The $A B C$ Conjecture: A Proof of $C<\operatorname{rad}^{2}(A B C)$

Abdelmajid Ben Hadj Salem

Received: date / Accepted: date

Abstract In this paper, we consider the $A B C$ conjecture then we give a proof that $C<\operatorname{rad}^{2}(A B C)$ that it will be the key of the proof of the $A B C$ conjecture.

Keywords Elementary number theory • real functions of one variable.
Mathematics Subject Classification (2010) 11AXX • 26AXX

To the memory of my Father who taught me arithmetic
To the memory of Jean Bourgain (1954-2018) for his mathematical work notably in the field of Number Theory

1 Introduction and notations

Let a a positive integer, $a=\prod_{i} a_{i}^{\alpha_{i}}, a_{i}$ prime integers and $\alpha_{i} \geq 1$ positive integers. We call radical of a the integer $\prod_{i} a_{i}$ noted by $\operatorname{rad}(a)$. Then a is written as:

$$
\begin{equation*}
a=\prod_{i} a_{i}^{\alpha_{i}}=\operatorname{rad}(a) \cdot \prod_{i} a_{i}^{\alpha_{i}-1} \tag{1}
\end{equation*}
$$

We note:

$$
\begin{equation*}
\mu_{a}=\prod_{i} a_{i}^{\alpha_{i}-1} \Longrightarrow a=\mu_{a} \cdot \operatorname{rad}(a) \tag{2}
\end{equation*}
$$

The ABC conjecture was proposed independently in 1985 by David Masser of the University of Basel and Joseph Esterlé of Pierre et Marie Curie University (Paris 6) ([1). It describes the distribution of the prime factors of two integers with those of its sum. The definition of the ABC conjecture is given below:

[^0]Conjecture 1 ($\boldsymbol{A B C}$ Conjecture): Let a, b, c positive integers relatively prime with $c=a+b$, then for each $\epsilon>0$, there exists $K(\epsilon)$ such that:

$$
\begin{equation*}
c<K(\epsilon) \cdot \operatorname{rad}(a b c)^{1+\epsilon} \tag{3}
\end{equation*}
$$

We know that numerically, $\frac{\log c}{\log (\operatorname{rad}(a b c))} \leq 1.616751([2])$. Here we will give a proof that:

$$
\begin{equation*}
c<\operatorname{rad}^{2}(a b c) \Longrightarrow \frac{\log c}{\log (\operatorname{rad}(a b c))}<2 \tag{4}
\end{equation*}
$$

This result, I think is the key to obtain a proof of the veracity of the $A B C$ conjecture.

2 A Proof of the condition (4)

Let a, b, c positive integers, relatively prime, with $c=a+b$. We suppose that $b<a$.

If $c \leq \operatorname{rad}(a b)$ then we obtain:

$$
\begin{equation*}
c \leq \operatorname{rad}(a b)<r a d^{2}(a b c) \tag{5}
\end{equation*}
$$

and the condition (4) is verified.
In the following, we suppose that $c>\operatorname{rad}(a b)$.
2.1 Case $c=a+1$

$$
\begin{equation*}
c=a+1=\mu_{a} r a d(a)+1 \stackrel{?}{<} r a d^{2}(a c) \tag{6}
\end{equation*}
$$

2.1.1 $\mu_{a}=1$

In this case, $a=\operatorname{rad}(a)$, it is immediately truth that :

$$
\begin{equation*}
c=a+1<2 a<\operatorname{rad}(a) \operatorname{rad}(c)<\operatorname{rad}^{2}(a c) \tag{7}
\end{equation*}
$$

Then (6) is verified.
2.1.2 $\mu_{a} \neq 1, \mu_{a}<\operatorname{rad}(a)$
we obtain :

$$
\begin{equation*}
c=a+1<2 \mu_{a} \cdot \operatorname{rad}(a) \Rightarrow c<2 \operatorname{rad}^{2}(a) \Rightarrow c<\operatorname{rad}^{2}(a c) \tag{8}
\end{equation*}
$$

Then (6) is verified.

2.1.3 $\mu_{a} \geq \operatorname{rad}(a)$

We have $c=a+1=\mu_{a} \cdot \operatorname{rad}(a)+1 \leq \mu_{a}^{2}+1 \stackrel{?}{<} \operatorname{rad}^{2}(a c)$. We suppose that $\mu_{a}^{2}+1 \geq \operatorname{rad}^{2}(a c) \Longrightarrow \mu_{a}^{2}>\operatorname{rad}^{2}(a) \cdot \operatorname{rad}(c)>\operatorname{rad}^{2}(a)$ as $\operatorname{rad}(c)>1$, then $\mu_{a}>\operatorname{rad}(a)$, that is the contradiction with $\mu_{a} \geq \operatorname{rad}(a)$. We deduce that $c<\mu_{a}^{2}+1<\operatorname{rad}^{2}(a c)$ and the condition (6) is verified.
$2.2 c=a+b$

We can write that c verifies:

$$
\begin{align*}
c= & a+b=\operatorname{rad}(a) \cdot \mu_{a}+\operatorname{rad}(b) \cdot \mu_{b}=\operatorname{rad}(a) \cdot \operatorname{rad}(b)\left(\frac{\mu_{a}}{\operatorname{rad}(b)}+\frac{\mu_{b}}{\operatorname{rad}(a)}\right) \\
& \Longrightarrow c=\operatorname{rad}(a) \cdot \operatorname{rad}(b) \cdot \operatorname{rad}(c)\left(\frac{\mu_{a}}{\operatorname{rad}(b) \cdot \operatorname{rad}(c)}+\frac{\mu_{b}}{\operatorname{rad}(a) \cdot \operatorname{rad}(c)}\right) \tag{9}
\end{align*}
$$

We can write also:

$$
\begin{equation*}
c=\operatorname{rad}(a b c)\left(\frac{\mu_{a}}{\operatorname{rad}(b) \cdot \operatorname{rad}(c)}+\frac{\mu_{b}}{\operatorname{rad}(a) \cdot \operatorname{rad}(c)}\right) \tag{10}
\end{equation*}
$$

To obtain a proof of (4), one method is to prove that:

$$
\begin{equation*}
\frac{\mu_{a}}{\operatorname{rad}(b) \cdot \operatorname{rad}(c)}+\frac{\mu_{b}}{\operatorname{rad}(a) \cdot \operatorname{rad}(c)}<\operatorname{rad}(a b c) \tag{11}
\end{equation*}
$$

2.2.1 $\mu_{a}=\mu_{b}=1$

In this case, it is immediately truth that :

$$
\begin{equation*}
\frac{1}{\operatorname{rad}\left(a_{i}\right.}+\frac{1}{\operatorname{rad}\left(b_{j}\right.} \leq \frac{5}{6}<\operatorname{rad}(c) \cdot \operatorname{rad}(a b c) \tag{12}
\end{equation*}
$$

Then (4) is verified.
2.2.2 $\mu_{a}=1$ and $\mu_{b}>1$

As $b<a \Longrightarrow \mu_{b} \operatorname{rad}(b)<\operatorname{rad}(a) \Longrightarrow \frac{\mu_{b}}{\operatorname{rad}(a)}<\frac{1}{\operatorname{rad}(b)}$, then we deduce that:

$$
\begin{equation*}
\frac{1}{\operatorname{rad}(b)}+\frac{\mu_{b}}{\operatorname{rad}(a)}<\frac{2}{\operatorname{rad}(b)}<\operatorname{rad}(c) \cdot \operatorname{rad}(a b c) \tag{13}
\end{equation*}
$$

Then (4) is verified.
2.2.3 $\mu_{b}=1$ and $\mu_{a} \leq(b=\operatorname{rad}(b))$

In this case we obtain:

$$
\begin{equation*}
\frac{1}{\operatorname{rad}(a)}+\frac{\mu_{a}}{\operatorname{rad}(b)} \leq \frac{1}{\operatorname{rad}(a)}+1<\operatorname{rad}(c) \cdot \operatorname{rad}(a b c) \tag{14}
\end{equation*}
$$

Then (4) is verified.
2.2.4 $\mu_{b}=1$ and $\mu_{a}>(b=\operatorname{rad}(b))$

As $\mu_{a}>\operatorname{rad}(b)$, we can write $\mu_{a}=\operatorname{rad}(b)+n$ where $n \geq 1$. We obtain:
$c=\mu_{a} \operatorname{rad}(a)+\operatorname{rad}(b)=(\operatorname{rad}(b)+n) \operatorname{rad}(a)+\operatorname{rad}(b)=\operatorname{rad}(a b)+n \operatorname{rad}(a)+\operatorname{rad}(b)$
We verify that $n<b$, then:
$c<2 \operatorname{rad}(a b)+\operatorname{rad}(b) \Longrightarrow c<\operatorname{rad}(a b c)+\operatorname{rad}(a b c)<\operatorname{rad}^{2}(a b c) \Longrightarrow c<\operatorname{rad}^{2}(a b c)$
2.2.5 $\mu_{a} \cdot \mu_{b} \neq 1, \mu_{a}<\operatorname{rad}(a)$ and $\mu_{b}<\operatorname{rad}(b)$
we obtain :

$$
\begin{equation*}
c=\mu_{c} r a d(c)=\mu_{a} \cdot \operatorname{rad}(a)+\mu_{b} \cdot r a d(b)<\operatorname{rad}^{2}(a)+\operatorname{rad}^{2}(b)<\operatorname{rad}^{2}(a b c) \tag{17}
\end{equation*}
$$

2.2.6 $\mu_{a} \cdot \mu_{b} \neq 1, \mu_{a} \leq \operatorname{rad}(a)$ and $\mu_{b} \geq \operatorname{rad}(b)$

We have:

$$
\begin{equation*}
c=\mu_{a} \cdot \operatorname{rad}(a)+\mu_{b} \cdot \operatorname{rad}(b)<\mu_{a} \mu_{b} r a d(a) \operatorname{rad}(b) \leq \mu_{b} r a d^{2}(a) \operatorname{rad}(b) \tag{18}
\end{equation*}
$$

Then if we give a proof that $\mu_{b}<\operatorname{rad}(b) \operatorname{rad}^{2}(c)$, we obtain $c<\operatorname{rad}^{2}(a b c)$. As $\mu_{b} \geq \operatorname{rad}(b) \Longrightarrow \mu_{b}=\operatorname{rad}(b)+\alpha$ with α a positive integer ≥ 0. Supposing that $\mu_{b} \geq \operatorname{rad}(b) \operatorname{rad}^{2}(c) \Longrightarrow \mu_{b}=\operatorname{rad}(b) \operatorname{rad}^{2}(c)+\beta$ with $\beta \geq 0$ a positive integer. We can write

$$
\begin{align*}
\operatorname{rad}(b) \operatorname{rad}^{2}(c)+\beta & =\operatorname{rad}(b)+\alpha \Longrightarrow \beta<\alpha \\
\alpha-\beta=\operatorname{rad}(b)\left(\operatorname{rad}^{2}(c)-1\right)>3 \operatorname{rad}(b) \Longrightarrow \mu_{b} & =\operatorname{rad}(b)+\alpha>4 \operatorname{rad}(b)(19) \tag{19}
\end{align*}
$$

Finally, we obtain:

$$
\left\{\begin{array}{l}
\mu_{b} \geq \operatorname{rad}(b) \tag{20}\\
\mu_{b}>4 \operatorname{rad}(b)
\end{array}\right.
$$

Then the contradiction and the hypothesis $\mu_{b} \geq \operatorname{rad}(b) \operatorname{rad}^{2}(c)$ is false. Hence:

$$
\begin{equation*}
\mu_{b}<\operatorname{rad}(b) \operatorname{rad}^{2}(c) \Longrightarrow c<\operatorname{rad}^{2}(a b c) \tag{21}
\end{equation*}
$$

2.2.7 $\mu_{a} . \mu_{b} \neq 1, \mu_{a} \geq \operatorname{rad}(a)$ and $\mu_{b} \leq \operatorname{rad}(b)$

The proof is identical to the case above.
2.2.8 $\mu_{a} . \mu_{b} \neq 1, \mu_{a} \geq \operatorname{rad}(a)$ and $\mu_{b} \geq \operatorname{rad}(b)$

We write:
$c=\mu_{a} r a d(a)+\mu_{b} r a d(b) \leq \mu_{a}^{2}+\mu_{b}^{2}<\mu_{a}^{2} \cdot \mu_{b}^{2} \stackrel{?}{<} \operatorname{rad}^{2}(a) \cdot \operatorname{rad}^{2}(b) \cdot \operatorname{rad}^{2}(c)=\operatorname{rad}^{2}(a b c)$
As $\mu_{a} \geq \operatorname{rad}(a)$ and $\mu_{b} \geq \operatorname{rad}(b)$, we can write that:

$$
\begin{gathered}
\mu_{a}=\operatorname{rad}(a)+m \\
\mu_{b}=\operatorname{rad}(b)+n
\end{gathered}
$$

with $m, n \geq 0$ two positive integers. Let $F(x, y)$ the function :
$F(x, y)=(x+\operatorname{rad}(a))(y+\operatorname{rad}(b))-\operatorname{rad}(a b c),(x, y) \in I=]-\operatorname{rad}(a),+\infty[\times]-\operatorname{rad}(b),+\infty[$
The set of points $M(x, y) \in I$ verifying $F(x, y)=0$ is the hyperbola \mathcal{C} given by :

$$
\begin{equation*}
y=\frac{-\operatorname{rad}(b) \cdot x+\operatorname{rad}(a b c)-\operatorname{rad}(a b)}{x+\operatorname{rad}(a)} \tag{24}
\end{equation*}
$$

The curve \mathcal{C} intersects the axis $x=0$ and $y=0$ at the two points $M_{1}\left(0, y_{1}=\right.$ $\operatorname{rad}(b)(\operatorname{rad}(c)-1))$ and $M_{2}\left(x_{2}=\operatorname{rad}(a)(\operatorname{rad}(c)-1), 0\right)$. The region below the curve \mathcal{C} verifies $F(x, y)<0 . F(m, n)=\mu_{a} \cdot \mu_{b}-\operatorname{rad}(a b c)<0$ if we have $\left.m<x_{2} \Rightarrow m<\operatorname{rad}(a)(\operatorname{rad}(c)-1)\right)$ and $\left.n<y_{1} \Rightarrow n<\operatorname{rad}(b)(\operatorname{rad}(c)-1)\right)$. We suppose now that:

$$
\begin{gather*}
m \geq \operatorname{rad}(a)(\operatorname{rad}(c)-1)) \Longrightarrow m>\operatorname{rad}(a) \Longrightarrow \mu_{a}>2 \operatorname{rad}(a) \Longrightarrow a>2 \operatorname{rad}^{2}(a) \\
n \geq \operatorname{rad}(b)(\operatorname{rad}(c)-1)) \Longrightarrow n>\operatorname{rad}(b) \Longrightarrow \mu_{b}>2 \operatorname{rad}(b) \Longrightarrow b>2 \operatorname{rad}^{2}(b) \\
\quad \text { then } \quad c>2\left(\operatorname{rad}^{2}(a)+\operatorname{rad}^{2}(b)\right)>4 \operatorname{rad}(a b) \Longrightarrow c>4 \operatorname{rad}(a b) \tag{25}
\end{gather*}
$$

The last inequality $c>4 \operatorname{rad}(a b)$ gives the contradiction with the condition $c>$ $\operatorname{rad}(a b)$ supposed above. Then we obtain $F(m, n)<0 \Longrightarrow \mu_{a} . \mu_{b}-\operatorname{rad}(a b c)<$ $0 \Longrightarrow c<\operatorname{rad}^{2}(a b c)$.

We announce the theorem:
Theorem 1 (Abdelmajid Ben Hadj Salem, 2019) Let a, b, c positive integers relatively prime with $c=a+b$ and $b<a$, then $c<\operatorname{rad}^{2}(a b c)$.

References

1. Waldschmidt M.: On the abc Conjecture and some of its consequences presented at The 6th World Conference on 21st Century Mathematics, Abdus Salam School of Mathematical Sciences (ASSMS), Lahore (Pakistan), March 6-9, 2013. (2013)
2. Robert O., Stewart C.L. and Tenenbaum G.: A refinement of the abc conjecture. Bull. London Math. Soc. 46,6, 1156-1166 (2014).

[^0]: Abdelmajid Ben Hadj Salem
 6, Rue du Nil, Cité Soliman Er-Riadh
 8020 Soliman
 Tunisia
 E-mail: abenhadjsalem@gmail.com

