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Abstract

Dirac sought a relativistic quantum free-particle Hamiltonian that imposes space-time symmetry on
the Schrödinger equation in configuration representation; he ignored the Lorentz covariance of energy-
momentum. Dirac free-particle velocity therefore is momentum-independent, breaching relativity basics.
Dirac also made solutions of his equation satisfy the Klein-Gordon equation via requirements imposed on
its operators. Dirac particle speed is thereby fixed to the unphysical value of c times the square root of
three, and anticommutation requirements prevent four observables, including the components of velocity,
from commuting when Planck’s constant vanishes, a correspondence-principle breach responsible for Dirac
free-particle spontaneous acceleration (zitterbewegung) that diverges in the classical limit. Nonrelativistic
Pauli theory contrariwise is physically sensible, and its particle rest-frame action can be extended to
become Lorentz invariant. The consequent Lagrangian yields the corresponding closed-form relativistic
Hamiltonian when magnetic field is absent, otherwise a successive-approximation regime applies.

Introduction

Dirac’s ostensibly relativistic free-particle quantum Hamiltonian operator HD(p) was shaped by his intuitive
impression that, to be relativistic, the free-particle Schrödinger equation in configuration representation,

ih̄∂ψ(r, t)/∂t = HD(p)ψ(r, t), (1a)

(in which HD(p) is independent of r to enforce the free-particle condition ṗ = 0) must be made space-time
symmetric by the correct choice of HD(p) [1]. Since,

−ih̄∇rψ(r, t) = pψ(r, t), (1b)

Dirac presumed that his intuitive impression is effected by making HD(p) inhomogeneously linear in p, i.e.,

HD(p) = c~α · p + βmc2, (1c)

where ~α and β are Hermitian, dimensionless and independent of r and p [1, 2, 3, 4]. Dirac’s Eq. (1c)
free-particle HD(p) and the Heisenberg equation of motion yield the free-particle velocity [5, 6],

ṙ = (−i/h̄)[r, HD(p)] = (−i/h̄)
[
r, c~α · p + βmc2

]
= c~α, (1d)

which, since ~α is independent of p, flatly contradicts the fundamental requirement of free-particle special
relativity that the p→ 0 asymptotic form of ṙ is its nonrelativistic free-particle result (p/m), i.e.,

ṙ ∼ (p/m) as p→ 0. (1e)

The incompatibility of ṙ = c~α with Eq. (1e) shows that Dirac’s free-particle HD(p) violates special relativity .
That violation is confirmed by inspection of the formal action SD which corresponds to Dirac’s HD(p),

SD =
∫
LD(ṙ) dt =

∫
[ṙ · p−HD(p)]ṙ=c~α dt =

∫ (
−mc2

)
β dt. (1f)

Since β is independent of r, p and ṙ = c~α, the Eq. (1f) action SD fails to be Lorentz-invariant because
differential observed time dt isn’t Lorentz-invariant—only differential proper time dτ = (1 − |ṙ/c|2)

1
2 dt is

Lorentz-invariant. Thus the violation of special relativity by Dirac’s HD(p) is confirmed.
Since HD(p) violates special relativity, we need to understand the flaw in Dirac’s intuitive impression

that, to be relativistic, the free-particle Schrödinger equation in configuration representation,

ih̄∂ψ(r, t)/∂t = H(p)ψ(r, t), (2a)

must be made space-time symmetric by the correct choice of H(p). In fact, this equation’s formal solution,

ψ(r, t) = exp(−iH(p)(t− t0)/h̄)ψ(r, t0), (2b)

is entirely skewed toward time t regardless of H(p), so Dirac’s intuitive impression didn’t have a cogent basis.
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Eq. (2b) highlights the fact that the Eq. (2a) Schrödinger equation doesn’t by itself fully describe the space-
time propagation of ψ(r, t). The spatial propagation of ψ(r, t) is of course described by the Eq. (1b) three-
vector set of three equations, which is readily combined with the Eq. (2a) Schrödinger equation into a space-
time symmetric four-vector set of four equations by using the space-time gradient ∂/∂xµ = ((1/c)∂/∂t,−∇r)
and the free-particle energy-momentum four-vector operator Hµ(p) = (H(p), cp) to write,

ih̄c ∂ψ(xµ)/∂xµ = Hµ(p)ψ(xµ), (2c)

whose space-time symmetric formal solution analogous to the Eq. (2b) time-skewed solution of Eq. (2a) is,

ψ(xµ) = exp
(
−iHµ(p)(xµ − x0µ)/(h̄c)

)
ψ(x0µ), (2d)

which shows that contrary to Dirac’s intuitive impression, free-particle quantum mechanics can be presented
as space-time symmetric regardless of H(p). But also contrary to Dirac’s impression, special relativity
doesn’t concern space-time symmetry per se; it concerns the transformation of observations between inertial
reference frames, and Eq. (2d) tells us that if the free-particle energy-momentum Hµ(p) transforms as a
Lorentz-covariant four-vector between inertial reference frames, then the observed space-time evolution of a
configuration-representation free-particle wave function ψ(xµ) is independent of observer inertial reference
frame, just as the observed space-time evolution of a spherical shell of free electromagnetic radiation is.

Therefore in special relativity the free-particle Hamiltonian H(p) must be such that the corresponding
free-particle energy-momentum four-vector Hµ(p) = (H(p), cp) is Lorentz-transformation covariant , as well
as such that the corresponding p→ 0 asymptotic free-particle velocity ṙ is ṙ ∼ (p/m) to uphold the nonrela-
tivistic limit—see Eq. (1e). The Lorentz transformation H ′

µ
(p′) of Hµ(p) to an inertial frame traveling at

any relativistically permitted constant velocity v = c~β, where |~β| < 1, is given by,

H ′(p′) =
(
H(p)−

(
~β · (cp)

))(
1− |~β|2

)− 1
2 ,

cp′ = cp + ~β
(
~β · (cp)

)
|~β|−2

((
1− |~β|2

)− 1
2 − 1

)
− ~βH(p)

(
1− |~β|2

)− 1
2 ,

(3a)

which, in the special case that p = 0, reduces to,

H ′((p = 0)′) = H(p = 0)
(
1− |~β|2

)− 1
2 , c(p = 0)′ = −~βH(p = 0)

(
1− |~β|2

)− 1
2 . (3b)

From the second equality of Eq. (3b), |~β|(1 − |~β|2)−
1
2 = |c(p = 0)′/H(p = 0)|, which we abbreviate as χ.

Thus |~β| = χ(1 +χ2)−
1
2 , which accords with the requirement that |~β| < 1 regardless of the value of (p = 0)′.

Since (1− |~β|2)−
1
2 furthermore equals (1 + χ2)

1
2 , the first equality of Eq. (3b) implies that,

H ′((p = 0)′) = H(p = 0)
(
1 + χ2

) 1
2 = H(p = 0)

(
1 + |c(p = 0)′/H(p = 0)|2

) 1
2 , (3c)

regardless of the value of (p = 0)′. Thus we are free to rename (p = 0)′ as p, which changes Eq. (3c) to,

H ′(p) = H(p = 0)
(
1 + |cp/H(p = 0)|2

) 1
2 ⇒ H ′(p = 0) = H(p = 0), so,

H ′(p) = H ′(p = 0)
(
1 + |cp/H ′(p = 0)|2

) 1
2 ⇒ H(p) = H(p = 0)

(
1 + |cp/H(p = 0)|2

) 1
2 ,

(3d)

upon renaming H ′(p) as H(p). The relativistically-correct final H(p) of Eq. (3d) disagrees with Dirac’s
HD(p) = c~α · p + βmc2 of Eq. (1c) because the latter is inhomogeneously linear in p, again confirming that
Dirac’s HD(p) violates special relativity . The value of the constant H(p = 0) within the Eq. (3d) result for
H(p) is obtained from the Heisenberg equation of motion imposed on ṙ by H(p), together with the Eq. (1e)
nonrelativistic-limit requirement that ṙ ∼ (p/m) as p→ 0. That ṙ equation of motion is,

ṙ = (−i/h̄)[r, H(p)] = ∇pH(p) = H(p = 0)∇p

(
1 + |cp/H(p = 0)|2

) 1
2 =(

c2p/H(p = 0)
)(

1 + |cp/H(p = 0)|2
)− 1

2 ∼
(
c2p/H(p = 0)

)
as p→ 0.

(3e)

From Eq. (3e) plus the Eq. (1e) requirement that ṙ ∼ (p/m) as p→ 0, and also from Eq. (3d), we obtain,

H(p = 0) = mc2, H(p) =
(
m2c4 + |cp|2

) 1
2 and ṙ = (p/m)

(
1 + |p/(mc)|2

)− 1
2 . (3f)
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We next wish to obtain the free-particle Lagrangian L(ṙ) and consequent action Sfree =
∫
L(ṙ)dt which

correspond to the relativistically correct Eq. (3f) free-particle Hamiltonian H(p). To obtain L(ṙ) from H(p),
we need the inverse of the Eq. (3f) result that ṙ = (p/m)(1 + |p/(mc)|2)−

1
2 , which works out to be,

p = mṙ
(
1− |ṙ/c|2

)− 1
2 . (3g)

Using Eq. (3g) and the relativistically correct free-particle Hamiltonian H(p) of Eq. (3f), we obtain the
relativistically correct free-particle Lagrangian L(ṙ) in the following standard way,

L(ṙ) =
[
ṙ · p−H(p)

]
p=mṙ(1−|ṙ/c|2)−

1
2

=[
m|ṙ|2

(
1− |ṙ/c|2

)− 1
2 −

(
m2c4 +m2c2|ṙ|2

(
1− |ṙ/c|2

)−1) 1
2

]
=
(
−mc2

)(
1− |ṙ/c|2

) 1
2 ,

(3h)

which in turn immediately yields the relativistically correct free-particle action Sfree =
∫
L(ṙ)dt,

Sfree =
∫ (
−mc2

)(
1− |ṙ/c|2

) 1
2 dt =

∫ (
−mc2

)
dτ, (3i)

where dτ = (1 − |ṙ/c|2)
1
2 dt is Lorentz-invariant differential proper time. Thus the Eq. (3i) free-particle

action Sfree, which is based on the relativistically correct free-particle Hamiltonian H(p) of Eq. (3f), is indeed
Lorentz-invariant , as a relativistically correct action must be; the Eq. (1f) Dirac action SD =

∫
(−mc2)βdt

failed this Lorentz-invariance test, violating special relativity .
The only properties we have so far specified for ~α and β in Dirac’s Eq. (1c) Hamiltonian HD(p) are that ~α

and β are Hermitian, dimensionless and independent of r and p. With those minimally specified properties of
~α and β, HD(p) egregiously violates relativistic free-particle dynamics simply because it is inhomogeneously
linear in p. Dirac of course never became aware of that unfortunate fact , so he strove to maximally incorporate
properties of the Eq. (3f) Hamiltonian H(p) = (m2c4 + |cp|2)

1
2 into his HD(p) = c~α ·p + βmc2 by imposing

additional algebraic requirements on ~α and β which guarantee that [1, 7, 8],

(HD(p))2 = (H(p))2. (4a)

If Eq. (4a) holds, any Dirac HD(p) equation solution satisfies the Klein-Gordon equation—but Eq. (4a) also
injects Klein-Gordon-style negative-energy solutions into the Dirac equation. Dirac’s “famous” ten algebraic
requirements for ~α and β which guarantee that Eq. (4a) holds are [1, 7, 8],

(αx)2 = (αy)2 = (αz)
2 = (β)2 = 1, and αx, αy, αz and β all mutually anticommute. (4b)

Dirac’s Eq. (4b) requirement that (αx)2 = (αy)2 = (αz)
2 = 1 however produces an astoundingly unphysical

result for the HD(p) free-particle speed |ṙ|. We have seen from Eq. (1d) that HD(p) yields that ṙ = c~α, so,

|ṙ| = c|~α| = c
(
(αx)2 + (αy)2 + (αz)

2
) 1

2 = c(1 + 1 + 1)
1
2 = c

√
3, (4c)

a fixed c-number speed value |ṙ| = c
√

3, which not only violates the asymptotic free-particle requirement
|ṙ| ∼ (|p|/m) as p→ 0, but as well grossly violates the special-relativistic free-particle speed limit |ṙ| < c.

Since the Eq. (4c) result |ṙ| = c
√

3 destroys the physical legitimacy of Dirac theory at a single glance, it
isn’t written down in any textbook, but the fact that the eigenvalues of the three components of ṙ = c~α are
±c is indeed pointed out in some textbooks [5], and |ṙ| = c

√
3 is of course an immediate consequence of that.

Dirac’s Eq. (4b) also implies that the three observable components of the Dirac free-particle velocity ṙ = c~α
and the observable term βmc2 of the Dirac free-particle Hamiltonian HD(p) all mutually anticommute, so
the commutator of any of the six pairs of those four observables equals twice the pair’s product, which doesn’t
vanish in the limit h̄→ 0, in gross violation of the correspondence-principle requirement that all commutators
of observables must vanish when h̄→ 0. This disastrous violation of the correspondence principle is the root
cause of the free-particle Dirac theory’s extremely unphysical zitterbewegung spontaneous acceleration, which
tends toward infinity as h̄→ 0.

We noted in Eq. (3f) that the correct relativistic free-particle Hamiltonian H(p) =
(
m2c4 + |cp|2

) 1
2

implies that ṙ = (p/m)
(
1 + |p/(mc)|2

)− 1
2 , so,

r̈ = (−i/h̄)[ṙ, H(p)] = (−i/h̄)
[
(p/m)

(
1 + |p/(mc)|2

)− 1
2 ,
(
m2c4 + |cp|2

) 1
2

]
= 0,

in accord with the Newton’s First Law principle that free particles don’t undergo spontaneous acceleration.
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However, Dirac’s “famous” six unphysical anticommutation relations of Eq. (4b), which grossly violate
the correspondence principle, produce the following nonzero zitterbewegung spontaneous free-particle accel-
eration, which tends toward infinity as h̄→ 0,

r̈ = (−i/h̄)[ṙ, HD(p)] = (−i/h̄)
[
c~α, c~α · p + βmc2

]
=
(
−ic2/h̄

)
((p× (~α× ~α)) + (2~αβmc)). (4d)

In the special case of a Dirac free particle of zero momentum, (i.e., for p = 0), Eq. (4d) reduces to.

r̈ = −2i~αβ
(
mc3/h̄

)
, (4e)

and therefore,
|r̈| = 2

√
3
(
mc3/h̄

)
. (4f)

Eq. (4f) tells us that due to spontaneously varying direction of travel , a p = 0 Dirac “free particle”, which of
course has the unphysical special-relativity-violating fixed speed c

√
3 (see Eq. (4c)), undergoes spontaneous

acceleration whose magnitude has no upper bound in the classical limit h̄→ 0. Already for a p = 0 electron,
Eq. (4f) implies a zitterbewegung spontaneous-acceleration magnitude |r̈| of the mind-boggling order of 1028

times g, where g = 9.8m/s2, the acceleration of gravity at the Earth’s surface. However, if the observables
ṙ = c~α and βmc2 sensibly commuted instead of grossly violating the correspondence principle because of
the unphysical anticommutation that is imposed on them by Dirac’s badly misguided Eq. (4b) algebraic
requirements for ~α and β, we see from Eq. (4d) that the Eq. (4e) p = 0 particle zitterbewegung spontaneous
acceleration r̈ would vanish altogether .

Likewise, if the observable components of the Dirac “free particle” velocity operator ṙ = c~α sensibly
commuted with each other , as indeed do the observable components of the correct relativistic free-particle
velocity operator ṙ = (p/m)(1 + |p/(mc)|2)−

1
2 of Eq. (3f), instead of grossly violating the correspondence

principle because of the unphysical anticommutation that is imposed on them by Dirac’s badly misguided
Eq. (4b) algebraic requirements for the components of ~α, the “famous” Dirac spin- 1

2 operator S, which is,

S = −i(h̄/4)(~α× ~α) = −i
(
h̄/
(
4c2
))

(ṙ× ṙ), (4g)

would simply vanish altogether . Thus the very existence of the “famous” Dirac spin- 1
2 operator S is the

direct consequence of Dirac’s completely unphysical Eq. (4b) anticommutation algebraic requirements for the
components of ~α, which grossly violate the correspondence principle.

Moreover, scrutiny of Eq. (4d) above, reveals that the Dirac spin- 1
2 operator-related entity p× (ṙ× ṙ) =

c2p × (~α × ~α) contributes to the unphysical spontaneous acceleration r̈ of a Dirac “free particle”, which of
course violates the Newton’s First Law principle of correct free-particle special relativity .

The “automatic emergence” of the spin- 1
2 operator S = −i(h̄/4)(~α × ~α) = −i(h̄/(4c2))(ṙ × ṙ) in Dirac

theory is traditionally touted as “a great achievement” of that theory, but (1) its very existence arises from
Dirac’s completely unphysical Eq. (4b) anticommutation algebraic requirements for the components of ~α,
which grossly violate the correspondence principle, and (2) the spin- 1

2 operator-related entity c2p× (~α× ~α)
is a contributor to the unphysical special-relativity violating spontaneous acceleration r̈ of a Dirac “free
particle”, as is seen from Eq. (4d).

Turning now to the electromagnetically minimally coupled Dirac Hamiltonian [9, 10],

HD(r,P) = c~α · (P− (e/c)A) + eφ+ βmc2, (5a)

we immediately see that it has exactly the same velocity operator ṙ = c~α [6],

ṙ = (−i/h̄)[r, HD(r,P)] = (−i/h̄)[r, c~α ·P] = c~α, (5b)

as the “free-particle” Dirac Hamiltonian (see Eq. (1d)), so any electromagnetically coupled Dirac particle
always has the speed |ṙ| = c

√
3 that violates the special-relativistic particle speed limit |ṙ| < c.

The speed result , |ṙ| = c
√

3, for the electromagnetically minimally coupled Dirac Hamiltonian of Eq. (5a)
immediately contradicts the well-known textbook “theorem” that that Hamiltonian effectively reduces to the
electromagnetically coupled nonrelativistic Pauli Hamiltonian [11, 12],

H =
(
|P− (e/c)A|2/(2m)

)
+ eφ− (eh̄/(2mc))(~σ ·B), (6a)

in the latter’s region of special-relativistic validity , which is, of course, when,

|ṙ| = (|P− (e/c)A|/m)� c, (6b)

because,
ṙ = (−i/h̄)[r, H] = (−i/h̄)

[
r,
(
|P− (e/c)A|2/(2m)

)]
= ((P− (e/c)A)/m). (6c)

However, since there is no overlap whatsoever between |ṙ| = c
√

3 and |ṙ| � c, this well-known textbook
“theorem” comically falls flat on its face.
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The purported “proof” which textbooks proffer for this well-known “theorem” relies on the ostensibly
“plausible” supposition for the Dirac Hamiltonian that if [13, 14],

|P− (e/c)A| � mc, (7a)

then,
|E −mc2| � mc2. (7b)

The difficulty with this “plausible” supposition becomes apparent when the Dirac equation’s unavoidable
negative-energy solutions are taken into consideration. For example, it is entirely feasible to have the condi-
tion given by Eq. (7a) in coexistence with,

E ≈ −mc2, (7c)

which, of course, drastically violates the ostensibly “plausible” supposition of Eq. (7b).
The electromagnetically minimally coupled Dirac Hamiltonian of Eq. (5a), namely,

HD(r,P) = c~α · (P− (e/c)A) + eφ+ βmc2, (8a)

since it violates special relativity because its particle speed |ṙ| = c
√

3 always grossly exceeds c, clearly cannot
correctly describe single-particle relativistic quantum mechanics.

However, the electromagnetically coupled nonrelativistic Pauli Hamiltonian of Eq. (6a), namely,

H =
(
|P− (e/c)A|2/(2m)

)
+ eφ− (eh̄/(2mc))(~σ ·B), (8b)

is physically unobjectionable in the nonrelativistic regime, namely when,

|ṙ| = (|P− (e/c)A|/m)� c.

Since Lorentz-invariant actions produce Lorentz-covariant dynamical theories and, furthermore, the rela-
tivistic physics of a single particle is identical to its nonrelativistic physics when the particle is at rest , one
can render a nonrelativistic single-particle theory relativistic by specializing the nonrelativistic action to zero
particle velocity , and then upgrading that to become Lorentz invariant .

Given a nonrelativistic single-particle Hamiltonian which is to be upgraded to its relativistic counterpart ,
a great many steps are necessary. One must pass from the nonrelativistic Hamiltonian to the corresponding
nonrelativistic Lagrangian, thence to the nonrelativistic action, which is specialized to zero particle velocity .
This is the base to be upgraded to the Lorentz-invariant action, whose integrand then yields the relativistic
Lagrangian, from which one passes to the relativistic Hamiltonian. A caveat is that passages between
Lagrangians and Hamiltonians entail solving algebraic equations, which isn’t always feasible in closed form.

Action-based unique relativistic extension of the Pauli Hamiltonian

In preparation for the relativistic extension of the nonrelativistic Pauli Hamiltonian of Eq. (6a), we add to
it the particle’s rest-mass energy mc2,

H = mc2 +
(
|P− (e/c)A|2/(2m)

)
+ eφ− (eh̄/(2mc))(~σ ·B). (9a)

Note that the addition of such a constant term to a Hamiltonian in no way changes the quantum Heisenberg
or classical Hamiltonian equations of motion.

To obtain the nonrelativistic action Snr which corresponds to the Hamiltonian H of Eq. (9a), we first
work out the Lagrangian L which corresponds to that Hamiltonian H. The conversion of such a particle
Hamiltonian to a particle Lagrangian requires swapping the Hamiltonian’s dependence on the canonical
three-momentum P for the Lagrangian’s dependence on the particle’s three-velocity ṙ. We obtain that
particle three-velocity ṙ from the Heisenberg equation of motion (or alternatively, in this case, from the
equivalent classical Hamiltonian equation of motion),

ṙ = (−i/h̄)[r, H] = ∇PH = (P− (e/c)A)/m. (9b)

We now invert the Eq. (9b) relation between the particle velocity ṙ and canonical momentum P to obtain,

P = mṙ + (e/c)A, (9c)
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and then insert Eq. (9c) into the well-known relationship of the Lagrangian to the Hamiltonian, namely,

L = ṙ ·P−H
∣∣∣
P=mṙ+(e/c)A

= −mc2 + 1
2m|ṙ|2 − e(φ− (ṙ/c) ·A) + (eh̄/(2mc))(~σ ·B), (9d)

which immediately as well yields the nonrelativistic action,

Snr =

∫
Ldt =

∫ [
−mc2 + 1

2m|ṙ|2 − e(φ− (ṙ/c) ·A) + (eh̄/(2mc))(~σ ·B)
]
dt.

Of course we don’t want the nonrelativistic action Snr itself, but its specialization S to the case of zero
particle velocity , namely ṙ = 0,

S =

∫ [
−mc2 − eφ+ (eh̄/(2mc))(~σ ·B)

]
dt. (9e)

We shall undertake the Lorentz-invariant upgrade of the three terms of this action S individually. The first
action S term we tackle is that of the free particle,

S0 =

∫ (
−mc2

)
dt. (10a)

To make S0 Lorentz-invariant, we only need to replace the time differential dt by the Lorentz-invariant
proper time differential dτ ,

dτ =
(
(dt)2 − |dr/c|2

) 1
2 =

(
1− |ṙ/c|2

) 1
2 dt. (10b)

We note that,

dτ/dt =
(
1− |ṙ/c|2

) 1
2 , (10c)

and from this it of course follows that,

dt/dτ =
(
1− |ṙ/c|2

)− 1
2 . (10d)

As noted below Eq. (10a), the Lorentz-invariant upgrade of S0 is,

S0
rel =

∫ (
−mc2

)
dτ, (10f)

which is equal to the Sfree of Eq. (3i). Eq. (10f) can by use of Eq. (10b) of course also be expressed as,

S0
rel =

∫ (
−mc2

)(
1− |ṙ/c|2

) 1
2 dt. (10g)

We next tackle the action S term arising from the particle’s charge e interaction with the φ potential,

Se =

∫
(−eφ)dt. (11a)

We carry out the Lorentz-invariant upgrade of Se by replacing the time differential dt in Eq. (11a) by the
Lorentz-invariant dτ and upgrading the ṙ = 0 potential energy eφ to a dynamic Lorentz-invariant function
of ṙ. To upgrade the ṙ = 0 potential energy eφ, we first rewrite it as the ṙ = 0 pseudo Lorentz invariant,

eφ = eUµ(ṙ = 0)Aµ, (11b)

which is the contraction with eAµ of the ṙ = 0 pseudo Lorentz-covariant four-vector,

Uµ(ṙ = 0) = δ0µ, (11c)

that is valid only in the particle’s rest frame where the particle’s velocity ṙ = 0. To upgrade the ṙ = 0
pseudo Lorentz-covariant four-vector Uµ(ṙ = 0) to a dynamic truly Lorentz-covariant four-vector Uµ(ṙ), we
Lorentz-boost it from the particle’s rest frame to the inertial frame where the particle has velocity ṙ,

Uµ(ṙ) = Uα(ṙ = 0)Λαµ(ṙ) = δ0αΛαµ(ṙ) = Λ0
µ(ṙ). (11d)
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Therefore the dynamic Lorentz-invariant upgrade of the ṙ = 0 potential energy eφ is,

eUµ(ṙ)Aµ = eΛ0
µ(ṙ)Aµ = eγ(ṙ) (φ− (ṙ/c) ·A), (11e)

where,

γ(ṙ) =
(
1− |ṙ/c|2

)− 1
2 = dt/dτ. (11f)

Thus the Lorentz-invariant upgrade of,

Se =

∫
(−eφ)dt,

is,

Serel =

∫
(−eUµ(ṙ)Aµ)dτ =

∫
(−e(φ− (ṙ/c) ·A))dt. (11g)

Finally we tackle the action S term arising from the particle’s spin (h̄~σ/2) interaction with the B field,

S~σ =

∫
(eh̄/(2mc))(~σ ·B)dt. (12a)

Again we replace the time differential dt by the Lorentz-invariant dτ and upgrade the ṙ = 0 potential energy
−(eh̄/(2mc))(~σ ·B) to a dynamic Lorentz-invariant function of ṙ. Preliminary to its upgrade, we reexpress
the ṙ = 0 potential energy −(eh̄/(2mc))(~σ ·B) in terms of the tensor gradient of A in place of B,

−(eh̄/(2mc))(~σ ·B) = −(eh̄/(2mc))[~σ · (∇×A)] = (eh̄/(2mc))
[
εijkσ

i
(
∂jAk

)]
, since ∂j = −∂/∂xj . (12b)

To upgrade the ṙ = 0 Eq. (12b) result, we first rewrite it as the ṙ = 0 pseudo Lorentz invariant,

(eh̄/(2mc))
[
εijkσ

i
(
∂jAk

)]
= (eh̄/(2mc))[σµν(ṙ = 0)(∂µAν)] , (12c)

which is the contraction of (eh̄/(2mc))(∂µAν) with the ṙ = 0 pseudo Lorentz-covariant second-rank tensor,

σµν(ṙ = 0) =

{
0 if µ = 0 or ν = 0,
εijkσ

i if µ = j and ν = k, j, k = 1, 2, 3,
(12d)

that is valid only in the particle’s rest frame where the particle’s velocity ṙ = 0. Note that σµν(ṙ = 0) is
antisymmetric under the interchange of its two indices µ and ν. To upgrade the ṙ = 0 pseudo Lorentz-
covariant second-rank tensor σµν(ṙ = 0) to a dynamic truly Lorentz-covariant second-rank tensor σµν(ṙ),
we Lorentz-boost it from the particle’s rest frame to the inertial frame where the particle has velocity ṙ,

σµν(ṙ) = σαβ(ṙ = 0)Λαµ(ṙ)Λβν (ṙ) = εijkσ
iΛjµ(ṙ)Λkν(ṙ). (12e)

It is apparent from Eq. (12e) that the Lorentz-covariant second-rank tensor σµν(ṙ) is also antisymmetric
under the interchange of its two indices µ and ν. From Eqs. (12b) through (12e) it is clear that the dynamic
Lorentz-invariant upgrade of the ṙ = 0 potential energy −(eh̄/(2mc))(~σ ·B) is,

(eh̄/(2mc)) [σµν(ṙ) (∂µAν)] = (eh̄/(2mc))
[
εijkσ

iΛjµ(ṙ)Λkν(ṙ) (∂µAν)
]

=

(eh̄/(2mc)) [~σ · [(Λµ(ṙ)∂µ)× (Λν(ṙ)Aν)]] ,
(12f)

where,

(Λµ(ṙ)∂µ)
j def

= Λjµ(ṙ)∂µ and (Λν(ṙ)Aν)
k def

= Λkν(ṙ)Aν . (12g)

The space components of the Lorentz boost of the four-vector partial-derivative operator,

∂µ = ((1/c)(∂/∂t),−∇),

from the rest frame of the particle to the inertial frame in which the particle has velocity ṙ are given by,

(Λµ(ṙ)∂µ) = −∇− (γ(ṙ)− 1)|ṙ|−2ṙ(ṙ · ∇)− γ(ṙ)(ṙ/c)(1/c)(∂/∂t). (12h)
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Likewise, the space components of the same Lorentz boost of the electromagnetic four-vector potential,

Aµ = (φ,A),

are given by,
(Λν(ṙ)Aν) = A + (γ(ṙ)− 1)|ṙ|−2ṙ(ṙ ·A)− γ(ṙ)(ṙ/c)φ. (12i)

Using Eqs. (12h) and (12i) one can, with tedious effort, verify that,

[(Λµ(ṙ)∂µ)× (Λν(ṙ)Aν)] = − (∇×A)

− (γ(ṙ)− 1)|ṙ|−2 [∇× (ṙ(ṙ ·A)) + (ṙ · ∇)(ṙ×A)]− γ(ṙ)
[
(ṙ/c)× (Ȧ/c)−∇× ((ṙ/c)φ)

]
=

− (∇×A)− (γ(ṙ)− 1)|ṙ|−2 [ṙ× [−∇(ṙ ·A) + (ṙ · ∇)A]] + γ(ṙ)
[
(ṙ/c)×

[
−∇φ− (Ȧ/c)

]]
=

− (∇×A)− (γ(ṙ)− 1)|ṙ|−2 [ṙ× [−ṙ× (∇×A)]] + γ(ṙ)
[
(ṙ/c)×

[
−∇φ− (Ȧ/c)

]]
=

−B− (γ(ṙ)− 1)|ṙ|−2
[
|ṙ|2B− ṙ(B · ṙ)

]
+ γ(ṙ)((ṙ/c)×E) =

− γ(ṙ)B + (γ(ṙ)− 1)|ṙ|−2ṙ(B · ṙ)− γ(ṙ)(E× (ṙ/c)).

(12j)

From Eqs. (12f) and (12j) one sees that the dynamic Lorentz-invariant upgrade of the static potential energy
−(eh̄/(2mc))(~σ ·B) is,

(eh̄/(2mc)) [σµν(ṙ) (∂µAν)] = (eh̄/(2mc)) [~σ · [(Λµ(ṙ)∂µ)× (Λν(ṙ)Aν)]] =

−(eh̄/(2mc))
[
γ(ṙ)(~σ ·B)− (γ(ṙ)− 1)|ṙ|−2(~σ · ṙ)(B · ṙ) + γ(ṙ)(~σ · (E× (ṙ/c)))

]
,

(12k)

and thus the Lorentz-invariant upgrade of the Eq. (12a) spin contribution to the action, namely,

S~σ =

∫
(eh̄/(2mc))(~σ ·B)dt.

comes out to be,

S~σrel = −
∫

(eh̄/(2mc)) [σµν(ṙ) (∂µAν)] dτ =∫
(eh̄/(2mc))

[
(~σ ·B)−

(
1− (γ(ṙ))−1

)
|ṙ|−2(~σ · ṙ)(B · ṙ) + (~σ · (E× (ṙ/c)))

]
dt =∫

(eh̄/(2mc))
[
(~σ ·B)−

(
1 + (γ(ṙ))−1

)−1
(~σ · (ṙ/c))(B · (ṙ/c)) + (~σ ×E) · (ṙ/c)

]
dt,

(12l)

as we see by using Eq. (12k) and the fact that γ(ṙ) = (1 − |ṙ/c|2)−
1
2 = dt/dτ , given by Eq. (11f). In the

last step of Eq. (12l) we have furthermore interchanged the “dot” · with the “cross” × in the triple scalar
product (~σ · (E× (ṙ/c))), and have as well applied the identity (1− (γ(ṙ))−1)|ṙ|−2 = (1 + (γ(ṙ))−1)−1c−2.

We are now able to write down the Lorentz-invariant upgrade Srel of the ṙ = 0 Pauli action S of Eq. (9e),

Srel = S0
rel + Serel + S~σrel =

∫ {
−mc2 − eUµ(ṙ)Aµ − (eh̄/(2mc)) [σµν(ṙ) (∂µAν)]

}
dτ =∫ {

−mc2
(
1− |ṙ/c|2

) 1
2 − e(φ− (ṙ/c) ·A)+

(eh̄/(2mc))
[
(~σ ·B)−

(
1 +

(
1− |ṙ/c|2

) 1
2

)−1
(~σ · (ṙ/c))(B · (ṙ/c)) + (ṙ/c) · (~σ ×E)

]}
dt.

(13a)

The integrand of this Lorentz-invariant upgrade Srel is of course the relativistic Pauli Lagrangian Lrel,

Lrel = −mc2
(
1− |ṙ/c|2

) 1
2 − e(φ− (ṙ/c) ·A)+

(eh̄/(2mc))
[
(~σ ·B)−

(
1 +

(
1− |ṙ/c|2

) 1
2

)−1
(~σ · (ṙ/c))(B · (ṙ/c)) + (ṙ/c) · (~σ ×E)

]
.

(13b)
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From Eq. (13b) we calculate the relativistic Pauli Lagrangian’s corresponding canonical momentum,

P = ∇ṙLrel = mṙ
(
1− |ṙ/c|2

)− 1
2 + (e/c)A + (eh̄/(2mc2))(~σ ×E)−

(eh̄/(2mc2))
(

1 +
(
1− |ṙ/c|2

) 1
2

)−1[
~σ(B · (ṙ/c)) + (~σ · (ṙ/c))B +(

1 +
(
1− |ṙ/c|2

) 1
2

)−1
(ṙ/c)

(
1− |ṙ/c|2

)− 1
2 (~σ · (ṙ/c))(B · (ṙ/c))

]
.

(13c)

The last three terms of Eq. (13c), which all arise from the relativistic distortion of the magnetic field B,
unfortunately preclude solving analytically for the particle’s velocity ṙ in terms of the system’s canonical
momentum P. For that reason we cannot in general analytically parlay the relativistic Pauli system’s energy
Erel, namely,

Erel = ṙ ·P− Lrel, (13d)

into its relativistic Pauli Hamiltonian Hrel(r, ~σ,P, t). However we see from Eq. (13c) that the three offending
terms which arise from the relativistic distortion of the magnetic field B are all higher-order corrections in
powers of |ṙ/c|, so we can easily rewrite Eq. (13c) as a successive-approximation scheme for the desired
inversion of the canonical momentum P that is consonant with the systematic carrying out of relativistic
corrections. The scheme is considerably more transparent , however, after all occurrences of the particle
velocity ṙ on the right-hand side of Eq. (13c) (and as well on the right-hand side of Eq. (13d)) are replaced
by occurrences of the free-particle momentum p, which is,

p
def
= mṙ

(
1− |ṙ/c|2

)− 1
2 , so (ṙ/c)

(
1− |ṙ/c|2

)− 1
2 = (p/(mc)),

(ṙ/c) =
(
1 + |p/(mc)|2

)− 1
2 (p/(mc)) and

(
1− |ṙ/c|2

)± 1
2 =

(
1 + |p/(mc)|2

)∓ 1
2 .

(13e)

Using Eq. (13e) to eliminate all occurrences of the particle velocity ṙ on the right-hand side of Eq. (13c) in
favor of the free-particle momentum p yields,

P = p + (e/c)A + (eh̄/(2mc2))(~σ ×E)−
{

(eh̄/(2mc2))
(

1 +
(
1 + |p/(mc)|2

) 1
2

)−1 [
~σ(B · (p/

(mc))) + (~σ · (p/(mc)))B +
(

1 +
(
1 + |p/(mc)|2

) 1
2

)−1
(p/(mc))(~σ · (p/(mc)))(B · (p/(mc)))

]}
.

(13f)

Eq. (13f) can now be readily recast as a basis for successive approximations to the free-particle momentum
p in terms of the canonical momentum P,

p = P− (e/c)A− (eh̄/(2mc2))(~σ ×E) +
{

(eh̄/(2mc2))
(

1 +
(
1 + |p/(mc)|2

) 1
2

)−1 [
~σ(B · (p/

(mc))) + (~σ · (p/(mc)))B +
(

1 +
(
1 + |p/(mc)|2

) 1
2

)−1
(p/(mc))(~σ · (p/(mc)))(B · (p/(mc)))

]}
.

(13g)

In order for successive approximations to p in terms of P to be able to produce successive approximations
to the relativistic Pauli Hamiltonian Hrel, we must also banish all occurrences of the particle velocity ṙ in
the system’s energy Erel, which is given by Eq. (13d), in favor of the free-particle momentum p.

We shall, however, first calculate that relativistic Pauli energy Erel = ṙ · P − Lrel of Eq. (13d) entirely
in terms of ṙ by using the Lrel which is given by Eq. (13b) and the P which is given by Eq. (13c), and then
use the relations given in Eq. (13e) to eliminate ṙ from Erel in favor of p.

From Eq. (13c) we obtain that,

ṙ ·P = m|ṙ|2
(
1− |ṙ/c|2

)− 1
2 + e(ṙ/c) ·A) + (eh̄/(2mc))(ṙ/c) · (~σ ×E)−

(eh̄/(2mc))
(

1 +
(
1− |ṙ/c|2

) 1
2

)−1
(~σ · (ṙ/c))(B · (ṙ/c))×[

2 +
(

1 +
(
1− |ṙ/c|2

) 1
2

)−1
|ṙ/c|2

(
1− |ṙ/c|2

)− 1
2

]
.

(13h)

The complicated structure of the last term of Eq. (13h) simplifies markedly, so Eq. (13h) becomes,

ṙ ·P = m|ṙ|2
(
1− |ṙ/c|2

)− 1
2 + e(ṙ/c) ·A) + (eh̄/(2mc))(ṙ/c) · (~σ ×E)−

(eh̄/(2mc))(~σ · (ṙ/c))(B · (ṙ/c))
(
1− |ṙ/c|2

)− 1
2 .

(13i)
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Putting Eqs. (13b) and (13i) together produces,

Erel = ṙ ·P− Lrel = mc2
(
1− |ṙ/c|2

)− 1
2 + eφ−

(eh̄/(2mc))
[
(~σ ·B) +

(
1 +

(
1− |ṙ/c|2

)− 1
2

)−1
(~σ · (ṙ/c))(B · (ṙ/c))

(
1− |ṙ/c|2

)−1]
.

(13j)

We now use the Eq. (13e) relations to reexpress Eq. (13j) in terms of p instead of in terms of ṙ,

Erel =
(
m2c4 + |cp|2

) 1
2 + eφ −

(eh̄/(2mc))
[
(~σ ·B) +

(
1 +

(
1 + |p/(mc)|2

) 1
2

)−1
(~σ · (p/(mc)))(B · (p/(mc)))

]
.

(13k)

Eq. (13k) is to be used with the successive approximations to p(P) which Eq. (13g) produces to obtain the
corresponding successive approximations to the relativistic Pauli Hamiltonian Hrel.

In those cases where B = 0, Eq. (13g) immediately yields the exact result for p(P), namely,

p = P− (e/c)A− (eh̄/(2mc2))(~σ ×E), (14a)

and in those B = 0 cases, Eq. (13k) yields the exact relativistic Pauli Hamiltonian, i.e.,

Hrel =
(
m2c4 + |c(P− (e/c)A− (eh̄/(2mc2))(~σ ×E))|2

) 1
2 + eφ. (14b)

When B 6= 0, one possible way to proceed is to start from,

p0 def
= (P− (e/c)A− (eh̄/(2mc2))(~σ ×E)), (15a)

and,

H0
rel

def
=
(
m2c4 + |cp0|2

) 1
2 + eφ− (eh̄/(2mc))(~σ ·B), (15b)

and then to use Eq. (13g) to develop the expansion of (p − p0) in orders of |p0/(mc)|; the expansion for
(Hrel −H0

rel) requires using Eq. (13k) as well. For expansion purposes, it is useful to rewrite Eq. (13g) as,

p = p0 + (eh̄/(2mc2))
(

1 +
(
1 + |p/(mc)|2

) 1
2

)−1 [
~σ(B · (p/(mc))) + (~σ · (p/(mc)))B +(

1 +
(
1 + |p/(mc)|2

) 1
2

)−1
(p/(mc))(~σ · (p/(mc)))(B · (p/(mc)))

]
,

(15c)

and to analogously rewrite Eq. (13k) as,

Erel = H0
rel +

(
m2c4 + |cp|2

) 1
2 −

(
m2c4 + |cp0|2

) 1
2 −

(eh̄/(2mc))
(

1 +
(
1 + |p/(mc)|2

) 1
2

)−1
(~σ · (p/(mc)))(B · (p/(mc))) =

H0
rel +

((
1 + |p/(mc)|2

) 1
2 +

(
1 + |p0/(mc)|2

) 1
2

)−1 [(
c
(
p− p0

))
·
((

p + p0
)
/(mc)

)]
−

(eh̄/(2mc))
(

1 +
(
1 + |p/(mc)|2

) 1
2

)−1
(~σ · (p/(mc)))(B · (p/(mc))).

(15d)

To its leading order in |p0/(mc)|, Eq. (15c) simplifies to just,

c
(
p− p0

)
≈ 1

2 (eh̄/(2mc))
[
~σ(B · (p0/(mc))) + (~σ · (p0/(mc)))B

]
, (15e)

while Eq. (15d) correspondingly simplifies to,(
Erel −H0

rel

)
≈
[(
c
(
p− p0

))
·
(
p0/(mc)

)]
− 1

2 (eh̄/(2mc))(~σ · (p0/(mc)))(B · (p0/(mc))). (15f)

Insertion of Eq. (15e) into Eq. (15f) then gives the leading order correction to H0
rel for the Hamiltonian Hrel,

Hrel ≈ H0
rel + 1

2 (eh̄/(2mc))(~σ · (p0/(mc)))(B · (p0/(mc))), (15g)

where of course p0 is given by Eq. (15a) and H0
rel is given by Eq. (15b).
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