{rad}(a b)+\operatorname{nrad}(a)+\operatorname{rad}(b) \tag{2.11}
\end{equation*}
$$

We have $n<b$, if not $n \geq b \Longrightarrow \mu_{a} \geq 2 b \Longrightarrow a \geq 2 b r a d(a) \Longrightarrow a \geq 3 b \Longrightarrow c>3 b$, then the contradiction with $c>2 b$. We can write:

$$
\begin{equation*}
c<2 \operatorname{rad}(a b)+\operatorname{rad}(b) \Longrightarrow c<\operatorname{rad}(a b c)+\operatorname{rad}(a b c)<\operatorname{rad}^{2}(a b c) \Longrightarrow c<\operatorname{rad}^{2}(a b c) \tag{2.12}
\end{equation*}
$$

2.2.5 $\mu_{a} \cdot \mu_{b} \neq 1, \mu_{a}<\operatorname{rad}(a)$ and $\mu_{b}<\operatorname{rad}(b)$
we obtain :

$$
\begin{equation*}
c=\mu_{c} \operatorname{rad}(c)=\mu_{a} \cdot \operatorname{rad}(a)+\mu_{b} \cdot \operatorname{rad}(b)<\operatorname{rad}^{2}(a)+\operatorname{rad}^{2}(b)<\operatorname{rad}^{2}(a b c) \tag{2.13}
\end{equation*}
$$

2.2.6 $\mu_{a} \cdot \mu_{b} \neq 1, \mu_{a} \leq \operatorname{rad}(a)$ and $\mu_{b} \geq \operatorname{rad}(b)$

We have:

$$
\begin{equation*}
c=\mu_{a} \cdot \operatorname{rad}(a)+\mu_{b} \cdot \operatorname{rad}(b)<\mu_{a} \mu_{b} \operatorname{rad}(a) \operatorname{rad}(b) \leq \mu_{b} r a d^{2}(a) \operatorname{rad}(b) \tag{2.14}
\end{equation*}
$$

Then if we give a proof that $\mu_{b}<\operatorname{rad}(b) \operatorname{rad}^{2}(c)$, we obtain $c<\operatorname{rad}^{2}(a b c)$. As $\mu_{b} \geq \operatorname{rad}(b) \Longrightarrow$ $\mu_{b}=\operatorname{rad}(b)+\alpha$ with $\alpha$ a positive integer $\geq 0$. Supposing that $\mu_{b} \geq \operatorname{rad}(b) \operatorname{rad}^{2}(c) \Longrightarrow \mu_{b}=$ $\operatorname{rad}(b) \operatorname{rad}^{2}(c)+\beta$ with $\beta \geq 0$ a positive integer. We can write:

$$
\begin{array}{r}
\operatorname{rad}(b) \operatorname{rad}^{2}(c)+\beta=\operatorname{rad}(b)+\alpha \Longrightarrow \beta<\alpha \\
\alpha-\beta=\operatorname{rad}(b)\left(\operatorname{rad}^{2}(c)-1\right)>3 \operatorname{rad}(b) \Longrightarrow \mu_{b}=\operatorname{rad}(b)+\alpha>4 \operatorname{rad}(b) \tag{2.15}
\end{array}
$$

Finally, we obtain:

$$
\left\{\begin{array}{l}
\mu_{b} \geq \operatorname{rad}(b)  \tag{2.16}\\
\mu_{b}>4 \operatorname{rad}(b)
\end{array}\right.
$$

Then the contradiction and the hypothesis $\mu_{b} \geq \operatorname{rad}(b) \operatorname{rad}^{2}(c)$ is false. Hence:

$$
\begin{equation*}
\mu_{b}<\operatorname{rad}(b) \operatorname{rad}^{2}(c) \Longrightarrow c<\operatorname{rad}^{2}(a b c) \tag{2.17}
\end{equation*}
$$

### 2.2.7 $\mu_{a} . \mu_{b} \neq 1, \mu_{a} \geq \operatorname{rad}(a)$ and $\mu_{b} \leq \operatorname{rad}(b)$

The proof is identical to the case above.
2.2.8 $\mu_{a} . \mu_{b} \neq 1, \mu_{a} \geq \operatorname{rad}(a)$ and $\mu_{b} \geq \operatorname{rad}(b)$

We write:

$$
\begin{equation*}
c=\mu_{a} r a d(a)+\mu_{b} r a d(b) \leq \mu_{a}^{2}+\mu_{b}^{2}<\mu_{a}^{2} \cdot \mu_{b}^{2} \stackrel{?}{<} \operatorname{rad}^{2}(a) \cdot \operatorname{rad}^{2}(b) \cdot \operatorname{rad}^{2}(c)=\operatorname{rad}^{2}(a b c) \tag{2.18}
\end{equation*}
$$

Supposing that $\mu_{a} \cdot \mu_{b} \geq \operatorname{rad}(a b c)$, we obtain:

$$
\begin{gather*}
\mu_{a} \cdot \mu_{b} \geq \operatorname{rad}(a b c) \Rightarrow \operatorname{rad}(a) \cdot \operatorname{rad}(b) \cdot \mu_{a} \cdot \mu_{b} \geq \operatorname{rad}^{2}(a b) \operatorname{rad}(c) \Longrightarrow \\
a b \geq \operatorname{rad}^{2}(a b) \cdot \operatorname{rad}(c) \Rightarrow a^{2}>a b \geq \operatorname{rad}^{2}(a b) \cdot \operatorname{rad}(c) \\
\Rightarrow a>\operatorname{rad}(a b) \sqrt{\operatorname{rad}(c)} \geq \operatorname{rad}(a b) \sqrt{7} \Rightarrow \\
\left\{\begin{array}{l}
c>\sqrt{7} \operatorname{rad}(a b) \geq 3 \operatorname{rad}(a b) \\
c \geq \operatorname{rad}(a b)
\end{array}\right. \tag{2.19}
\end{gather*}
$$

The inequality $c \geq 3 \operatorname{rad}(a b)$ gives the contradiction with the condition $c \geq \operatorname{rad}(a b)$ supposed at the beginning of this section. Then we obtain $\mu_{a} \cdot \mu_{b}-\operatorname{rad}(a b c)<0 \Longrightarrow c<\operatorname{rad}^{2}(a b c)$.

We announce the theorem:
Theorem 1. (Abdelmajid Ben Hadj Salem, 2019) Let a, b, c positive integers relatively prime with $c=a+b$ and $1 \leq b<a$, then $c<\operatorname{rad}^{2}(a b c)$.

## 3. About The Proof of The $A B C$ Conjecture

### 3.1 Case: $\varepsilon \geq 1$

Using the result of the theorem above, we have $\forall \varepsilon \geq 1$ :

$$
\begin{equation*}
c<\operatorname{rad}^{2}(a b c) \leq \operatorname{rad}(a b c)^{1+\varepsilon}=K(\varepsilon) \cdot \operatorname{rad}(a b c)^{1+\varepsilon}, \quad K(\varepsilon)=1, \varepsilon \geq 1 \tag{3.1}
\end{equation*}
$$

It still open the case $\varepsilon<1$.

## References

[1] Waldschmidt M.: On the abc Conjecture and some of its consequences presented at The 6th World Conference on 21st Century Mathematics, Abdus Salam School of Mathematical Sciences (ASSMS), Lahore (Pakistan), March 6-9, 2013. (2013)
[2] Robert O., Stewart C.L. and Tenenbaum G.: A refinement of the abc conjecture. Bull. London Math. Soc. 46,6, 1156-1166 (2014).
[3] Mihăilescu P.: Around ABC. European Mathematical Society Newsletter $\mathbf{N}^{\circ}$ 93, September 2014. 29-34, (2014)

