
Formation of Planets and Stars 

 

Down a hallway in the U.S. Department of Energy's (DOE) Princeton Plasma Physics 

Laboratory (PPPL), scientists study the workings of a machine in a room stuffed with 

wires and metal components. [39] 

Active galactic nuclei (AGN) are among the most dramatic and interesting phenomena in 

extragalactic astronomy. [38] 

A new study conducted by a team of astronomers from Poland and South Africa provides 

more insights into the nature of Hen 3-160, a symbiotic binary system in the southern 

Milky Way. [37] 

There are more than 3,900 confirmed planets beyond our solar system. Most of them have 

been detected because of their "transits"—instances when a planet crosses its star, 

momentarily blocking its light. [36] 

Rice University physicists have created the world's first laser-cooled neutral plasma, 

completing a 20-year quest that sets the stage for simulators that re-create exotic states 

of matter found inside Jupiter and white dwarf stars. [35] 

An international group of astronomers has detected an intense and extremely luminous 

gamma-ray flare from one of high-redshift blazars known as DA 193. [34] 

Our universe could be the mirror image of an antimatter universe extending backwards 

in time before the Big Bang. [33] 

"As you celebrate New Year's Day, cast an eye upward and think for a moment about the 

amazing things our country and our species can do when we set our minds to it," Stern 

wrote in the New York Times on Monday. [32] 

Our senses are stuck in the past. There's a flash of lightning, and then seconds pass until 

we hear the rumble of distant thunder. We hear the past. [31] 

ESA's technical centre in the Netherlands has begun running a pulsar-based clock. The 

"PulChron' system measures the passing of time using millisecond-frequency radio pulses 

from multiple fast-spinning neutron stars. [30] 

VR is an almost perfect avenue for this approach, since it has been surging in popularity 

as both entertainment and an educational tool. [29] 



Using MAGIC telescopes and NASA's Fermi spacecraft, an international team of 

astronomers has discovered a new source of very high energy gamma-ray emission 

around the supernova remnant (SNR) G24.7+0.6. [28] 

In 1973, Russian physicist A.B. Migdal predicted the phenomenon of pion condensation 

above a critical, extremely high—several times higher than that for normal matter— 

nuclear density. [27] 

Our first glimpses into the physics that exist near the center of a black hole are being 

made possible using "loop quantum gravity"—a theory that uses quantum mechanics to 

extend gravitational physics beyond Einstein's theory of general relativity. [26] 

In the shadowy regions of black holes two fundamental theories describing our world 

collide. Can these problems be resolved and do black holes really exist? First, we may 

have to see one and scientists are trying to do just this. [25] 

The authors suggest that this virtual reality simulation could be useful for 

studying  HYPERLINK "https://phys.org/tags/black+holes/" black holes. [24] 

Every galaxy is thought to harbor a supermassive black hole in the center, or nucleus, of 

the galaxy, and in active galaxies this black hole is fed by infalling matter. [23] 

A new study by researchers at the University of Colorado Boulder finds that violent 

crashes may be more effective at activating black holes than more peaceful mergers. [22] 

For the first time, a team of astronomers has observed several pairs of galaxies in the 

final stages of merging together into single, larger galaxies. [21] 

In a cluster of some of the most massive and luminous  HYPERLINK 

"https://phys.org/tags/stars/" stars in our galaxy, about 5,000 light years from Earth, 

astronomers detected particles being accelerated by a rapidly rotating neutron star as 

it passed by the massive star it orbits only once every 50 years. [20] 

For the first time astronomers have detected gravitational waves from a merged, hyper-massive 

neutron star. [19] 

A group of scientists from the Niels Bohr Institute (NBI) at the University of Copenhagen 

will soon start developing a new line of technical equipment in order to dramatically 

improve gravitational wave detectors. [18] 

A global team of scientists, including two University of Mississippi physicists, has found 

that the same instruments used in the historic discovery of gravitational waves caused 



by colliding black holes could help unlock the secrets of dark matter, a mysterious and 

as-yet-unobserved component of the universe. [17]  

The lack of so-called “dark photons” in electron-positron collision data rules out 

scenarios in which these hypothetical particles explain the muon’s magnetic moment. 

[16]  

By reproducing the complexity of the cosmos through unprecedented simulations, a new 

study highlights the importance of the possible behaviour of very high-energy photons. 

In their journey through intergalactic magnetic fields, such photons could be 

transformed into axions and thus avoid being absorbed. [15]  

Scientists have detected a mysterious X-ray signal that could be caused by dark matter 

streaming out of our Sun’s core.  

Hidden photons are predicted in some extensions of the Standard Model of particle 

physics, and unlike WIMPs they would interact electromagnetically with normal matter.  

In particle physics and astrophysics, weakly interacting massive particles, or WIMPs, are 

among the leading hypothetical particle physics candidates for dark matter.   

The gravitational force attracting the matter, causing concentration of the matter in a 

small space and leaving much space with low matter concentration: dark matter and 

energy.   

There is an asymmetry between the mass of the electric charges, for example proton and 

electron, can understood by the asymmetrical Planck Distribution Law. This 

temperature dependent energy distribution is asymmetric around the maximum 

intensity, where the annihilation of matter and antimatter is a high probability event. 

The asymmetric sides are creating different frequencies of electromagnetic radiations 

being in the same intensity level and compensating each other. One of these 

compensating ratios is the electron – proton mass ratio. The lower energy side has no 

compensating intensity level, it is the dark energy and the corresponding matter is the 

dark matter.   
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The Big Bang  
The Big Bang caused acceleration created radial currents of the matter, and since the matter is 

composed of negative and positive charges, these currents are creating magnetic field and 

attracting forces between the parallel moving electric currents. This is the gravitational force 

experienced by the matter, and also the mass is result of the electromagnetic forces between the 

charged particles. The positive and negative charged currents attracts each other or by the 

magnetic forces or by the much stronger electrostatic forces!?  

The gravitational force attracting the matter, causing concentration of the matter in a small space 

and leaving much space with low matter concentration: dark matter and energy.  

There is an asymmetry between the mass of the electric charges, for example proton and electron, 

can understood by the asymmetrical Planck Distribution Law. This temperature dependent energy 

distribution is asymmetric around the maximum intensity, where the annihilation of matter and 

antimatter is a high probability event. The asymmetric sides are creating different frequencies of 

electromagnetic radiations being in the same intensity level and compensating each other. One of 

these compensating ratios is the electron – proton mass ratio. The lower energy side has no 

compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.  

New findings bring physicists closer to understanding the formation of 

planets and stars  
Down a hallway in the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory 

(PPPL), scientists study the workings of a machine in a room stuffed with wires and metal 

components. The researchers seek to explain the behavior of vast clouds of dust and other material 

that encircle stars and black holes and collapse to form planets and other celestial bodies. 

New findings reported in Physical Review E further the understanding of a machine known as the 

magnetorotational instability (MRI) experiment, which is named for and brings us closer to 

detecting the source of the instability that causes the material to collapse into such bodies. The 

phenomenon has long been conjectured but never definitively shown to exist. 

The results of the PPPL experiment focus on the effect of copper endcaps that form artificial 

boundaries in place of nature's gravity on the top and bottom of the main vessel of the lab's 

machine. The device houses two nesting cylinders with the space between them filled with a liquid-

metal alloy known as Galinstan. 

"We're trying to recreate the conditions found in outer space in the laboratory, but we have to 

deal with these endcaps," says PPPL physicist Kyle Caspary, lead author of the paper. "In order to 

deal with them and discover the MRI in our apparatus, we have to fully understand the effects of 

https://phys.org/tags/outer+space/


the endcap boundaries. If we can understand this layer better, we could operate the machine in a 

way that would allow us to discern the fluctuations that we see from the MRI." 

The nested cylinders rotate at different speeds, creating regions of Galinstan that rotate in the 

cylinders at different rates. This rotation mimics the differential rotation rates of dust and other 

material swirling in so-called accretion disks around cosmic objects like stars and black holes. 

 

Schematic of the magnetorotational experiment. Credit: Kyle Caspary 

As the liquid in the nested cylinders turns, instabilities arise in the region between the two 

cylinders, just as storms develop between different masses of air. PPPL scientists scrutinize these 

fluctuations to find evidence of the magnetorotational instability, which is thought to cause the 

matter in accretion disks to collapse more quickly than current models predict. 

"Astrophysicists have hypothesized that if there were turbulence in the flow of material 

in accretion disks, that could explain the discrepancy between theory and observation," said Erik 

Gilson, the PPPL physicist in charge of the MRI experiment. "Turbulence would lead to a larger 

viscosity of flowing material, and that would mean a higher accretion rate." 

While endcaps are essential for operation of the MRI experiment to prevent the liquid alloy from 

splashing out, there are no endcaps in space. Understanding precisely how the endcaps affect the 

behavior of the Galinstan would therefore let scientists translate the data gathered by the MRI 

experiment into a form that would match what occurs in nature. 

The data gathered by Caspary indicate that the copper endcaps, which conduct electricity, seem to 

make certain instabilities more likely to occur. In addition, the conducting endcaps cause the 

instabilities to transition from one to many frequencies, like symphonies with multiple lines of 

sound. The multiple frequencies are evidence that the endcaps affect the magnetic fields in the 

https://phys.org/tags/accretion+disks/
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liquid metal. That interaction between the endcaps and the magnetic fields preserves the 

separation of the fast- and slow-moving regions of Galinstan. 

Caspary and Gilson now feel that they are closer to detecting the magnetorotational instability in 

space. "We gained some very useful insights into how the boundaries affect the stability of the 

flow, and some insights into how we can change our rotation rates and how we can spin the 

machine to avoid instabilities, while still being in a realm in which we can find the MRI," Caspary 

said. [39] 

 

Chandra detection of a circumnuclear torus 
Most galaxies host supermassive black holes at their nuclei, each with millions or billions of solar-

masses of material. There is thought to be a torus of dust and gas around the black holes, and an 

accreting disk that becomes very hot as material falls onto it, in turn heating the torus and 

circumnuclear gas and dust. Such an active galactic nucleus (AGN) radiates across the spectrum 

while the dust often blocks the innermost regions from view. Powerful bipolar jets of charged 

particles are often ejected as well. Radiation from the torus can be seen directly at infrared 

wavelengths and, when it scatters off the fast moving particles, at X-ray energies. 

Active galactic nuclei (AGN) are among the most dramatic and interesting phenomena in 

extragalactic astronomy. All of the standard AGN models predict the presence of a torus 

and accretion disk but the details of the region have been difficult to study directly because the 

torus is thought to be relatively small, only hundreds of light-years in size. The ALMA millimeter 

array, however, has recently enabled detection of nearby AGN structures in both continuum and 

molecular line emission. NGC5643 is a face-on spiral galaxy that hosts an AGN and bipolar jets. Last 

year ALMA spotted an elongated structure in its nucleus about eighty light-years across (about 200 

light-years across in emission from the cooler molecular gas component). Scientists had proposed 

that the structure was the expected AGN torus and the related molecular material responsible for 

the obscuration of the AGN and the collimation of the jets. 

CfA astronomers Pepi Fabbiano, Aneta Siemiginowska, and Martin Elvis and a colleague have now 

used the Chandra X-ray Observatory to image the region and its torus in X-rays. Looking at the 

energy of a bright X-ray line of iron, the team finds a structure about 200 light-years in extent that 

coincides quite well with the molecular structure. It appears to be clumpy, and that feature 

together with its size and the estimated density from the ALMA observations suggest that it is the 

circumnuclear disk. This is the first object for which both Chandra and ALMA have identified the 

critical torus; of added significance is the fact that the two observations span the range from X-ray 

to millimeter wavelengths. Normally these very different bands sample respectively extremely hot 

or extremely cold material arising from very different regions, but AGN make for a very complex 

neighborhood. [38]  

 

Hen 3-160 is a symbiotic binary with Mira variable star, study suggests  
A new study conducted by a team of astronomers from Poland and South Africa provides more 

insights into the nature of Hen 3-160, a symbiotic binary system in the southern Milky Way. The 

https://phys.org/tags/accretion+disk/
https://phys.org/tags/structure/


research, presented in a paper published December 22 on arXiv.org, proposes that this object is a 

symbiotic binary containing a Mira variable star. 

It is assumed that symbiotic binaries showcase dramatic, episodic changes in the spectra of their 

light because one star of pair is a very hot, small star while the other is a cool giant. In general, such 

systems are essential for researchers studying various aspects of stellar evolution. 

Astronomers divide symbiotic stars (SySt) into two main classes: S-type and D-type. Most known 

SySts are of S-type, which have near-infrared spectra generally dominated by the cool star's 

photosphere, and are indistinguishable from ordinary late-type giants. D-type symbiotic stars 

exhibit additional emission attributed to thick circumstellar dust shells. SySts of this class 

experience large amplitude variations due to the presence of Mira variables (red giants with 

pulsation periods longer than 100 days, and amplitudes greater than one magnitude in infrared and 

2.5 magnitude at visual wavelengths) and other long-period variable stars. 

Although Hen 3-160 (other designations: SS73 9, WRAY 15-208, Schwartz 1 and 2MASS 08245314-

512832) was first spotted in the 1960s, no detailed studies of this binary have been conducted, and 

very little is known about the parameters of its components. Thus, a group of astronomers led by 

Cezary Gałan of Nicolaus Copernicus Astronomical Center of the Polish Academy of Sciences in 

Warsaw, Poland, decided to analyze data from spectroscopic and photometric observations of Hen 

3-160 collected during a timespan of over two decades. 

Gałan's team used optical spectra obtained with SpUpNIC spectrograph on the 1.9-m Radcliffe 

telescope in Sutherland, South Africa, and photometric optical data acquired with a 35-cm Meade 

RCX400 telescope in Klein Karoo Observatory, near Sutherland. Analysis of this data sheds new light 

on the nature of Hen 3-160. 

"In this work, we present new observations collected over two decades which enabled us to reveal 

its very interesting nature," the astronomers wrote in the paper. 

The main conclusion from this study is that the giant in the Hen 3-160 system is a Mira variable 

pulsating with 242.5-day period. Moreover, it is the first known symbiotic Mira that is 

simultaneously the S-process enhanced star of MS spectral type. 

In particular, the researchers found that the large-amplitude periodic variations observed in the 

optical V and IC-band light curves with the pulse period of over 100 days, which were correlated 

with changes in other bands as well in the spectra, indicate that the cool component is a Mira star. 

Furthermore, the presence of comparably strong ZrO and TiO bands are indicative of the MS 

spectral type for this object, and place it among the S stars, proving that it is enhanced in the S-

process elements. 

The astronomers also estimated the distance of the Hen 3-160 system. They found that the binary 

is located some 30,600 light years away from the Earth, about 4,200 light years above the disk of 

the Milky Way galaxy. They added that galactic coordinates of Hen 3-160, together with relatively 

high proper motions, make it a galactic extended thick disc object. [37] 

https://phys.org/tags/stars/
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Tiny satellites could be 'guide stars' for huge next-generation 

telescopes  
There are more than 3,900 confirmed planets beyond our solar system. Most of them have been 

detected because of their "transits"—instances when a planet crosses its star, momentarily 

blocking its light. These dips in starlight can tell astronomers a bit about a planet's size and its 

distance from its star. 

But knowing more about the planet, including whether it harbors oxygen, water, and other signs of 

life, requires far more powerful tools. Ideally, these would be much bigger telescopes in space, with 

light-gathering mirrors as wide as those of the largest ground observatories. NASA engineers are 

now developing designs for such next-generation space telescopes, including "segmented" 

telescopes with multiple small mirrors that could be assembled or unfurled to form one very 

large telescope once launched into space. 

NASA's upcoming James Webb Space Telescope is an example of a segmented primary mirror, with 

a diameter of 6.5 meters and 18 hexagonal segments. Next-generation space telescopes are 

expected to be as large as 15 meters, with over 100 mirror segments. 

One challenge for segmented space telescopes is how to keep the mirror segments stable and 

pointing collectively toward an exoplanetary system. Such telescopes would be equipped with 

coronagraphs—instruments that are sensitive enough to discern between the light given off by a 

star and the considerably weaker light emitted by an orbiting planet. But the slightest shift in any of 

the telescope's parts could throw off a coronagraph's measurements and disrupt measurements of 

oxygen, water, or other planetary features. 

Now MIT engineers propose that a second, shoebox-sized spacecraft equipped with a 

simple laser could fly at a distance from the large space telescope and act as a "guide star," 

providing a steady, bright light near the target system that the telescope could use as a reference 

point in space to keep itself stable. 

In a paper published today in the Astronomical Journal, the researchers show that the design of 

such a laser guide star would be feasible with today's existing technology. The researchers say 

that using the laser light from the second spacecraft to stabilize the system relaxes the demand for 

precision in a large segmented telescope, saving time and money, and allowing for more flexible 

telescope designs. 

"This paper suggests that in the future, we might be able to build a telescope that's a little floppier, 

a little less intrinsically stable, but could use a bright source as a reference to maintain its stability," 

says Ewan Douglas, a postdoc in MIT's Department of Aeronautics and Astronautics and a lead 

author on the paper. 

The paper also includes Kerri Cahoy, associate professor of aeronautics and astronautics at MIT, 

along with graduate students James Clark and Weston Marlow at MIT, and Jared Males, Olivier 

Guyon, and Jennifer Lumbres from the University of Arizona. 

https://phys.org/tags/telescope/
https://phys.org/tags/laser/
https://phys.org/tags/laser+guide+star/
https://phys.org/tags/laser+light/


In the crosshairs 
For over a century, astronomers have been using actual stars as "guides" to stabilize ground-based 

telescopes. 

"If imperfections in the telescope motor or gears were causing your telescope to track slightly faster 

or slower, you could watch your guide star on a crosshairs by eye, and slowly keep it centered while 

you took a long exposure," Douglas says. 

In the 1990s, scientists started using lasers on the ground as artificial guide stars by exciting sodium 

in the upper atmosphere, pointing the lasers into the sky to create a point of light some 40 miles 

from the ground. Astronomers could then stabilize a telescope using this light source, which could 

be generated anywhere the astronomer wanted to point the telescope. 

"Now we're extending that idea, but rather than pointing a laser from the ground into space, we're 

shining it from space, onto a telescope in space," Douglas says. Ground telescopes need guide stars 

to counter atmospheric effects, but space telescopes for exoplanet imaging have to counter minute 

changes in the system temperature and any disturbances due to motion. 

The space-based laser guide star idea arose out of a project that was funded by NASA. The agency 

has been considering designs for large, segmented telescopes in space and tasked the researchers 

with finding ways of bringing down the cost of the massive observatories. 

"The reason this is pertinent now is that NASA has to decide in the next couple years whether these 

large space telescopes will be our priority in the next few decades," Douglas says. "That decision-

making is happening now, just like the decision-making for the Hubble Space Telescope happened 

in the 1960s, but it didn't launch until the 1990s.'" 

Star fleet 
Cahoy's lab has been developing laser communications for use in CubeSats, which are shoebox-

sized satellites that can be built and launched into space at a fraction of the cost of conventional 

spacecraft. 

For this new study, the researchers looked at whether a laser, integrated into a CubeSat or slightly 

larger SmallSat, could be used to maintain the stability of a large, segmented space telescope 

modeled after NASA's LUVOIR (for Large UV Optical Infrared Surveyor), a conceptual design that 

includes multiple mirrors that would be assembled in space. 

Researchers have estimated that such a telescope would have to remain perfectly still, within 10 

picometers—about a quarter the diameter of a hydrogen atom—in order for an onboard 

coronagraph to take accurate measurements of a planet's light, apart from its star. 

"Any disturbance on the spacecraft, like a slight change in the angle of the sun, or a piece of 

electronics turning on and off and changing the amount of heat dissipated across the spacecraft, 

will cause slight expansion or contraction of the structure," Douglas says. "If you get disturbances 

bigger than around 10 picometers, you start seeing a change in the pattern of starlight inside the 

telescope, and the changes mean that you can't perfectly subtract the starlight to see the planet's 

reflected light." 

https://phys.org/tags/stars/
https://phys.org/tags/decision-making/


The team came up with a general design for a laser guide star that would be far enough away from 

a telescope to be seen as a fixed star—about tens of thousands of miles away—and that would 

point back and send its light toward the telescope's mirrors, each of which would reflect the laser 

light toward an onboard camera. That camera would measure the phase of this reflected light over 

time. Any change of 10 picometers or more would signal a compromise to the telescope's stability 

that, onboard actuators could then quickly correct. 

To see if such a laser guide star design would be feasible with today's laser technology, Douglas and 

Cahoy worked with colleagues at the University of Arizona to come up with different brightness 

sources, to figure out, for instance, how bright a laser would have to be to provide a certain 

amount of information about a telescope's position, or to provide stability using models of segment 

stability from large space telescopes. They then drew up a set of existing laser transmitters and 

calculated how stable, strong, and far away each laser would have to be from the telescope to act 

as a reliable guide star. 

In general, they found laser guide star designs are feasible with existing technologies, and that the 

system could fit entirely within a SmallSat about the size of a cubic foot. Douglas says that a 

single guide star could conceivably follow a telescope's "gaze," traveling from one star to the next 

as the telescope switches its observation targets. However, this would require the smaller 

spacecraft to journey hundreds of thousands of miles paired with the telescope at a distance, as the 

telescope repositions itself to look at different stars. 

Instead, Douglas says a small fleet of guide stars could be deployed, affordably, and spaced across 

the sky, to help stabilize a telescope as it surveys multiple exoplanetary systems. Cahoy points out 

that the recent success of NASA's MARCO CubeSats, which supported the Mars Insight lander as a 

communications relay, demonstrates that CubeSats with propulsion systems can work in 

interplanetary space, for longer durations and at large distances. 

"Now we're analyzing existing propulsion systems and figuring out the optimal way to do this, and 

how many spacecraft we'd want leapfrogging each other in space," Douglas says. "Ultimately, we 

think this is a way to bring down the cost of these large, segmented space telescopes." [36] 

 

 

 

Next up: Ultracold simulators of super-dense stars  
Rice University physicists have created the world's first laser-cooled neutral plasma, completing a 

20-year quest that sets the stage for simulators that re-create exotic states of matter found inside 

Jupiter and white dwarf stars. 

The findings are detailed this week in the journal Science and involve new techniques 

for laser cooling clouds of rapidly expanding plasma to temperatures about 50 times colder than 

deep space. 

"We don't know the practical payoff yet, but every time physicists have laser cooled a new kind of 

thing, it has opened a whole world of possibilities," said lead scientist Tom Killian, professor of 

https://phys.org/tags/guide+star/
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physics and astronomy at Rice. "Nobody predicted that laser cooling atoms and ions would lead to 

the world's most accurate clocks or breakthroughs in quantum computing. We do this because it's a 

frontier." 

Killian and graduate students Tom Langin and Grant Gorman used 10 lasers of varying wavelengths 

to create and cool the neutral plasma. They started by vaporizing strontium metal and using one 

set of intersecting laser beams to trap and cool a puff of strontium atoms about the size of a 

child's fingertip. Next, they ionized the ultracold gas with a 10-nanosecond blast from a pulsed 

laser. By stripping one electron from each atom, the pulse converted the gas to a plasma of ions 

and electrons. 

Energy from the ionizing blast causes the newly formed plasma to expand rapidly and dissipate in 

less than one thousandth of a second. This week's key finding is that the expanding ions can be 

cooled with another set of lasers after the plasma is created. Killian, Langin and Gorman describe 

their techniques in the new paper, clearing the way for their lab and others to make even colder 

plasmas that behave in strange, unexplained ways. 

 

Rice University graduate student Tom Langin makes an adjustment to an experiment that uses 10 

lasers of varying wavelengths to laser-cool ions in a neutral plasma. (Photo by Brandon Martin/Rice 

University) Credit: Brandon Martin/Rice University 

Plasma is an electrically conductive mix of electrons and ions. It is one of four fundamental states of 

matter; but unlike solids, liquids and gases, which are familiar in daily life, plasmas tend to occur in 

very hot places like the surface of the sun or a lightning bolt. By studying ultracold plasmas, Killian's 

team hopes to answer fundamental questions about how matter behaves under extreme 

conditions of high density and low temperature. 

https://phys.org/tags/laser+beams/
https://phys.org/tags/ultracold+gas/
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To make its plasmas, the group starts with laser cooling, a method for trapping and slowing 

particles with intersecting laser beams. The less energy an atom or ion has, the colder it is, and the 

slower it moves about randomly. Laser cooling was developed in the 1990s to slow atoms until they 

are almost motionless, or just a few millionths of a degree above absolute zero. 

"If an atom or ion is moving, and I have a laser beam opposing its motion, as it scatters photons 

from the beam it gets momentum kicks that slow it," Killian said. "The trick is to make sure that 

light is always scattered from a laser that opposes the particle's motion. If you do that, the particle 

slows and slows and slows." 

During a postdoctoral fellowship at the National Institute of Standards and Technology in Bethesda, 

Md., in 1999, Killian pioneered the ionization method for creating neutral plasma from a laser-

cooled gas. When he joined Rice's faculty the following year, he started a quest for a way to make 

the plasmas even colder. One motivation was to achieve "strong coupling," a phenomenon that 

happens naturally in plasmas only in exotic places like white dwarf stars and the center of Jupiter. 

"We can't study strongly coupled plasmas in places where they naturally occur," Killian said. "Laser 

cooling neutral plasmas allows us to make strongly coupled plasmas in a lab, so that we can study 

their properties" 

 

Rice University graduate student Tom Langin works at the laser table where beams of various 

wavelengths were used to make the world's first laser-cooled neutral plasma. (Photo by Brandon 

Martin/Rice University) Credit: Brandon Martin/Rice University"In strongly coupled plasmas, there 

is more energy in the electrical interactions between particles than in the kinetic energy of their 

random motion," Killian said. "We mostly focus on the ions, which feel each other, and rearrange 

themselves in response to their neighbors' positions. That's what strong coupling means." 

https://phys.org/tags/laser+cooling/
https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/hires/2019/2-nextupultrac.jpg


Because the ions have positive electric charges, they repel one another through the same force that 

makes your hair stand up straight if it gets charged with static electricity. 

"Strongly coupled ions can't be near one another, so they try to find equilibrium, an arrangement 

where the repulsion from all of their neighbors is balanced," he said. "This can lead to strange 

phenomena like liquid or even solid plasmas, which are far outside our normal experience." 

In normal, weakly coupled plasmas, these repulsive forces only have a small influence on ion 

motion because they're far outweighed by the effects of kinetic energy, or heat. 

"Repulsive forces are normally like a whisper at a rock concert," Killian said. "They're drowned out 

by all the kinetic noise in the system." 

In the center of Jupiter or a white dwarf star, however, intense gravity squeezes ions together so 

closely that repulsive forces, which grow much stronger at shorter distances, win out. Even though 

the temperature is quite high, ions become strongly coupled. 

Killian's team creates plasmas that are orders of magnitude lower in density than those inside 

planets or dead stars, but by lowering the temperature they raise the ratio of electric-to-kinetic 

energies. At temperatures as low as one-tenth of a Kelvin above absolute zero, Killian's team has 

seen repulsive forces take over. 

"Laser cooling is well developed in gases of neutral atoms, for example, but the challenges are very 

different in plasmas," he said. 

"We are just at the beginning of exploring the implications of strong coupling in ultracold 

plasmas," Killian said. "For example, it changes the way that heat and ions diffuse through the 

plasma. We can study those processes now. I hope this will improve our models of exotic, strongly 

coupled astrophysical plasmas, but I am sure we will also make discoveries that we haven't dreamt 

of yet. This is the way science works." 

The research was supported by the Air Force Office of Scientific Research and the Department of 

Energy's Office of Science. [35] 

 

Luminous gamma-ray flare detected from the blazar DA 193 
An international group of astronomers has detected an intense and extremely luminous gamma-ray 

flare from one of high-redshift blazars known as DA 193. The new detection, reported in a paper 

published December 18 on arXiv.org, is an uncommon finding as such bright flares are rarely 

observed from high-redshift sources. 

Blazars, classified as members of a larger group of active galaxies that host active galactic 

nuclei (AGN), are the most numerous extragalactic gamma-ray sources. Their characteristic 

features are relativistic jets pointed almost exactly toward the Earth. In general, blazars are 

perceived by astronomers as high-energy engines serving as natural laboratories to study particle 

acceleration, relativistic plasma processes, magnetic field dynamics and black hole physics. 

https://phys.org/tags/repulsive+forces/
https://phys.org/tags/strong+coupling/
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Studies show that high-redshift blazars (with redshifts above 2.0) hosting massive black holes and 

the most powerful relativistic jets are the most luminous ones. Finding and observing new blazars 

at high redshifts could be crucial for providing insights into many phenomena of the universe, 

including the evolution and space density of massive black holes. 

A team of researchers led by Vaidehi S. Paliya of DESY research center in Zeuthen, Germany, 

investigated one such high-redshift blazar. They used the Large Area Telescope (LAT) on board 

NASA's Fermi Gamma-ray Space Telescope and other instruments to characterize physical 

properties DA 193 – a blazar observed close to the galactic anti-center at a redshift of 

approximately 2.36. These observations resulted in the detection of significant gamma-ray emission 

from this object. 

"In this work, we present the results of our study on another high-redshift blazar DA 193 (also 

known as 0552+398; z = 2.363, Wills & Wills 1976; McIntosh et al. 1999) which we have found as a 

new gamma-ray emitting object through our detailed Fermi-LAT analysis," the researchers wrote in 

the paper. 

DA 193 underwent a significant GeV flare in the first week of 2018. According to the study, it was an 

extremely luminous gamma-ray flare with a luminosity of about 130 quindecillion erg/s. 

The researchers note that such a GeV flare from a high-redshift blazar is a rare phenomenon. This is 

due to the fact that these blazars are generally faint in the gamma-ray band. 

Notably, DA 193 has an extremely hard gamma-ray spectrum. "What makes this event a rare one is 

the observation of an extremely hard γ-ray spectrum (photon index = 1.7 ± 0.2), which is somewhat 

unexpected since high-redshift blazars typically exhibit a steep falling spectrum at GeV energies," 

the paper reads. 

Trying to determine what caused such an intense and luminous flare from DA 193, the astronomers 

suggest that a change in the behavior of the underlying electron population could be responsible 

for the observed event. The team intends to use LAT for further continuous monitoring of the 

gamma-ray sky in order to find more powerful blazars showcasing luminous flares like DA 193. 

Studying such events could lead to a better understanding of radiative processes powering 

relativistic jets in blazars. [34] 

 

Our universe has antimatter partner on the other side of the Big Bang, 

say physicists  
Our universe could be the mirror image of an antimatter universe extending backwards in time 

before the Big Bang. So claim physicists in Canada, who have devised a new 

cosmological model positing the existence of an “antiuniverse” which, 

paired to our own, preserves a fundamental rule of physics called CPT symmetry. The researchers 

still need to work out many details of their theory, but they say it naturally explains the existence of 

dark matter. 

https://phys.org/tags/high-redshift/
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Standard cosmological models tell us that the universe – space, time and mass/energy – exploded 

into existence some 14 billion years ago and has since expanded and cooled, leading to the 

progressive formation of subatomic particles, atoms, stars and planets. 

 

However, Neil Turok of the Perimeter Institute for Theoretical Physics in 

Ontario reckons that these models’ reliance on ad-hoc parameters means they increasingly 

resemble Ptolemy’s description of the solar system. One such parameter, he says, is the brief 

period of rapid expansion known as inflation that can account for the universe’s large-scale 

uniformity. “There is this frame of mind that you explain a new phenomenon by inventing a new 

particle or field,” he says. “I think that may turn out to be misguided.” 

Instead, Turok and his Perimeter Institute colleague Latham Boyle set out to develop a model 

of the universe that can explain all observable phenomena based only on the known particles and 

fields. They asked themselves whether there is a natural way to extend the universe beyond the Big 

Bang – a singularity where general relativity breaks down – and then out the other side. “We found 

that there was,” he says. 

The answer was to assume that the universe as a whole obeys CPT symmetry. This fundamental 

principle requires that any physical process remains the same if time is reversed, space inverted 

and particles replaced by antiparticles. Turok says that this is not the case for the universe that we 

see around us, where time runs forward as space expands, and there’s more matter than 

antimatter. 

https://www.perimeterinstitute.ca/people/neil-turok
https://www.perimeterinstitute.ca/
https://www.perimeterinstitute.ca/people/latham-boyle
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In a CPT-

symmetric universe, time would run backwards from the Big Bang and antimatter would dominate 

(Courtesy: L Boyle/Perimeter Institute of Theoretical Physics) 

Instead, says Turok, the entity that respects the symmetry is a universe–antiuniverse pair. The 

antiuniverse would stretch back in time from the Big Bang, getting bigger as it does so, and would 

be dominated by antimatter as well as having its spatial properties inverted compared to those in 

our universe – a situation analogous to the creation of electron–positron pairs in a vacuum, says 

Turok. 

Turok, who also collaborated with Kieran Finn of Manchester University in the UK, acknowledges 

that the model still needs plenty of work and is likely to have many detractors. Indeed, he says that 

he and his colleagues “had a protracted discussion” with the referees reviewing the paper 

for Physical Review Letters – where it was eventually published – over the 

temperature fluctuations in the cosmic microwave background. “They said you have to explain the 

fluctuations and we said that is a work in progress. Eventually they gave in,” he says. 

In very broad terms, Turok says, the fluctuations are due to the quantum-mechanical nature of 

space–time near the Big Bang singularity. While the far future of our universe and the distant past 

of the antiuniverse would provide fixed (classical) points, all possible quantum-based permutations 

would exist in the middle. He and his colleagues counted the instances of each possible 

configuration of the CPT pair, and from that worked out which is most likely to exist. “It turns out 

that the most likely universe is one that looks similar to ours,” he says. 

Turok adds that quantum uncertainty means that universe and antiuniverse are not exact mirror 

images of one another – which sidesteps thorny problems such as free will. 

 

READ MORE 
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Cyclic universe could explain cosmological constant 

 

But problems aside, Turok says that the new model provides a natural candidate for dark matter. 

This candidate is an ultra-elusive, very massive particle called a “sterile” neutrino hypothesized to 

account for the finite (very small) mass of more common left-handed neutrinos. According to 

Turok, CPT symmetry can be used to work out the abundance of right-handed neutrinos in our 

universe from first principles. By factoring in the observed density of dark matter, he says that 

quantity yields a mass for the right-handed neutrino of about 5×108 GeV – some 500 million times 

the mass of the proton. 

Turok describes that mass as “tantalizingly” similar to the one derived from a couple of anomalous 

radio signals spotted by the Antarctic Impulsive Transient Antenna (ANITA). The balloon-borne 

experiment, which flies high over Antarctica, generally observes cosmic rays travelling down 

through the atmosphere. However, on two occasions ANITA appears to have detected particles 

travelling up through the Earth with masses between 2 and 10×108 GeV. Given that ordinary 

neutrinos would almost certainly interact before getting that far, Thomas Weiler of Vanderbilt 

University and colleagues recently proposed that the culprits were instead 

decaying right-handed neutrinos. 

Turok, however, points out a fly in the ointment – which is that the CPT symmetric model requires 

these neutrinos to be completely stable. But he remains cautiously optimistic. “It is possible to 

make these particles decay over the age of the universe but that takes a little adjustment of our 

model,” he says. “So we are still intrigued but I certainly wouldn’t say we are convinced at this 

stage.” [33] 
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NASA rings in New Year with historic flyby of faraway world  
NASA rang in the New Year on Tuesday with a historic flyby of the farthest, and quite possibly the 

oldest, cosmic body ever explored by humankind—a tiny, distant world called Ultima Thule—in the 

hopes of learning more about how planets took shape. 

"Go New Horizons!" said lead scientist Alan Stern as a crowd including kids dressed in space 

costumes blew party horns and cheered at the Johns Hopkins Applied Physics Laboratory in 

Maryland to mark the moment at 12:33 am (0533 GMT) when the New Horizons spacecraft aimed 

its cameras at the space rock four billion miles (6.4 billion kilometers) away in a dark and frigid 

region of space known as the Kuiper Belt. 

Offering scientists the first up-close look at an ancient building block of planets, the flyby took place 

about a billion miles beyond Pluto, which was until now the most faraway world ever visited up 

close by a spacecraft. 

Real-time video of the actual flyby was impossible, since it takes more than six hours for a signal 

sent from Earth to reach the spaceship, and another six hours for the response to arrive. 

The first signal back to Earth should come about 10 hours after the flyby, around 9:45 am (1445 

GMT), letting NASA know if New Horizons survived the risky, high-speed encounter. 

Hurtling through space at a speed of 32,000 miles per hour, the spacecraft aimed to make its 

closest approach within 2,200 miles of the surface of Ultima Thule. 

"This is a night none of us are going to forget," said Queen guitarist Brian May—who also holds an 

advanced degree in astrophysics—and who recorded a solo track to honor the spacecraft and its 

spirit of exploration. 

Stern said Ultima Thule is unique because it is a relic from the early days of the solar system and 

could provide answers about the origins of other planets. 

"The object is in such a deep freeze that it is perfectly preserved from its original formation," he 

said. 

"Everything we are going to learn about Ultima—from its composition to its geology to how it was 

originally assembled, whether it has satellites and an atmosphere and those kinds of things—are 

going to teach us about the original formation conditions of objects in the solar system." 



 

NASA's New Horizons spacecraft is heading for a January 1 flyby of Ultima Thule, an icy object in the 

Kuiper Belt on the outer limits of the solar system 

What does it look like? 

Scientists are not sure what Ultima Thule (pronounced TOO-lee) looks like—whether it is cratered 

or smooth, or even if it is a single object or a cluster. 

It was discovered in 2014 with the help of the Hubble Space Telescope, and is believed to be 12-20 

miles in size. 

A blurred and pixelated image released Monday, taken from 1.2 million miles away, has intrigued 

scientists because it appears to show an elongated blob, not a round space rock. 

The spaceship was to collect 900 images over the course of a few seconds as it shaved by. Even 

clearer images should arrive over the next three days. 

"Now it is just a matter of time to see the data coming down," said deputy project scientist John 

Spencer of the Southwest Research Institute. 

Scientists decided to study Ultima Thule with New Horizons after the spaceship, which launched in 

2006, completed its main mission of flying by Pluto in 2015, returning the most detailed images 

ever taken of the dwarf planet. 

Stern said the goal is to take images of Ultima that are three times the resolution the team had for 

Pluto. 

https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/2019/nasasnewhori.jpg


Frontier of planetary science 
Ultima Thule is named for a mythical, far-northern island in medieval literature and cartography, 

according to NASA. 

Project scientist Hal Weaver of the Johns Hopkins Applied Physics Laboratory said humans didn't 

even know the Kuiper Belt—a vast ring of relics from the formation days of the solar system—

existed until the 1990s. 

"This is the frontier of planetary science," said Weaver. 

"We finally have reached the outskirts of the solar system, these things that have been there since 

the beginning and have hardly changed—we think. We will find out." 

Another NASA spacecraft, OSIRIS-REx, also set a new record on Monday by entering orbit around 

the asteroid Bennu, the smallest cosmic object—about 1,600 feet (500 meters) in diameter—ever 

circled by a spacecraft. 

NASA said the orbit some 70 million miles (110 million kilometers) away marks "a leap for 

humankind" because no spacecraft has ever "circled so close to such a small space object—one 

with barely enough gravity to keep a vehicle in a stable orbit." 

The twin planetary feats coincided with the 50th anniversary of the first time humans ever explored 

another world, when US astronauts orbited the Moon aboard Apollo 8 in December, 1968. 

"As you celebrate New Year's Day, cast an eye upward and think for a moment about the amazing 

things our country and our species can do when we set our minds to it," Stern wrote in the New 

York Times on Monday. [32] 

 

When you look up, how far back in time do you see? 
Our senses are stuck in the past. There's a flash of lightning, and then seconds pass until we hear 

the rumble of distant thunder. We hear the past. 

We are seeing into the past too. 

While sound travels about a kilometre every three seconds, light travels 300,000 kilometres every 

second. When we see a flash of lighting three kilometres away, we are seeing something that 

happened a hundredth of a millisecond ago. That's not exactly the distant past. 

But as we look further afield, we can peer further back. We can see seconds, minutes, hours and 

years into the past with our own eyes. Looking through a telescope, we can look even further into 

the past. 

A second back in time 
If you really want to look back in time, you need to look up. 

The moon is our nearest celestial neighbour—a world with valleys, mountains and craters. 

https://solarsystem.nasa.gov/moons/earths-moon/overview/


It's also about 380,000km away, so it takes 1.3 seconds for light to travel from the moon to us. We 

see the moon not as it is, but as it was 1.3 seconds ago. 

The moon doesn't change much from instant to instant, but this 1.3-second delay is perceptible 

when mission control talks to astronauts on the moon. Radio waves travel at the speed of light, so a 

message from mission control takes 1.3 seconds to get to the moon, and even the quickest of 

replies takes another 1.3 seconds to come back. 

Radio communications to the moon have a perceptible time delay.Minutes and hours 

It's not hard to look beyond the moon and further back in time. The Sun is about 150 million km 

away, so we see it as it was about 8 minutes ago. 

Even our nearest planetary neighbours, Venus and Mars, are tens of millions of kilometres away, so 

we see them as they were minutes ago. When Mars is very close to Earth, we are seeing it as it was 

about three minutes ago, but at other times light takes more than 20 minutes to travel from Mars 

to Earth. 

This presents some problems if you're on Earth controlling a Rover on Mars. If you're driving the 

Rover at 1km per hour then the lag, due to the finite speed of light, means the rover could be 200 

metres ahead of where you see it, and it could travel another 200 metres after you command it to 

hit the brakes. 

Not surprisingly, Martian Rovers aren't breaking any speed records, travelling at 5cm per second 

(0.18kph or 0.11mph), and on-board computers help with driving, to prevent rover wrecks. 

 

The light travel time from Mars to Earth changes as the distance to Mars changes. Credit: NASA, 

ESA, and Z. Levay (STScI), CC BY 
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Not surprisingly, Martian Rovers aren't breaking any speed records, travelling at 5cm per second 

(0.18kph or 0.11mph), with rovers following carefully programmed sequences and using on-board 

computers to avoid hazards and prevent punctures. 

Let's go a bit further out in space. At its closest to Earth, Saturn is still more than a billion 

kilometres away, so we see it as it was more than an hour ago. 

When the world tuned into the Cassini spacecraft's plunge into Saturn's atmosphere in 2017, 

we were hearing echos from a spacecraft that had already been destroyed more than an hour 

before. 

Years 
The night sky is full of stars, and those stars are incredibly distant. The distances are measured 

in light years, which corresponds to the distance travelled by light in one year. That's about 9 

trillion km. 

As light moves at finite speed, we can see bursts of light echo off interstellar dust.Alpha Centauri, 

the nearest star visible to the unaided eye, is at a distance 270,000 times the distance between 

Earth and the Sun. That's 4 light years, so we see Alpha Centauri as it was 4 years ago. 

Some bright stars are much more distant still. Betelgeuse, in the constellation Orion, is about 640 

light years away. If Betelgeuse exploded tomorrow (and it will explode one day), we wouldn't 

know about it for centuries. 

Even without a telescope we can see much much further. The Andromeda galaxy and the 

Magellanic Clouds are relatively nearby galaxies that are bright enough to be seen with the unaided 

eye. 

The Large Magellanic cloud is a mere 160,000 light years away, while Andromeda is 2.5 million light 

years away. For comparison, modern humans have only walked the Earth for about 300,000 years. 
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3C 273 can be seen with a small telescope despite being billions of light years away. 

Credit: ESA/Hubble & NASA, CC BYBillions 

With the unaided eye you can look millions of years into the past, but how about billions? Well, you 

can do that at the eyepiece of an amateur telescope. 

Quasar 3C 273 is an incredibly luminous object, which is brighter than individual galaxies, and 

powered by a huge black hole. 

But it's 1,000 times fainter than what the unaided eye can see because it's 2.5 billion light years 

away. That said, you can spot it with a 20cm aperture telescope. 

A bigger telescope allows you to peer even further into space, and I once had the pleasure of using 

an eyepiece on a 1.5-metre diameter telescope. Quasar APM 08279+5255 was just a faint dot, 

which isn't surprising as it's 12 billion light years away. 
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With a big enough telescope you can see quasar APM 08279+5255 and look 12 billion years back in 

time. Credit: Sloan Digital Sky Survey, CC BY 

Earth is just 4.5 billion years old, and even the universe itself is 13.8 billion years old. Relatively 

few people have seen APM 08279+5255 with their own eyes, and in doing so they (and I) have 

looked back across almost the entire history of our universe. 

So when you look up, remember you aren't seeing things as they are now; you're seeing things as 

they were. 

Without really trying, you can see years into the past. And with the aid of a telescope you can see 

millions or even billions of years into the past with your very own eyes. [31] 

 

ESA sets clock by distant spinning stars  
ESA's technical centre in the Netherlands has begun running a pulsar-based clock. The "PulChron' 

system measures the passing of time using millisecond-frequency radio pulses from multiple fast-

spinning neutron stars. 

Operating since the end of November, this pulsar-based timing system is hosted in the Galileo 

Timing and Geodetic Validation Facility of ESA's ESTEC establishment, at Noordwijk in the 

Netherlands, and relies on ongoing observations by a five-strong array of radio telescopes across 

Europe. 

Neutron stars are the densest form of observable matter in the cosmos, formed out of the 

collapsed core of exploding stars. Tiny in cosmic terms, on the order of a dozen kilometres in 

diameter, they still have a higher mass than Earth's Sun. 
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A pulsar is a type of rapidly rotating neutron star with a magnetic field that emits a beam of 

radiation from its pole. Because of their spin – kept steady by their extreme density – pulsars as 

seen from Earth appear to emit highly regular radio bursts – so much so that in 1967 their 

discoverer, UK astronomer Jocelyn Bell Burnell, initially considered they might be evidence of 'little 

green men." 

"PulChron aims to demonstrate the effectiveness of a pulsar-based timescale for the generation 

and monitoring of satellite navigation timing in general, and Galileo System Time in particular," 

explains navigation engineer Stefano Binda, overseeing the PulChron project. 

 

Atomic clocks at ESTEC's Navigation Laboratory: the container on the far right of the image houses 

an active hydrogen maser atomic clock - an order of magnitude more accurate than the passive 

hydrogen masers aboard each Galileo satellite, …more"A timescale based on pulsar measurements 

is typically less stable than one using atomic or optical clocks in the short term but it could be 

competitive in the very long term, over several decades or more, beyond the working life of any 

individual atomic clock. 

"In addition, this pulsar time scale works quite independently of whatever atomic clock technology 

is employed – it doesn't rely on switches between atomic energy states but the rotation of neutron 

stars." 

PulChron sources batches of pulsar measurements from the five 100-m class radio telescopes 

comprising the European Pulsar Timing Array – the Westerbork Synthesis Radio Telescope in the 

Netherlands, Germany's Effelsberg Radio Telescope, the Lovell Telescope in the UK, France's 

Nancay Radio Telescope and the Sardinia Radio Telescope in Italy. 
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This multinational effort monitors 18 highly precise pulsars in the European sky to search out any 

timing anomalies, potential evidence of gravitational waves – fluctuations in the fabric of spacetime 

caused by powerful cosmic events. 

For PulChron, these radio telescope measurements are used to steer the output of an active 

hydrogen maser atomic clock with equipment based in the Galileo Timing and Geodetic Validation 

Facility – combining its extreme short- and medium-term stability with the longer-term reliability of 

the pulsars. A 'paper clock' record is also generated out of the measurements, for subsequent post-

processing checks. 

 

Setup of the PulChron system, setting an atomic clock using millisecond-scale pulses from fast-

spinning pulsars. Radio telescope measurements are used to steer the output of an active hydrogen 

maser atomic clock with equipment based in …more 

ESA established the Timing and Geodetic Validation Facility in the early days of the Galileo 

programme, first to prepare for ESA's two GIOVE test satellites and then in support of the world-

spanning Galileo system, based on "Galileo System Time' which needs to remain accurate to a few 

billionths of a second. The Facility continues to serve as an independent yardstick of Galileo 

performance, linked to monitoring stations across the globe, as well as a tool for anomaly 

investigation. 

Stefano adds: "The TGVF provided a perfect opportunity to host the PulChron because it is capable 

of integrating such new elements with little effort, and has a long tradition in time applications, 

having been used even to synchronise time and frequency offset of the Galileo satellites 

themselves." 
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PulChron's accuracy is being monitored down to a few billionths of a second using ESA's adjacent 

UTC Laboratory, which harnesses three such atomic hydrogen maser clocks plus a trio of caesium 

clocks to produce a highly-stable timing signal, contributing to the setting of Coordinated Universal 

Time, UTC – the world's time. 

The gradual diversion of pulsar time from ESTEC's UTC time can therefore be tracked – anticipated 

at a rate of around 200 trillionths of a second daily. [30] 

 

A virtual reality experience of being inside an exploded star  
Cassiopeia A, the youngest known supernova remnant in the Milky Way, is the remains of a star 

that exploded almost 400 years ago. The star was approximately 15 to 20 times the mass of our sun 

and sat in the Cassiopeia constellation, almost 11,000 light-years from earth. 

Though stunningly distant, it's now possible to step inside a virtual-reality (VR) depiction of what 

followed that explosion. 

A team led by Kimberly Kowal Arcand from the Harvard-Smithsonian Center for Astrophysics (CfA) 

and the Center for Computation and Visualization at Brown University has made it possible for 

astronomers, astrophysicists, space enthusiasts, and the simply curious to experience what it's like 

inside a dead star. Their efforts are described in a recent paper in Communicating Astronomy with 

the Public. 

The VR project—believed to be the first of its kind, using X-ray data from NASA's Chandra X-ray 

Observatory mission (which is headquartered at CfA), infrared data from the Spitzer Space 

Telescope, and optical data from other telescopes—adds new layers of understanding to one of the 

most famous and widely studied objects in the sky. 

"Our universe is dynamic and 3-D, but we don't get that when we are constantly looking at things" 

in two dimensions, said Arcand, the visualization lead at CfA. 

The project builds on previous research done on Cas A, as it's commonly known, that first rendered 

the dead star into a 3-D model using the X-ray and optical data from multiple telescopes. Arcand 

and her team used that data to convert the model into a VR experience by using MinVR and VTK, 

two data visualization platforms. The coding work was primarily handled by Brown computer 

science senior Elaine Jiang, a co-author on the paper. 

The VR experience lets users walk inside a colorful digital rendering of the stellar explosion and 

engage with parts of it while reading short captions identifying the materials they see. 

"Astronomers have long studied supernova remnants to better understand exactly how stars 

produce and disseminate many of the elements observed on Earth and in the cosmos at large," 

Arcand said. 

When stars explode, they expel all of their elements into the universe. In essence, they help create 

the elements of life, from the iron in our blood to the calcium in our bones. All of that, researchers 

believe, comes from previous generations of exploded stars. 
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In the 3-D model of Cas A, and now in the VR model, elements such as iron, silicon, and sulfur are 

represented by different colors. Seeing it in 3-D throws Cas A into fresh perspective, even for 

longtime researchers and astronomers who build models of supernova explosions. 

"The first time I ever walked inside the same data set that I have been staring at for 20 years, I just 

immediately was fascinated by things I had never noticed, like how various bits of the iron were in 

different locations," Arcand said. "The ability to look at something in three dimensions and being 

immersed in it just kind of opened up my eyes to think about it in different ways." 

The VR platforms also opens understanding of the supernova remnant, which is the strongest radio 

source beyond our solar system, to new audiences. VR versions of Cas A are available by request for 

a VR cave (a specially made room in which the floors and walls are projection screens), as well as on 

Oculus Rift, a VR computer platform. As part of this project, the team also created a version that 

works with Google Cardboard or similar smartphone platforms. In a separate but related project, 

Arcand and a team from CfA worked with the Smithsonian Learning Lab to create a browser-based, 

interactive, 3-D application and 360-degree video of Cas A that works with Google Cardboard and 

similar platforms. 

 

Wearing VR goggles Kim Arcand views a 3-D representation of the Cassiopeia A supernova remnant 

at the YURT VR Cave at Brown. Credit: NASA/CXC/SAO; NASA/CXC/E.Jiang"My whole career has 

been looking at data and how we take data and make it accessible or visualize it in a way that adds 

meaning to it that's still scientific," Arcand said. 

VR is an almost perfect avenue for this approach, since it has been surging in popularity as both 

entertainment and an educational tool. It has been used to help medical staff prepare for surgeries, 

for example, and video game companies have used it to add excitement and immersion to popular 

games. 
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Arcand hopes to make Cas A accessible to even more people, such as the visually impaired, by 

adding sound elements to the colors in the model. 

Reaction to the VR experience has been overwhelmingly positive, Arcand said. Experts and non-

experts alike are hit by what Arcand calls "awe moments" of being inside and learning about 

something so massive and far away. 

"Who doesn't want to walk inside a dead star?" Arcand said. [29] 

 

New source of very high energy gamma-ray emission detected in the 

neighborhood of the supernova remnant G24.7+0.6 
Using MAGIC telescopes and NASA's Fermi spacecraft, an international team of astronomers has 

discovered a new source of very high energy gamma-ray emission around the supernova remnant 

(SNR) G24.7+0.6. The detection of the new source, designated MAGIC J1835–069, is detailed in a 

paper published December 12 on the arXiv pre-print server. 

Supernova remnants are basically leftovers of massive stars that ended their lives in huge 

explosions called supernovae. Astronomers generally distinguish three types of SNRs, one of which 

is the composite SNR—these having rapidly expanding shells from the supernova blast wave 

accompanied by wind nebulae powered by young pulsars formed in the explosions. 

Observations show that composite SNRs are known to accelerate particles to very high energies 

(VHE), up to hundreds of TeV or beyond, in their expanding shocks or the relativistic wind 

surrounding the energetic pulsar. Therefore, such objects are excellent targets for observations 

focused on finding new sources of VHE emission. 

Located about 16,300 light years away, SNR G24.7+0.6 is an example of a middle-aged (around 

9,500 years old) radio and gamma-ray composite SNR. A group of astronomers have carried out a 

study of this remnant using the MAGIC (Major Atmospheric Gamma Imaging Cherenkov 

Telescopes) system at the Roque de los Muchachos Observatory in the Canary Islands and the Large 

Area Telescope (LAT) onboard NASA's Fermi Gamma-ray Space Telescope. 

Data provided by these telescopes allowed the team to identify a VHE emission from an extended 

source located 0.34 degrees away from the center of G24.7+0.6, which received designation MAGIC 

J1835–069. 

"In this paper, we study the interesting region centered around SNR G24.7+0.6 with Fermi-LAT in 

the energy range between 60 MeV and 500 GeV. We also explore with the MAGIC telescopes the 

region around it to investigate the spectral behavior above 150 GeV in order to constrain the 

emission region observed by Fermi-LAT around the SNR," the researchers wrote in the paper. 

The emission from MAGIC J1835–069 was found at energies above 150 GeV and has been detected 

up to 5 TeV. The spectrum of this source is well-represented by a power-law function with spectral 

index of 2.74. 

The emission from MAGIC J1835–069 also has a projected size of approximately 98 light years and 

showcases an extended morphology. The newly found source lies between two known extended 

https://phys.org/tags/emission/
https://phys.org/tags/light+years/


sources detected above 10 GeV by Fermi-LAT, namely FGES J1836.5–0652 and the FGES J1834.1– 

0706. 

The origin of VHE gamma-ray emission from MAGIC J1835–069 remains uncertain due to the 

complexity of the neighboring region of G24.7+0.6. However, the authors of the paper suggest that 

it could be explained by cosmic rays accelerated within the remnant interacting via proton-proton 

collisions with the carbon monoxide-rich surrounding medium. 

"The detected gamma-ray emission can be interpreted as the results of proton-proton interaction 

between the supernova and the CO-rich surrounding," the researchers concluded. [28] 

 

New insights into pion condensation and the formation of neutron stars 
In 1973, Russian physicist A.B. Migdal predicted the phenomenon of pion condensation above a 

critical, extremely high—several times higher than that for normal matter— nuclear density. 

Although this condensation has never been observed, it is expected to play a key role in the rapid 

cooling process of the core of neutron stars. These city-size heavy stellar objects are so dense that 

on Earth, one teaspoonful would weigh a billion tons. 

Recently, researchers from the RIKEN Nishina Center for Accelerator-Based Science and Kyushu 

University, performing an experiment at the RIKEN RI Beam Factory on a very neutron-rich tin 

isotope, investigated whether this process could really occur in neutron stars having the mass of 

about 1.4 times that of our sun. Similar investigations were conducted previously on stable 

isotopes, such as 90Zr or 208Pb, but this time the researchers decided to study the case of 132Sn, 

an isotope of tin. This doubly magic unstable nucleus has a fairly simple structure that makes the 

theoretical calculations easily compared to other isotopes with similar mass. Furthermore, 132Sn 

with its large neutron excess (it consists of 50 protons and 82 neutrons) provides better conditions 

than the stable isotopes for extending this study toward the pure neutron matter in the neutron 

stars. 

A secondary cocktail beam containing 132Sn was produced by projectile fragmentation of a 

uranium primary beam colliding with thick a beryllium target. Then, a liquid hydrogen target was 

irradiated with 132Sn. Resulting in the collective excitation of the neutrons and protons of the tin 

nuclei, with the neutron spin and proton spin oscillating out of phase. This excitation mode, called 

"giant resonance," is suitable for studying the short-range interactions that, while being crucial in 

the onset of pion condensation, are complex and extremely difficult to measure. 

According to Masaki Sasano from RIKEN Nishina Center, who is one of the first authors of this study, 

their result, which was published in the Physical Review Letters journal, shows that the pion 

condensation should occur at around two times normal nuclear density, which can be realized in a 

neutron star with a mass of 1.4 times that of the sun. Sasano said that in order to understand the 

possibility of the pion condensation fully, they plan to extend these unique studies of giant 

resonances to other neutron-rich nuclei that are far beyond the stability line, having large neutron-

proton asymmetry. [27] 

https://phys.org/tags/proton-proton+collisions/
https://phys.org/tags/proton-proton+collisions/
https://phys.org/tags/neutron/
https://phys.org/tags/stable+isotopes/
https://phys.org/tags/stable+isotopes/
https://phys.org/tags/isotopes/
https://phys.org/tags/neutron+stars/
https://phys.org/tags/neutron+stars/
https://phys.org/tags/condensation/


 

Beyond the black hole singularity  
Our first glimpses into the physics that exist near the center of a black hole are being made possible 

using "loop quantum gravity"—a theory that uses quantum mechanics to extend gravitational 

physics beyond Einstein's theory of general relativity. Loop quantum gravity, originated at Penn 

State and subsequently developed by a large number of scientists worldwide, is opening up a new 

paradigm in modern physics. The theory has emerged as a leading candidate to analyze extreme 

cosmological and astrophysical phenomena in parts of the universe, like black holes, where the 

equations of general relativity cease to be useful. 

Previous work in loop quantum gravity that was highly influential in the field analyzed the quantum 

nature of the Big Bang, and now two new papers by Abhay Ashtekar and Javier Olmedo at Penn 

State and Parampreet Singh at Louisiana State University extend those results to black hole 

interiors. The papers appear as "Editors' suggestions" in the journals Physical Review Letters and 

Physical Review on December 10, 2018 and were also highlighted in a Viewpoint article in the 

journal Physics. 

"The best theory of gravity that we have today is general relativity, but it has limitations," said 

Ashtekar, Evan Pugh Professor of Physics, holder of the Eberly Family Chair in Physics, and director 

of the Penn State Institute for Gravitation and the Cosmos. "For example, general relativity predicts 

that there are places in the universe where gravity becomes infinite and space-time simply ends. 

We refer to these places as 'singularities.' But even Einstein agreed that this limitation of general 

relativity results from the fact that it ignores quantum mechanics." 

At the center of a black hole the gravity is so strong that, according to general relativity, space-time 

becomes so extremely curved that ultimately the curvature becomes infinite. This results in space-

time having a jagged edge, beyond which physics no longer exists—the singularity. Another 

example of a singularity is the Big Bang. Asking what happened before the Big Bang is a 

meaningless question in general relativity, because space-time ends, and there is no before. But 

modifications to Einstein's equations that incorporated quantum mechanics through loop quantum 

gravity allowed researchers to extend physics beyond the Big Bang and make new predictions. The 

two recent papers have accomplished the same thing for the black hole singularity. 

"The basis of loop quantum gravity is Einstein's discovery that the geometry of space-time is not 

just a stage on which cosmological events are acted out, but it is itself a physical entity that can be 

bent," said Ashtekar. "As a physical entity the geometry of space-time is made up of some 

fundamental units, just as matter is made up of atoms. These units of geometry—called 'quantum 

excitations'—are orders of magnitude smaller than we can detect with today's technology, but we 

have precise quantum equations that predict their behavior, and one of the best places to look for 

their effects is at the center of a black hole." According to general relativity, at the center of a black 

hole gravity becomes infinite so everything that goes in, including the information needed for 

physical calculations, is lost. This leads to the celebrated 'information paradox' that theoretical 

physicists have been grappling with for over 40 years. However, the quantum corrections of loop 

quantum gravity allow for a repulsive force that can overwhelm even the strongest pull of 

classical gravity and therefore physics can continue to exist. This opens an avenue to show in detail 
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that there is no loss of information at the center of a blackhole, which the researchers are now 

pursuing. 

Interestingly, even though loop quantum gravity continues to work where general relativity breaks 

down—black hole singularities, the Big Bang—its predictions match those of general relativity quite 

precisely under less extreme circumstances away from the singularity. "It is highly non-trivial to 

achieve both," said Singh, associate professor of physics at Louisiana State. "Indeed, a number of 

investigators have explored the quantum nature of the black hole singularity over the past decade, 

but either the singularity prevailed or the mechanisms that resolved it unleashed unnatural effects. 

Our new work is free of all such limitations." [26] 

 

Will we ever see a black hole? 
In the shadowy regions of black holes two fundamental theories describing our world collide. Can 

these problems be resolved and do black holes really exist? First, we may have to see one and 

scientists are trying to do just this. 

Of all the forces in physics there is one that we still do not understand at all: Gravity. 

Gravity is where fundamental physics and astronomy meet, and where the two most fundamental 

theories describing our world—quantum theory and Einstein's theory of spacetime and gravity 

(aka. the theory of general relativity) – clash head on. 

The two theories are seemingly incompatible. And for the most part this isn't a problem. They both 

live in distinct worlds, where quantum physics describes the very small, and general relativity 

describes the very largest scales. 

Only when you get to very small scales and extreme gravity, do the two theories collide, and 

somehow, one of them gets it wrong. At least in theory. 

But there is once place in the universe where we could actually witness this problem occurring in 

real life and perhaps even solve it: the edge of a black hole. Here, we find the most extreme gravity. 

There's just one issue – nobody has ever actually 'seen' a black hole. 

So, what is a black hole? 
Imagine that the entire drama of the physical world unfolds in the theatre of spacetime, but gravity 

is the only 'force' that actually modifies the theatre in which it plays. 

The force of gravity rules the universe, but it may not even be a force in the traditional sense. 

Einstein described it as a consequence of the deformation of spacetime. And perhaps it simply does 

not fit the standard model of particle physics. 

When a very big star explodes at the end of its lifetime, its innermost part will collapse under its 

own gravity, since there is no longer enough fuel to sustain the pressure working against the force 

of gravity (yes, gravity feels like a force after all, doesn't it!). 

The matter collapses and no force in nature is known to be able to stop that collapse, ever. 
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In an infinite time, the star will have collapsed into an infinitely small point: a singularity – or to give 

it another name, a black hole. 

Of course, in a finite time the stellar core will have collapsed into something of a finite size and this 

would still be a huge amount of mass in an insanely small region and it still is called a black hole! 

Black holes do not suck in everything around them 
Interestingly, it is not true that a black hole will inevitably draw everything in. 

In fact, whether you are orbiting a star or a black hole that formed from a star, it does not make a 

difference, so long as the mass is the same. The good old centrifugal force and your angular 

momentum will keep you safe and stop you from falling in. 

Only when you fire your giant rocket thrusters to brake your rotation, will you start falling inwards. 

However, once you fall towards a black hole you will be accelerated to higher and higher speeds, 

until you eventually reach the speed of light. 

 

Simulated image as predicted for the supermassive black in the galaxy M87 at the frequencies 

observed with the Event Horizon Telescope (230 GHz). Credit: Moscibrodzka, Falcke, Shiokawa, 

Astronomy & Astrophysics, V. 586, p. 15, 2016, reproduced with permission © ESO 

https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/2018/1-willweeverse.jpg


Why are quantum theory and general relativity incompatible? 

At this point everything goes wrong as, according to general relativity, nothing should move faster 

than the speed of light. 

Light is the substrate used in the quantum world to exchange forces and to transport information in 

the macro world. Light determines how fast you can connect cause and consequences. 

If you go faster than light, you could see events and change things before they happen. This has two 

consequences: 

At the point where you reach the speed of light while falling inwards, you would also need to fly out 

at the speed of light to escape that point, which seems impossible. Hence, conventional physical 

wisdom will tell you that nothing can escape a black hole, once it has passed that point, which we 

call the "event horizon." 

It also means that suddenly basic principles of quantum information preservation are brutally 

violated – conserved quantum quantities can simply disappear behind a wall of silence. 

Whether that is true and whether and how the theory of gravity (or of quantum physics) needs to 

be modified is a question of intense debate among physicists, and none of us can say which way the 

argument will lead in the end. 

Do black holes even exist? 
Of course, all this excitement would only be justified, if black holes really existed in this universe. 

So, do they? 

In the last century strong evidence has mounted that certain binary stars with intense X-ray 

emissions are in fact stars collapsed into black holes. 

Moreover, in the centres of galaxies we often find evidence for huge, dark concentrations of mass. 

These might be supermassive versions of black holes, possibly formed through the merger of many 

stars and gas clouds that have sunk into the centre of a galaxy. 

The evidence is convincing, but circumstantial. At least gravitational waves have let us 'hear' the 

merger of black holes, but the signature of the event horizon is still elusive and so far, we have 

never actually 'seen' a black hole – they simply tend to be too small and too far and, in most cases, 

yes, black... 

So, what would a black hole actually look like? 
If you could look straight into a black hole you would see the darkest dark, you can imagine. 

But, the immediate surroundings of a black hole could be bright as gasses spiral inwards –slowed 

down by the drag of magnetic fields they carry along. 

Due to the magnetic friction the gas will heat up to enormous temperatures of up to several tens of 

billion degrees and start to radiate UV-light and X-rays. 
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Ultra-hot electrons interacting with the magnetic field in the gas will start producing intense radio 

emission. Thus, black holes can glow and could be surrounded by a ring of fire that radiates at many 

different wavelengths. 

A ring of fire with a dark, dark centre 
In their very centre, however, the event horizon still lurks and like a bird of prey it catches every 

photon that gets too close. 

 

Radio images of the jet in the radio galaxy M87 – observed at lower resolution. The left frame is 

roughly 250,000 light years across. Magnetic fields threading the supermassive black holes lead to 

the formation of a highly collimated jet …more 

Since space is bent by the enormous mass of a black hole, light paths will also be bent and even 

form into almost concentric circles around the black hole, like serpentines around a deep valley. 

This effect of circling light was calculated already in 1916 by the famous Mathematician David 

Hilbert only a few months after Albert Einstein finalised his theory of general relativity. 

After orbiting the black hole multiple times, some of the light rays might escape while others will 

end up in the event horizon. Along this complicated light path, you can literally look into the black 

hole. The nothingness you see is the event horizon. 

If you were to take a photo of a black hole, what you would see would be akin to a dark shadow in 

the middle of a glowing fog of light. Hence, we called this feature the shadow of a black hole . 

Interestingly, the shadow appears larger than you might expect by simply taking the diameter of 

the event horizon. The reason is simply, that the black hole acts as a giant lens, amplifying itself. 

Surrounding the shadow will be a thin 'photon ring' due to light circling the black hole almost 

forever. Further out, you would see more rings of light that arise from near the event horizon, but 

tend to be concentrated around the black hole shadow due to the lensing effect. 
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Fantasy or reality? 
Is this pure fantasy that can only be simulated in a computer? Or can it actually be seen in practice? 

The answer is that it probably can. 

There are two relatively nearby supermassive black holes in the universe which are so large and 

close, that their shadows could be resolved with modern technology. 

These are the black holes in the center of our own Milky Way at a distance of 26,000 lightyears with 

a mass of 4 million times the mass of the sun, and the black hole in the giant elliptical galaxy M87 

(Messier 87) with a mass of 3 to 6 billion solar masses. 

M87 is a thousand times further away, but also a thousand times more massive and a thousand 

times larger, so that both objects are expected to have roughly the same shadow diameter 

projected onto the sky. 

Like seeing a grain of mustard in New York from Europe 
Coincidentally, simple theories of radiation also predict that for both objects the emission 

generated near the event horizon would be emitted at the same radio frequencies of 230 GHz and 

above. 

Most of us come across these frequencies only when we have to pass through a modern airport 

scanner but some black holes are continuously bathed in them. 

The radiation has a very short wavelength of about one millimetre and is easily absorbed by water. 

For a telescope to observe cosmic millimetre waves it will therefore have to be placed high up, on a 

dry mountain, to avoid absorption of the radiation in the Earth's troposphere. 

Effectively, you need a millimetre-wave telescope that can see an object the size of a mustard seed 

in New York from as far away as Nijmegen in the Netherlands. That is a telescope a thousand times 

sharper than the Hubble Space Telescope and for millimetre-waves this requires a telescope the 

size of the Atlantic Ocean or larger. 

A virtual Earth-sized telescope 
Fortunately, we do not need to cover the Earth with a single radio dish, but we can build a 

virtual telescope with the same resolution by combining data from telescopes on different 

mountains across the Earth. 

The technique is called Earth rotation synthesis and very long baseline interferometry (VLBI). The 

idea is old and has been tested for decades already, but it is only now possible at high radio 

frequencies. 
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Layout of the Event Horizon Telescope connecting radio telescopes around the world (JCMT & SMA 

in Hawaii, AMTO in Arizona, LMT in Mexico, ALMA &APEX in Chile, SPT on the South Pole, IRAM 

30m in Spain). The red lines are to a proposed …more 

The first successful experiments have already shown that event horizon structures can be probed at 

these frequencies. Now high-bandwidth digital equipment and large telescopes are available to do 

this experiment on a large scale. 

Work is already underway 
I am one of the three Principal Investigators of the BlackHoleCam project. BlackHoleCam is an EU-

funded project to finally image, measure and understand astrophysical black holes. Our European 

project is part of a global collaboration known as the Event Horizon Telescope consortium – a 

collaboration of over 200 scientists from Europe, the Americas, Asia, and Africa. Together we want 

to take the first picture of a black hole. 

In April 2017 we observed the Galactic Center and M87 with eight telescopes on six different 

mountains in Spain, Arizona, Hawaii, Mexico, Chile, and the South Pole. 

All telescopes were equipped with precise atomic clocks to accurately synchronise their data. We 

recorded multiple petabytes of raw data, thanks to surprisingly good weather conditions around 

the globe at the time. 
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We are all excited about working with this data. Of course, even in the best of all cases, the images 

will never look as pretty as the computer simulations. But, at least they will be real and whatever 

we see will be interesting in its own right. 

To get even better images telescopes in Greenland and France are being added. Moreover, we have 

started raising funds for additional telescopes in Africa and perhaps elsewhere and we are even 

thinking about telescopes in space. 

A 'photo' of a black hole 
If we actually succeed in seeing an event horizon, we will know that the problems we have in 

rhyming quantum theory and general relativity are not abstract problems, but are very real. And 

we can point to them in the very real shadowy regions of black holes in a clearly marked region of 

our universe. 

This is perhaps also the place where these problems will eventually be solved. 

We could do this by obtaining sharper images of the shadow, or maybe by tracing stars and pulsars 

as they orbit around black holes, through measuring spacetime ripples as black holes merge, or as is 

most likely, by using all of the techniques that we now have, together, to probe black holes. 

A once exotic concept is now a real working laboratory 
As a student, I wondered what to study: particle physics or astrophysics? After reading many 

popular science articles, my impression was that particle physics had already reached its peak. This 

field had established an impressive standard model and was able to explain most of the forces and 

the particles governing our world. 

Astronomy though, had just started to explore the depths of a fascinating universe. There was still a 

lot to be discovered. And I wanted to discover something. 

In the end, I chose astrophysics as I wanted to understand gravity. And since you find the most 

extreme gravity near black holes, I decided to stay as close to them as possible. 

Today, what used to be an exotic concept when I started my studies, promises to become a very 

real and very much visible physics laboratory in the not too distant future. [25] 

 

Researchers have created a virtual reality simulation of a supermassive 

black hole 
The black hole at the centre of our galaxy, Sagittarius A*, has been visualised in virtual reality for 

the first time. The details are described in an article published in the open access 

journal Computational Astrophysics and Cosmology. 

Scientists at Radboud University, The Netherlands and Goethe University, Germany used recent 

astrophysical models of Sagittarius A* to create a series of images that were then put together to 

create a 360 degree virtual reality simulation of the black hole, that can be viewed on widely 

available VR consoles. The authors suggest that this virtual reality simulation could be useful for 

studying black holes. 
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Jordy Davelaar, corresponding author, said: "Our virtual reality simulation creates one of the most 

realistic views of the direct surroundings of the black hole and will help us to learn more about how 

black holes behave. Traveling to a black hole in our lifetime is impossible, so immersive 

visualizations like this can help us understand more about these systems from where we are." 

The authors also suggest that the virtual reality simulation could help encourage the general 

public, including children, to take an interest in astrophysics. 

Davelaar said: "The visualisations that we produced have a great potential for outreach. We used 

them to introduce children to the phenomenon of black holes, and they really learned something 

from it. This suggests that immersive virtual reality visualizations are a great tool to show our work 

to a broader audience, even when it involves very complicated systems like black holes." 

Heino Falcke, Professor at Radboud University adds: "We all have a picture in our head of how black 

holes supposedly look, but science has progressed and we can now make much more accurate 

renderings—and these black holes look quite different from what we are used to. These new 

visualisations are just the start, more to come in the future." [24] 

 

Black holes play hide-and-seek in low-luminosity radio galaxies 
Every galaxy is thought to harbor a supermassive black hole in the center, or nucleus, of the galaxy, 

and in active galaxies this black hole is fed by infalling matter. This "central engine" is typically 

surrounded by dusty molecular gas in a doughnut configuration, which hides the black hole and the 

infalling material from our view along certain viewing directions. The picture of a central engine 

plus obscuring doughnut is thought to apply to all accreting supermassive black holes, explaining 

the apparent variety of active galaxies from the very brightest quasars to the lower-luminosity radio 

galaxies under a single "unified scheme." 

However, it has long been known that the weaker radio galaxies have properties inconsistent with 

this model, lacking evidence for bright accretion structures and obscuring doughnuts, leading to 

suggestions that either their black holes or their gas infall mechanisms might be unique. New 

results from researchers at the University of Manitoba, presented today at the 2018 annual 

meeting of the Canadian Astronomical Society, show that up to one-third of weak 

radio galaxies may in fact have glowing infalling gas with their black holes hidden by dusty 

doughnuts that shine in the infrared. 

To discern this, R. Gleisinger, C. O'Dea, J. Gallimore, S. Baum, and S. Wykes fit the Infrared spectrum 

of a sample of weak radio galaxies with several components including stars, gas, dust, and a dusty 

torus using special techniques. They found that one-third of the radio galaxies show the classic 

central engines with accretion structures and doughnuts. They suggest that for the weaker active 

galaxies, the properties of the central engine are changing dramatically and rapidly. While 

the black holes in these galaxies are typically on a diet with low feeding rates, they may 

periodically go on an occasional binge during which a much larger mass of gas flows into the central 

black hole causing the creation of the standard bright accretion structure and obscuring torus. [23] 
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Tumultuous galaxy mergers better at switching on black holes  
A new study by researchers at the University of Colorado Boulder finds that violent crashes may be 

more effective at activating black holes than more peaceful mergers. 

When two galaxies collide, the supermassive black holes that sit at their centers also smash 

together. But before they do, these galaxies often flicker on, absorbing huge quantities of gas and 

dust and producing a bright display called an Active Galactic Nucleus (AGN). 

But not all mergers are created equal. In some such marriages, only one black hole becomes active, 

while in others, both do. 

The research team led by CU Boulder's Scott Barrows discovered that single activations seem to 

occur more often in mergers in which the galaxies are mismatched—or when one galaxy is huge 

and the other puny. 

When lopsided galaxies join, "the merger is less violent, and that leads to less gas and dust falling 

onto the black holes," said Barrows, a postdoctoral research associate in the Center for 

Astrophysics and Space Astronomy (CASA). "And the less material you have falling onto the black 

holes, the less likely you are to have two of them become AGNs." 

The researchers presented their findings today at a press briefing at the 232nd meeting of the 

American Astronomical Society, which runs from June 3-7 in Denver, Colorado. 

Barrows and his colleagues used data collected by the Chandra X-ray Observatory to systematically 

scan the night sky for the signatures of AGNs. They spotted mergers in progress by looking for 

"offset galaxies," or galaxies with a single AGN that sits away from the center of the galaxy. Such a 

lack of symmetry suggests that a second supermassive black hole, which hasn't been turned on, 

might be hiding nearby. 

Barrows and his colleagues next assembled a sample of 10 offset galaxies and compared that 

sample to galaxies with a pair of AGNs. 

The results were stark: Nine out of the 10 galaxies with only one active black hole came from 

lopsided mergers, or cases in which one galaxy was more than four times the size of the other. 

Two-thirds of the galaxies with two active black holes, in contrast, were experiencing clashes 

among near equals. 

Barrows explained that when galaxies of roughly equal size meet, their black holes exert 

tremendous gravitational forces on each other. Those forces, in turn, send clouds of gas and dust 

raining onto the black holes. 

"It's these torques that extract energy from the gas and dust, allowing it to fall into the nucleus of 

the black hole," Barrows said. In mismatched mergers, "you simply have smaller forces exerted on 

the gas and dust in each galaxy." 

The team didn't find any rhyme or reason to which black hole activated during a mismatched 

merger. In some cases, Barrows said, it was the bigger black hole. In other cases, the smaller one. 
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Next up, he and his colleagues will focus on how the smashing together of two black holes affects 

the galaxies themselves, including how they create and destroy stars. [22] 

 

Astronomers find pairs of black holes at the centers of merging galaxies 
For the first time, a team of astronomers has observed several pairs of galaxies in the final stages of 

merging together into single, larger galaxies. Peering through thick walls of gas and dust 

surrounding the merging galaxies' messy cores, the research team captured pairs of supermassive 

black holes—each of which once occupied the center of one of the two original smaller galaxies—

drawing closer together before they coalescence into one giant black hole. 

Led by University of Maryland alumnus Michael Koss (M.S. '07, Ph.D. '11, astronomy), a research 

scientist at Eureka Scientific, Inc., with contributions from UMD astronomers, the team surveyed 

hundreds of nearby galaxies using imagery from the W.M. Keck Observatory in Hawaii and NASA's 

Hubble Space Telescope. The Hubble observations represent more than 20 years' worth of images 

from the telescope's lengthy archive. The team described their findings in a research paper 

published on November 8, 2018, in the journal Nature. 

"Seeing the pairs of merging galaxy nuclei associated with these huge black holes so close together 

was pretty amazing," Koss said. "In our study, we see two galaxy nuclei right when the images were 

taken. You can't argue with it; it's a very 'clean' result, which doesn't rely on interpretation." 

The high-resolution images also provide a close-up preview of a phenomenon that astronomers 

suspect was more common in the early universe, when galaxy mergers were more frequent. When 

the black holes finally do collide, they will unleash powerful energy in the form of gravitational 

waves—ripples in space-time recently detected for the first time by the twin Laser Interferometer 

Gravitational-wave Observatory (LIGO) detectors. 

The images also presage what will likely happen in a few billion years, when our Milky Way galaxy 

merges with the neighboring Andromeda galaxy. Both galaxies host supermassive black holes at 

their center, which will eventually smash together and merge into one larger black hole. 

The team was inspired by a Hubble image of two interacting galaxies collectively called NGC 6240, 

which later served as a prototype for the study. The team first searched for visually obscured, 

active black holes by sifting through 10 years' worth of X-ray data from the Burst Alert Telescope 

(BAT) aboard NASA's Neil Gehrels Swift Observatory. 

https://phys.org/tags/galaxies/
https://phys.org/tags/supermassive+black+holes/


 

These images reveal the final stage of a union between pairs of galactic nuclei in the messy cores of 

colliding galaxies.The image at top left, taken by Hubble's Wide Field Camera 3, shows the merging 

galaxy NGC 6240. A close-up of the two …more"The advantage to using Swift's BAT is that it 

observes high-energy, 'hard' X-rays," said study co-author Richard Mushotzky, a professor 

of astronomy at UMD and a fellow of the Joint Space-Science Institute (JSI). "These X-rays penetrate 

through the thick clouds of dust and gas that surround active galaxies, allowing the BAT to see 

things that are literally invisible in other wavelengths." 

The researchers then combed through the Hubble archive, zeroing in on the merging 

galaxies they spotted in the X-ray data. They then used the Keck telescope's super-sharp, near-

infrared vision to observe a larger sample of the X-ray-producing black holes not found in the 

Hubble archive. 

The team targeted galaxies located an average of 330 million light-years from Earth—relatively 

close by in cosmic terms. Many of the galaxies are similar in size to the Milky Way and Andromeda 

galaxies. In total, the team analyzed 96 galaxies observed with the Keck telescope and 385 galaxies 

from the Hubble archive. 

Their results suggest that more than 17 percent of these galaxies host a pair of black holes at their 

center, which are locked in the late stages of spiraling ever closer together before merging into a 

single, ultra-massive black hole. The researchers were surprised to find such a high fraction of late-

stage mergers, because most simulations suggest that black hole pairs spend very little time in this 

phase. 

To check their results, the researchers compared the survey galaxies with a control group of 176 

other galaxies from the Hubble archive that lack actively growing black holes. In this group, only 

about one percent of the surveyed galaxies were suspected to host pairs of black holes in the later 

stages of merging together. 
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This last step helped the researchers confirm that the luminous galactic cores found in their census 

of dusty interacting galaxies are indeed a signature of rapidly-growing black hole pairs headed for a 

collision. According to the researchers, this finding is consistent with theoretical predictions, but 

until now, had not been verified by direct observations. 

"People had conducted studies to look for these close interacting black holes before, but what 

really enabled this particular study were the X-rays that can break through the cocoon of dust," 

explained Koss. "We also looked a bit farther in the universe so that we could survey a larger 

volume of space, giving us a greater chance of finding more luminous, rapidly-growing black holes." 

It is not easy to find galactic nuclei so close together. Most prior observations of merging galaxies 

have caught the coalescing black holes at earlier stages, when they were about 10 times farther 

away. The late stage of the merger process is so elusive because the interacting galaxies are 

encased in dense dust and gas, requiring very high-resolution observations that can see through the 

clouds and pinpoint the two merging nuclei. 

"Computer simulations of galaxy smashups show us that black holes grow fastest during the final 

stages of mergers, near the time when the black holes interact, and that's what we have found in 

our survey," said Laura Blecha, an assistant professor of physics at the University of Florida and a 

co-author of the study. Blecha was a JSI Prize Postdoctoral Fellow in the UMD Department of 

Astronomy prior to joining UF's faculty in 2017. "The fact that black holes grow faster and faster as 

mergers progress tells us galaxy encounters are really important for our understanding of how 

these objects got to be so monstrously big." 

Future infrared telescopes such as NASA's highly anticipated James Webb Space Telescope (JWST), 

slated for launch in 2021, will provide an even better view of mergers in dusty, heavily obscured 

galaxies. For nearby black hole pairs, JWST should also be capable of measuring the masses, growth 

rates and other physical parameters for each black hole. 

"There might be other objects that we missed. Even with Hubble, many nearby galaxies at low 

redshift cannot be resolved—the two nuclei just merge into one," said study co-author Sylvain 

Veilleux, a professor of astronomy at UMD and a JSI Fellow. "With JWST's higher angular resolution 

and sensitivity to the infrared, which can pass through the dusty cores of these galaxies, searches 

for these nearby objects should be easy to do. Also with JWST, we will be able to push toward 

larger distances, to see objects at higher redshift. With these observations, we can begin to explore 

the fraction of objects that are merging in the youngest, most distant regions of the universe—

which should be fairly frequent." [21] 

 

Astronomers detect once-in-a-lifetime gamma rays  
Scientists have discovered something amazing. 

In a cluster of some of the most massive and luminous stars in our galaxy, about 5,000 light years 

from Earth, astronomers detected particles being accelerated by a rapidly rotating neutron star as 

it passed by the massive star it orbits only once every 50 years. 
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The discovery is extremely rare, according to University of Delaware astrophysicist Jamie Holder 

and doctoral student Tyler Williamson, who were part of the international team that documented 

the occurrence. 

Holder called this eccentric pair of gravitationally linked stars a "gamma-ray binary system" and 

likened the once-in-a-lifetime event to the arrival of Halley's comet or last year's U.S. solar eclipse. 

Massive stars are among the brightest stars in our galaxy. Neutron stars are extremely dense and 

energetic stars that result when a massive star explodes. 

This binary system is a massive star with a neutron star orbiting around it. Of the 100 billion stars in 

our galaxy, less than 10 are known to be this type of system. 

Even fewer—only two systems, including this one—are known to have an identified neutron star, or 

pulsar, that emits pulses of radio waves that scientists can measure. This is important because it 

tells astronomers very accurately how much energy is available to accelerate particles, something 

scientists know little about. 

"You couldn't ask for a better natural laboratory to study particle acceleration in a continually 

changing environment - at energies far beyond anything we can produce on the Earth," said Holder, 

a professor in UD's Department of Physics and Astronomy. 

The project was led by a team of scientists, including Holder and Williamson, using the 

VERITAS telescope array at the Fred Lawrence Whipple Observatory in Arizona, in collaboration 

with scientists using the MAGIC telescopes at the Roque de los Muchachos Observatory located in 

La Palma, an island of the Canary Islands, Spain. (VERITAS stands for Very Energetic Radiation 

Imaging Telescope Array System and MAGIC stands for Major Atmospheric Gamma Imaging 

Cherenkov telescopes.) 
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One of the VERITAS telescopes at sunset. Credit: University of Delaware 

The researchers recently reported their findings in the Astrophysical Journal Letters. 

Hoping for fireworks 
The natural question, to many minds, is why do scientists care about accelerated particles? 

"Because our galaxy is full of them. We call them cosmic rays and they carry as much energy as the 

light from all the stars," said Holder. 

Astronomers discovered more than 100 years ago that accelerated particles exist, yet how or where 

these particles speed up remains a mystery. Pulsars are among the most extreme objects in the 

universe and they have magnetic fields around them that are millions of times stronger than 

anything scientists could hope to build on earth. When a pulsar encounters dust or gas close to a 

massive star, the particles nearby accelerate—to near speed of light velocities—and collide with 

what's around them. The result is a beam of high-energy light called gamma-radiation or gamma 

rays. 

Sophisticated telescopes, like those operated by VERITAS and MAGIC, can detect these gamma rays 

because they emit a blue flash of light when they reach the Earth's atmosphere. While our eyes 

can't see these flashes of light because they are too quick, only nanoseconds long, these telescopes 

can. 
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Once-in-a-lifetime doctoral experience 
Astronomers first discovered gamma rays coming from the pulsar in this unusual pair of stars in 

2008. About the size of Newark, Delaware, the pulsar is spinning like the attachment on a kitchen 

blender, emitting little pulses of gamma rays and radio waves with every rotation. 

By measuring these radio pulse frequencies, astronomers were able to tell how fast the pulsar was 

moving and calculate exactly when it would be closest to the massive star that it was orbiting—

Nov. 13, 2017. It's a trip that took 50 years. 

 

UD Professor Jamie Holder is dwarfed by one of the VERITAS cameras. Credit: University of 

Delaware 

The VERITAS and MAGIC teams began monitoring the night sky and tracking the pulsar's orbit in 

September 2016. At first, they weren't even sure if they would see anything. But in September 2017 

the astronomers began to detect a rapid increase in the number of gamma rays hitting the top of 

the earth's atmosphere. 

As they monitored the data coming from the VERITAS telescopes, Holder and Williamson realized 

that the pulsar was doing something different each day. 

"I would wake up every morning and check and see if we had new data, then analyze it as fast as I 

could, because there were times where the number of gamma rays we were seeing was changing 

rapidly over a day or two," said Williamson, a fourth-year doctoral student. 
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During the closest approach between the star and the pulsar in November 2017, Williamson 

noticed that the VERITAS telescopes had—overnight—recorded ten times the number of gamma 

rays detected only a few days before. 

"I double checked everything before sending the data to our collaborators," Williamson said. "Then 

one of our partners, Ralph Bird at UCLA, confirmed he'd gotten the same results; that was exciting." 

Even more interesting—this observational data did not match what predictive models had 

predicted. 

Generally speaking, Holder said, existing models predicted that as the pulsar approached the 

massive star it was orbiting, the number of gamma rays produced would slowly accelerate, 

experience some volatility and then slowly decay over time. 

"But our recorded data showed a huge spike in the number of gamma rays instead," Holder said. 

"This tells us that we need to revise the models of how this particle acceleration is happening." 

What's more, according to Holder, while astrophysicists expected the National Aeronautics and 

Space Administration's (NASA) Fermi gamma-ray space telescope to record these gamma rays, it 

didn't. Holder said the reason for this is unclear, but that is part of what makes the VERITAS results 

so interesting. 

 

UD doctoral student Tyler Williamson standing on one of the VERITAS telescope access platforms. 

Credit: University of Delaware 

Astrophysicists want to learn just which particles are being accelerated, and what processes are 

pushing them up to these extreme speeds, in order to understand more about the Universe. Holder 

said that although gamma-ray binary systems probably don't accelerate a large portion of the 
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particles in our galaxy, they allow scientists to study the type of acceleration mechanisms which 

could produce them. 

Charting a promising future 
Astronomers won't be able to see this binary system at work again until 2067 when the two stars 

are once again close together. By then, Williamson joked that he just might be an emeritus 

professor with time on his hands. 

At the moment, Williamson is not worried about running out of things to do. He spent three 

months at the Arizona-based observatory earlier this year, taking measurements, performing 

hardware maintenance and devising a remote control to allow the researchers to turn on the 

telescope's cameras from a computer inside a control room. 

"It was a great chance to spend hands-on time with the telescopes and get to know the 

instrument," said Williamson. 

Going forward, he'll spend the remainder of his doctoral studies combing through and analyzing in 

greater detail the nearly 175 hours of data the VERITAS telescopes collected in 2016 and 2017. 

"Tyler is, without a doubt, the luckiest graduate student I've ever met because this event that 

happens only once every 50 years—one of the most exciting things we've seen with our telescopes 

in a decade—occurred right in the middle of his doctoral work," said Holder. [20] 

 

Gravitational waves from a merged hyper-massive neutron star 
For the first time astronomers have detected gravitational waves from a merged, hyper-massive 

neutron star. The scientists, Maurice van Putten of Sejong University in South Korea, and Massimo 

della Valle of the Osservatorio Astronomico de Capodimonte in Italy, publish their results 

in Monthly Notices of the Royal Astronomical Society: Letters. 

Gravitational waves were predicted by Albert Einstein in his General Theory of Relativity in 1915. 

The waves are disturbances in space time generated by rapidly moving masses, which propagate 

out from the source. By the time the waves reach the Earth, they are incredibly weak and their 

detection requires extremely sensitive equipment. It took scientists until 2016 to announce the first 

observation of gravitational waves using the Laser Interferometer Gravitational Wave Observatory 

(LIGO) detector. 

Since that seminal result, gravitational waves have been detected on a further six occasions. One of 

these, GW170817, resulted from the merger of two stellar remnants known as neutron stars. 

These objects form after stars much more massive than the Sun explode as supernovae, leaving 

behind a core of material packed to extraordinary densities. 

At the same time as the burst of gravitational waves from the merger, observatories detected 

emission in gamma rays, X-rays, ultraviolet, visible light, infrared and radio waves – an 

unprecedented observing campaign that confirmed the location and nature of the source. 
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A graph showing gamma-ray counts against time, whose initial peak is 1.7 seconds after the final 

coalescence of the two neutron stars. This short gamma-ray burst lasts for about three seconds 

during the period when the gravitational wave …more 

The initial observations of GW170817 suggested that the two neutron stars merged into a black 

hole, an object with a gravitational field so powerful that not even light can travel quickly enough to 

escape its grasp. Van Putten and della Valle set out to check this, using a novel technique to analyse 

the data from LIGO and the Virgo gravitational wave detector sited in Italy. 

Their detailed analysis shows the H1 and L1 detectors in LIGO, which are separated by more than 

3,000 kilometres, simultaneously picked up a descending 'chirp' lasting around 5 seconds. 

Significantly, this chirp started between the end of the initial burst of gravitational waves and a 

subsequent burst of gamma rays. Its low frequency (less than 1 KHz, reducing to 49 Hz) suggests the 

merged object spun down to instead become a larger neutron star, rather than a black hole. 

There are other objects like this, with their total mass matching known neutron star binary pairs. 

But van Putten and della Valle have now confirmed their origin. 

Van Putten comments: "We're still very much in the pioneering era of gravitational wave 

astronomy. So it pays to look at data in detail. For us this really paid off, and we've been able to 

confirm that two neutron stars merged to form a larger one." 

Gravitational wave astronomy, and eking out the data from every detection, will take another step 

forward next year, when the Japanese Kamioka Gravitational Wave Detector (KAGRA) comes 

online. [19] 
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Boosting gravitational wave detectors with quantum tricks  
A group of scientists from the Niels Bohr Institute (NBI) at the University of Copenhagen will soon 

start developing a new line of technical equipment in order to dramatically improve gravitational 

wave detectors. 

Gravitational wave detectors are extremely sensitive and can e.g. register colliding neutron stars in 

space. Yet even higher sensitivity is sought for in order to expand our knowledge about the 

Universe, and the NBI-scientists are convinced that their equipment can improve the detectors, 

says Professor Eugene Polzik: "And we should be able to show proof of concept within 

approximately three years." 

If the NBI-scientists are able to improve the gravitational wave detectors as much as they 

"realistically expect can be done," the detectors will be able to monitor and carry out 

measurements in an eight times bigger volume of space than what is currently possible, explains 

Eugene Polzik: "This will represent a truly significant extension." 

Polzik is head of Quantum Optics (Quantop) at NBI and he will spearhead the development of the 

tailor made equipment for gravitational wave detectors. The research – which is supported by the 

EU, the Eureka Network Projects and the US-based John Templeton Foundation with grants totaling 

DKK 10 million – will be carried out in Eugene Polzik's lab at NBI. 

A collision well noticed 
News media all over the world shifted into overdrive in October of 2017 when it was confirmed that 

a large international team of scientists had indeed measured the collision of two neutron stars; an 

event which took place 140 million light years from Earth and resulted in the formation of a 

kilonova. 

The international team of scientists – which also included experts from NBI – was able to confirm 

the collision by measuring gravitational waves from space – waves in the fabric of spacetime itself, 

moving at the speed of light. The waves were registered by three gravitational wave detectors: the 

two US-based LIGO-detectors and the European Virgo-detector in Italy. 

"These gravitational wave detectors represent by far the most sensitive measuring equipment man 

has yet manufactured – still the detectors are not as accurate as they could possibly be. And this is 

what we intend to improve," says Professor Eugene Polzik. 

How this can be done is outlined in an article which Eugene Polzik and a colleague, Farid Khalili 

from LIGO collaboration and Moscow State University, have recently published in the scientific 

journal Physical Review Letters. And this is not merely a theoretical proposal, says Eugene Polzik: 

"We are convinced this will work as intended. Our calculations show that we ought to be able to 

improve the precision of measurements carried out by the gravitational wave detectors by a factor 

of two. And if we succeed, this will result in an increase by a factor of eight of the volume in space 

which gravitational wave detectors are able to examine at present." 
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If laser light used to measure motion of a vibrating membrane (left) is first transmitted through an 

atom cloud (center) the measurement sensitivity can be better than standard quantum limits 

envisioned by Bohr and Heisenberg. Credit: Bastian Leonhardt Strube and Mads Vadsholt 

A small glass cell 
In July of last year Eugene Polzik and his team at Quantop published a highly noticed article 

in Nature – and this work is actually the very foundation of their upcoming attempt to improve the 

gravitational wave detectors. 

The article in Nature centered on 'fooling' Heisenberg's Uncertainty Principle, which basically says 

that you cannot simultaneously know the exact position and the exact speed of an object. 

This has to do with the fact that observations conducted by shining light on an object inevitably will 

lead to the object being 'kicked' in random directions by photons, particles of light. This 

phenomenon is known as Quantum Back Action (QBA) and these random movements put a limit to 

the accuracy with which measurements can be carried out at the quantum level. 

The article in Nature in the summer of 2017 made headlines because Eugene Polzik and his team 

were able to show that it is – to a large extent – actually possible to neutralize QBA. 
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And QBA is the very reason why gravitational wave detectors – that also operate with light, namely 

laser light—are not as accurate as they could possibly be," as professor Polzik says. 

Put simply, it is possible to neutralize QBA if the light used to observe an object is initially sent 

through a 'filter." This was what the article in Nature described – and the 'filter' which the NBI-

scientists at Quantop had developed and described consisted of a cloud of 100 million caesium 

atoms locked-up in a hermetically closed glass cell just one centimeter long, 1/3 of a millimeter high 

and 1/3 of a millimeter wide. 

The principle behind this 'filter' is exactly what Polzik and his team are aiming to incorporate in 

gravitational wave detectors. 

In theory one can optimize measurements of gravitational waves by switching to stronger laser light 

than the detectors in both Europe and USA are operating with. However, according to quantum 

mechanics, that is not an option, says Eugene Polzik: 

"Switching to stronger laser light will just make a set of mirrors in the detectors shake more 

because Quantum Back Action will be caused by more photons. These mirrors are absolutely 

crucial, and if they start shaking, it will in fact increase inaccuracy." 

Instead, the NBI-scientists have come up with a plan based on the atomic 'filter' which they 

demonstrated in the Nature article: They will send the laser light by which the gravitational wave 

detectors operate through a tailor made version of the cell with the locked-up atoms, says Eugene 

Polzik: "And we hope that it will do the job." [18] 

 

 

 

Gravitational wave detectors could shed light on dark matter  
A global team of scientists, including two University of Mississippi physicists, has found that the 

same instruments used in the historic discovery of gravitational waves caused by colliding black 

holes could help unlock the secrets of dark matter, a mysterious and as-yet-unobserved 

component of the universe.  

The research findings by Emanuele Berti, UM associate professor of physics and astronomy,  

Shrobana Ghosh, a graduate student, and their colleagues appears in the September issue of 

Physical Review Letters, one of the most prestigious peer-reviewed academic journals in the field. 

"Stochastic and resolvable gravitational waves from ultralight bosons" is co-authored by fellow 

scientists Richard Brito, Enrico Barausse, Vitor Cardoso, Irina Dvorkin, Antoine Klein and Paolo Pani.  

The nature of dark matter remains unknown, but scientists estimate that it is five times as 

abundant as ordinary matter throughout the universe.  

"The nature of dark matter is one the greatest mysteries in physics," Berti said. "It is remarkable 

that we can now do particle physics – investigate the "very small" – by looking at gravitational-

wave emission from black holes, the largest and simplest objects in the universe."  



PRL is one of several publications produced by the American Physical Society and American 

Institute of Physics. It contains papers considered to represent significant advances in research, 

and therefore, published quickly in short, letter format for a broad audience of physicists.  

This paper details calculations by the scientists, who work in Germany, France, Italy, Portugal and 

the U.S., show that gravitational-wave interferometers can be used to indirectly detect the 

presence of dark matter.  

A companion paper by the team, "Gravitational wave searches for ultralight bosons with LIGO and 

LISA," also has been accepted and will appear in Physical Review D.  

Calculations show that certain types of dark matter could form giant clouds around astrophysical 

black holes. If ultralight scalar particles exist in nature, fast-spinning black holes would trigger the 

growth of such scalar "condensates" at the expense of their rotational energy, producing a cloud 

that rotates around the black hole, now more slowly-spinning, and emits gravitational waves, 

pretty much like a giant lighthouse in the sky.  

"One possibility is that dark matter consists of scalar fields similar to the Higgs boson, but much 

lighter than neutrinos," Pani said. "This type of dark matter is hard to study in particle accelerators, 

such as the Large Hadron Collider at CERN, but it may be accessible to gravitational-wave 

detectors."  

The team led by Brito studied gravitational waves emitted by the "black hole plus cloud" system. 

Depending on the mass of the hypothetical particles, the signal is strong enough to be detected by 

the Laser Interferometer Gravitational-wave Observatory, with instruments in Louisiana and 

Washington, and its European counterpart Virgo, as well as by the future space mission Laser 

Interferometer Space Antenna.  

"Surprisingly, gravitational waves from sources that are too weak to be individually detectable can 

produce a strong stochastic background," Brito said. "This work suggests that a careful analysis of 

the background in LIGO data may rule out – or detect – ultralight dark matter by gravitational-wave 

interferometers.  

"This is a new, exciting frontier in astroparticle physics that could shed light on our understanding 

of the microscopic universe."  

LIGO has been offline for a few months for upgrades. The team plans to announce new, exciting 

results from its second observing run soon.  

"Our work shows that careful analysis of stochastic gravitational waves in the data they have 

already taken may be used to place interesting constraints on the nature of dark matter," Berti 

said.  

This innovative work "confirms the high quality of the work in astroparticle physics and 

gravitationalwave astronomy done by members of the gravitational physics group at UM, widely 

recognized as one of the leaders in the field," said Luca Bombelli, chair and professor of physics and 

astronomy at Ole Miss. [17]  



Synopsis: Dark Photon Conjecture Fizzles  
The lack of so-called “dark photons” in electron-positron collision data rules out scenarios in which 

these hypothetical particles explain the muon’s magnetic moment.  

Dark photons sound like objects confused about their purpose, but in reality they are part of a 

comprehensive theory of dark matter. Researchers imagine that dark photons have photon-like 

interactions with other dark matter particles. And these hypothetical particles have recently gained 

interest because they might explain why the observed value of the muon’s anomalous magnetic 

moment disagrees slightly with predictions. However, this muon connection now appears to have 

been ruled out by the BaBar Collaboration at the SLAC National Accelerator Laboratory in 

California. The researchers found no signal of dark photons in their electron-positron collision data.  

Like the normal photon, the dark photon would carry an electromagnetic-like force between dark 

matter particles. It could also potentially have a weak coupling to normal matter, implying that 

dark photons could be produced in high-energy collisions. Previous searches have failed to find a 

signature, but they have generally assumed that dark photons decay into electrons or some other 

type of visible particle.  

For their new search, the BaBar Collaboration considered a scenario in which a dark photon is 

created with a normal photon in an electron-positron collision and then decays into invisible 

particles, such as other dark matter particles. In this case, only one particle—the normal photon— 

would be detected, and it would carry less than the full energy from the collision. Such 

missingenergy events can occur in other ways, so the team looked for a “bump” or increase in 

events at a specific energy that would correspond to the mass of the dark photon. They found no 

such bump up to masses of 8 GeV. The null result conflicts with models in which a dark photon 

contribution brings the predicted muon magnetic moment in line with observations. [16]  

Exchanges of identity in deep space  
By reproducing the complexity of the cosmos through unprecedented simulations, a new study 

highlights the importance of the possible behaviour of very high-energy photons. In their journey 

through intergalactic magnetic fields, such photons could be transformed into axions and thus 

avoid being absorbed.  

Like in a nail-biting thriller full of escapes and subterfuge, photons from far-off light sources such as 

blazars could experience a continuous exchange of identity in their journey through the universe. 

This would allow these very tiny particles to escape an enemy which, if encountered, would 

annihilate them. Normally, very high-energy photons (gamma rays) should "collide" with the 

background light emitted by galaxies and transform into pairs of matter and antimatter particles, 

as envisaged by the Theory of Relativity. For this reason, the sources of very high-energy gamma 

rays should appear significantly less bright than what is observed in many cases.  

A possible explanation for this surprising anomaly is that light photons are transformed into 

hypothetical weakly interacting particles, "axions," which, in turn, would change into photons, all 

due to the interaction with magnetic fields. A part of the photons would escape interaction with 

the intergalactic background light that would make them disappear. The importance of this process 

is emphasised by a study published in Physical Review Letters, which recreated an extremely 



refined model of the cosmic web, a network of filaments composed of gas and dark matter present 

throughout the universe, and of its magnetic fields. These effects are now awaiting comparison 

with those obtained experimentally through Cherenkov Telescope Array new generation 

telescopes.  

Through complex and unprecedented computer simulations made at the CSCS Supercomputing 

Centre in Lugano, scholars have reproduced the so-called cosmic web and its associated magnetic 

fields to investigate the theory that photons from a light source are transformed into axions, 

hypothetical elementary particles, on interacting with an extragalactic magnetic field. Axions could 

then be changed back into photons by interacting with other magnetic fields. Researchers Daniele 

Montanino, Franco Vazza, Alessandro Mirizzi and Matteo Viel write, "Photons from luminous 

bodies disappear when they encounter extragalactic background light (EBL). But if on their journey 

they head into these transformations as envisaged by these theories, it would explain why, in 

addition to giving very important information on processes that occur in the universe, distant 

celestial bodies are brighter than expected from an observation on Earth. These changes would, in 

fact, enable a greater number of photons to reach the Earth."  

Thanks to the wealth of magnetic fields present in the cosmic web's filaments, which were 

recreated with the simulations, the conversion phenomenon would seem much more relevant than 

predicted by previous models: "Our simulations reproduce a very realistic picture of the cosmos' 

structure. From what we have observed, the distribution of the cosmic web envisaged by us would 

markedly increase the probability of these transformations." The next step in the research is to 

compare simulation results with the experimental data obtained through the use of the Cherenkov 

Telescope Array Observatories detectors, the new-generation astronomical observatories, one of 

which is positioned in the Canary Islands and the other in Chile. They will study the universe 

through very high-energy gamma rays. [15]  

Astronomers may have detected the first direct evidence of dark matter  
Scientists have detected a mysterious X-ray signal that could be caused by dark matter streaming 

out of our Sun’s core.  

Now scientists at the University of Leicester have identified a signal on the X-ray spectrum which 

appears to be a signature of ‘axions’ - a hypothetical dark matter particle that’s never been 

detected before.  

While we can't get too excited just yet - it will take years to confirm whether this signal really is 

dark matter - the discovery would completely change our understanding of how the Universe 

works. After all, dark matter is the force that holds our galaxies together, so learning more about it 

is pretty important.  

The researchers first detected the signal while searching through 15 years of measurements taking 

by the European Space Agency’s orbiting XMM-Newton space observatory.  

Unexpectedly, they noticed that the intensity of X-rays recorded by the spacecraft rose by about 

10% whenever XMM-Newton was at the boundary of Earth’s magnetic field facing the Sun - even 

once they removed all the bright X-ray sources from the sky. Usually, that X-ray background is 

stable. "The X-ray background - the sky, after the bright X-ray sources are removed - appears to be 

unchanged whenever you look at it," said Andy Read, from the University of Leicester, one of the 

lead authors on the paper, in a press release. "However, we have discovered a seasonal signal in 



this X-ray background, which has no conventional explanation, but is consistent with the discovery 

of axions."  

Researchers predict that axions, if they exist, would be produced invisibly by the Sun, but would 

convert to X-rays as they hit Earth’s magnetic field. This X-ray signal should in theory be strongest 

when looking through the sunward side of the magnetic field, as this is where the Earth’s magnetic 

field is strongest.  

The next step is for the researchers to get a larger dataset from XMM-Newton and confirm the 

pattern they’ve seen in X-rays. Once they’ve done that, they can begin the long process of proving 

that they have, in fact, detecting dark matter streaming out of our Sun’s core.  

  

  
A sketch (not to scale) shows axions (blue) streaming out of the Sun and then converting into X-rays 
(orange) in the Earth's magnetic field (red). The X-rays are then detected by the XMM-Newton 
observatory. [13]  
  

The axion is a hypothetical elementary particle postulated by the Peccei–Quinn theory in 1977 to 

resolve the strong CP problem in quantum chromodynamics (QCD). If axions exist and have low 

mass within a specific range, they are of interest as a possible component of cold dark matter. [14]  

Hidden photons  
Hidden photons are predicted in some extensions of the Standard Model of particle physics, and 

unlike WIMPs they would interact electromagnetically with normal matter. Hidden photons also 

have a very small mass, and are expected to oscillate into normal photons in a process similar to 

neutrino oscillation. Observing such oscillations relies on detectors that are sensitive to extremely 

small electromagnetic signals, and a number of these extremely difficult experiments have been 

built or proposed.  



A spherical mirror is ideal for detecting such light because the emitted photons would be 

concentrated at the sphere's centre, whereas any background light bouncing off the mirror would 

pass through a focus midway between the sphere's surface and centre. A receiver placed at the 

centre could then pick up the dark-matter-generated photons, if tuned to their frequency – which 

is related to the mass of the incoming hidden photons – with mirror and receiver shielded as much 

as possible from stray electromagnetic waves.  

Ideal mirror at hand  
Fortunately for the team, an ideal mirror is at hand: a 13 m2 aluminium mirror used in tests during 

the construction of the Pierre Auger Observatory and located at the Karlsruhe Institute of 

Technology. Döbrich and co-workers have got together with several researchers from Karlsruhe, 

and the collaboration is now readying the mirror by adjusting the position of each of its 36 

segments to minimize the spot size of the focused waves. They are also measuring background 

radiation within the shielded room that will house the experiment. As for receivers, the most likely 

initial option is a set of low-noise photomultiplier tubes for measurements of visible light, which 

corresponds to hidden-photon masses of about 1 eV/C2. Another obvious choice is a receiver for 

gigahertz radiation, which corresponds to masses less than 0.001 eV/C2; however, this latter set-up 

would require more shielding.  

Dark matter composition research - WIMP   
  

The WIMP (Weakly interactive massive particles) form a class of heavy particles, interacting slightly 

with matter, and constitute excellent candidates with the nonbaryonic dark matter. The neutralino 

postulated by the supersymetric extensions of the standard model of particle physics. The idea of 

supersymmetry is to associate each boson to a fermion and vice versa. Each particle is then given a 

super-partner, having identical properties (mass, load), but with a spin which differes by 1/2. Thus, 

the number of particles is doubled. For example, the photon is accompanied by a photino, the 

graviton by a gravitino, the electron of a selectron, etc. Following the impossibility to detect a 511 

keV boson (the electron partner), the physicists had to re-examine the idea of an exact symmetry. 

Symmetry is 'broken' and superpartners have a very important mass. One of these superparticules 

called LSP (Lightest Supersymmetric Particle) is the lightest of all. In most of the supersymmetric 

theories (without violation of the R-parity) the LSP is a stable particle because it cannot 

disintegrate in a lighter element. It is of neutral color and electric charge and is then only sensitive 

to weak interaction (weak nuclear force). It is then an excellent candidate for the not-baryonic dark 

matter. [11]  

  

Weakly interacting massive particles  
  

In particle physics and astrophysics, weakly interacting massive particles, or WIMPs, are among the 

leading hypothetical particle physics candidates for dark matter. The term “WIMP” is given to a 



dark matter particle that was produced by falling out of thermal equilibrium with the hot dense 

plasma of the early universe, although it is often used to refer to any dark matter candidate that 

interacts with standard particles via a force similar in strength to the weak nuclear force. Its name 

comes from the fact that obtaining the correct abundance of dark matter today via thermal 

production requires a self-annihilation cross section, which is roughly what is expected for a new 

particle in the 100 GeV mass range that interacts via the electroweak force. This apparent 

coincidence is known as the “WIMP miracle”. Because supersymmetric extensions of the standard 

model of particle physics readily predict a new particle with these properties, a stable 

supersymmetric partner has long been a prime WIMP candidate. However, recent null results from 

direct detection experiments including LUX and SuperCDMS, along with the failure to produce 

evidence of supersymmetry in the Large Hadron Collider (LHC) experiment has cast doubt on the 

simplest WIMP hypothesis. Experimental efforts to detect WIMPs include the search for products 

of WIMP annihilation, including gamma  

rays, neutrinos and cosmic rays in nearby galaxies and galaxy clusters; direct detection experiments 

designed to measure the collision of WIMPs with nuclei in the laboratory, as well as attempts to 

directly produce WIMPs in colliders such as the LHC. [10]  

Evidence for an accelerating universe   

One of the observational foundations for the big bang model of cosmology was the observed 

expansion of the universe. [9] Measurement of the expansion rate is a critical part of the study, and 

it has been found that the expansion rate is very nearly "flat". That is, the universe is very close to 

the critical density, above which it would slow down and collapse inward toward a future "big 

crunch". One of the great challenges of astronomy and astrophysics is distance measurement over 

the vast distances of the universe. Since the 1990s it has become apparent that type Ia supernovae 

offer a unique opportunity for the consistent measurement of distance out to perhaps 1000 Mpc. 

Measurement at these great distances provided the first data to suggest that the expansion rate of 

the universe is actually accelerating. That acceleration implies an energy density that acts in 

opposition to gravity which would cause the expansion to accelerate. This is an energy density 

which we have not directly detected observationally and it has been given the name "dark energy".  

The type Ia supernova evidence for an accelerated universe has been discussed by Perlmutter and 

the diagram below follows his illustration in Physics Today.   

  



 
  

The data summarized in the illustration above involve the measurement of the redshifts of the 

distant supernovae. The observed magnitudes are plotted against the redshift parameter z. Note  

that there are a number of Type 1a supernovae around z=.6, which with a Hubble constant of 71 

km/s/mpc is a distance of about 5 billion light years.   

Equation  

The cosmological constant Λ appears in Einstein's field equation [5] in the form of  

  

where R and g describe the structure of spacetime, T pertains to matter and energy affecting that 

structure, and G and c are conversion factors that arise from using traditional units of 

measurement. When Λ is zero, this reduces to the original field equation of general relativity. 

When T is zero, the field equation describes empty space (the vacuum).  

The cosmological constant has the same effect as an intrinsic energy density of the vacuum, ρvac 

(and an associated pressure). In this context it is commonly moved onto the right-hand side of the 

equation, and defined with a proportionality factor of 8π: Λ = 8πρvac, where unit conventions of 

general relativity are used (otherwise factors of G and c would also appear). It is common to quote 

values of energy density directly, though still using the name "cosmological constant".  



A positive vacuum energy density resulting from a cosmological constant implies a negative 

pressure, and vice versa. If the energy density is positive, the associated negative pressure will 

drive an accelerated expansion of the universe, as observed. (See dark energy and cosmic inflation 

for details.)  

  

Explanatory models  

Models attempting to explain accelerating expansion include some form of dark energy, dark fluid 

or phantom energy. The most important property of dark energy is that it has negative pressure 

which is distributed relatively homogeneously in space. The simplest explanation for dark energy is 

that it is a cosmological constant or vacuum energy; this leads to the Lambda-CDM model, which is 

generally known as the Standard Model of Cosmology as of 2003-2013, since it is the simplest 

model in good agreement with a variety of recent observations.  

Dark Matter and Energy  
Dark matter is a type of matter hypothesized in astronomy and cosmology to account for a large 

part of the mass that appears to be missing from the universe. Dark matter cannot be seen directly 

with telescopes; evidently it neither emits nor absorbs light or other electromagnetic radiation at 

any significant level. It is otherwise hypothesized to simply be matter that is not reactant to light. 

Instead, the existence and properties of dark matter are inferred from its gravitational effects on 

visible matter, radiation, and the large-scale structure of the universe. According to the Planck 

mission team, and based on the standard model of cosmology, the total mass–energy of the known 

universe contains 4.9% ordinary matter, 26.8% dark matter and 68.3% dark energy. Thus, dark 

matter is estimated to constitute 84.5% of the total matter in the universe, while dark energy plus 

dark matter constitute 95.1% of the total content of the universe. [6]   

Cosmic microwave background  
The cosmic microwave background (CMB) is the thermal radiation assumed to be left over from the 

"Big Bang" of cosmology. When the universe cooled enough, protons and electrons combined to 

form neutral atoms. These atoms could no longer absorb the thermal radiation, and so the 

universe became transparent instead of being an opaque fog. [7]  

Thermal radiation  
Thermal radiation is electromagnetic radiation generated by the thermal motion of charged 

particles in matter. All matter with a temperature greater than absolute zero emits thermal 

radiation. When the temperature of the body is greater than absolute zero, interatomic collisions 

cause the kinetic energy of the atoms or molecules to change. This results in charge-acceleration 

and/or dipole oscillation which produces electromagnetic radiation, and the wide spectrum of 

radiation reflects the wide spectrum of energies and accelerations that occur even at a single 

temperature. [8]  



 
  

Electromagnetic Field and Quantum Theory  
Needless to say that the accelerating electrons of the steady stationary current are a simple 

demystification of the magnetic field, by creating a decreasing charge distribution along the wire, 

maintaining the decreasing U potential and creating the A vector potential experienced by the 

electrons moving by v velocity relative to the wire. This way it is easier to understand also the time 

dependent changes of the electric current and the electromagnetic waves as the resulting fields 

moving by c velocity.   

It could be possible something very important law of the nature behind the self maintaining E 

accelerating force by the accelerated electrons. The accelerated electrons created electromagnetic 

fields are so natural that they occur as electromagnetic waves traveling with velocity c. It shows 

that the electric charges are the result of the electromagnetic waves diffraction.  

One of the most important conclusions is that the electric charges are moving in an accelerated 

way and even if their velocity is constant, they have an intrinsic acceleration anyway, the so called 

spin, since they need at least an intrinsic acceleration to make possible they movement .  

The bridge between the classical and quantum theory is based on this intrinsic acceleration of the 

spin, explaining also the Heisenberg Uncertainty Principle. The particle – wave duality of the 

electric charges and the photon makes certain that they are both sides of the same thing. Basing 

the gravitational force on the accelerating Universe caused magnetic force and the Planck 

Distribution  

Law of the electromagnetic waves caused diffraction gives us the basis to build a Unified Theory of 

the physical interactions. [4]  

  



Lorentz transformation of the Special Relativity  
In the referential frame of the accelerating electrons the charge density lowering linearly because 

of the linearly growing way they takes every next time period. From the referential frame of the 

wire there is a parabolic charge density lowering.  

The difference between these two referential frames, namely the referential frame of the wire and 

the referential frame of the moving electrons gives the relativistic effect. Important to say that the 

moving electrons presenting the time coordinate, since the electrons are taking linearly increasing 

way every next time period, and the wire presenting the geometric coordinate. The Lorentz 

transformations are based on moving light sources of the Michelson - Morley experiment giving a 

practical method to transform time and geometric coordinates without explaining the source of 

this mystery.   

The real mystery is that the accelerating charges are maintaining the accelerating force with their 

charge distribution locally. The resolution of this mystery that the charges are simply the results of 

the diffraction patterns, that is the charges and the electric field are two sides of the same thing. 

Otherwise the charges could exceed the velocity of the electromagnetic field.  

The increasing mass of the electric charges the result of the increasing inductive electric force 

acting against the accelerating force. The decreasing mass of the decreasing acceleration is the 

result of the inductive electric force acting against the decreasing force. This is the relativistic mass 

change explanation, especially importantly explaining the mass reduction in case of velocity 

decrease.  

The Classical Relativistic effect  
The moving charges are self maintain the electromagnetic field locally, causing their movement and 

this is the result of their acceleration under the force of this field.   

In the classical physics the charges will distributed along the electric current so that the electric 

potential lowering along the current, by linearly increasing the way they take every next time 

period because this accelerated motion.  

Electromagnetic inertia and Gravitational attraction  
Since the magnetic induction creates a negative electric field as a result of the changing 

acceleration, it works as an electromagnetic inertia, causing an electromagnetic mass.   

It looks clear that the growing acceleration results the relativistic growing mass - limited also with 

the velocity of the electromagnetic wave.    

Since E = hν and E = mc2, m = hν /c2 that is the m depends only on the ν frequency. It means that 

the mass of the proton and electron are electromagnetic and the result of the electromagnetic 

induction, caused by the changing acceleration of the spinning and moving charge! It could be that 

the mo inertial mass is the result of the spin, since this is the only accelerating motion of the electric 

charge. Since the accelerating motion has different frequency for the electron in the atom and the 

proton, they masses are different, also as the wavelengths on both sides of the diffraction pattern, 

giving equal intensity of radiation.  



If the mass is electromagnetic, then the gravitation is also electromagnetic effect caused by the 
accelerating Universe! The same charges would attract each other if they are moving parallel by the 
magnetic effect.  

The Planck distribution law explains the different frequencies of the proton and electron, giving 

equal intensity to different lambda wavelengths! Also since the particles are diffraction patterns 

they have some closeness to each other – can be seen as a gravitational force.  

Electromagnetic inertia and mass  

Electromagnetic Induction  
Since the magnetic induction creates a negative electric field as a result of the changing 

acceleration, it works as an electromagnetic inertia, causing an electromagnetic mass.  [1]  

Relativistic change of mass  
The increasing mass of the electric charges the result of the increasing inductive electric force 

acting against the accelerating force. The decreasing mass of the decreasing acceleration is the 

result of the inductive electric force acting against the decreasing force. This is the relativistic mass 

change explanation, especially importantly explaining the mass reduction in case of velocity 

decrease.  

The frequency dependence of mass  
Since E = hν and E = mc2, m = hν /c2 that is the m depends only on the ν frequency. It means that 

the mass of the proton and electron are electromagnetic and the result of the electromagnetic 

induction, caused by the changing acceleration of the spinning and moving charge! It could be that 

the mo inertial mass is the result of the spin, since this is the only accelerating motion of the electric 

charge. Since the accelerating motion has different frequency for the electron in the atom and the 

proton, they masses are different, also as the wavelengths on both sides of the diffraction pattern, 

giving equal intensity of radiation.  

Electron – Proton mass rate  
The Planck distribution law explains the different frequencies of the proton and electron, giving 

equal intensity to different lambda wavelengths! Also since the particles are diffraction patterns 

they have some closeness to each other – can be seen as a gravitational force. [1]  

There is an asymmetry between the mass of the electric charges, for example proton and electron, 

can understood by the asymmetrical Planck Distribution Law. This temperature dependent energy 

distribution is asymmetric around the maximum intensity, where the annihilation of matter and 

antimatter is a high probability event. The asymmetric sides are creating different frequencies of 

electromagnetic radiations being in the same intensity level and compensating each other. One of 

these compensating ratios is the electron – proton mass ratio. The lower energy side has no 

compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.  



Gravity from the point of view of quantum physics  

The Gravitational force  
The gravitational attractive force is basically a magnetic force.  

The same electric charges can attract one another by the magnetic force if they are moving parallel 

in the same direction. Since the electrically neutral matter is composed of negative and positive 

charges they need 2 photons to mediate this attractive force, one per charges. The Bing Bang 

caused parallel moving of the matter gives this magnetic force, experienced as gravitational force.  

Since graviton is a tensor field, it has spin = 2, could be 2 photons with spin = 1 together.  

You can think about photons as virtual electron – positron pairs, obtaining the necessary virtual 

mass for gravity.  

The mass as seen before a result of the diffraction, for example the proton – electron mass rate 

Mp=1840 Me. In order to move one of these diffraction maximum (electron or proton) we need to 

intervene into the diffraction pattern with a force appropriate to the intensity of this diffraction 

maximum, means its intensity or mass.  

  

The Big Bang caused acceleration created radial currents of the matter, and since the matter is 

composed of negative and positive charges, these currents are creating magnetic field and 

attracting forces between the parallel moving electric currents. This is the gravitational force 

experienced by the matter, and also the mass is result of the electromagnetic forces between the 

charged particles.  The positive and negative charged currents attracts each other or by the 

magnetic forces or by the much stronger electrostatic forces!?  

    

The Graviton  
In physics, the graviton is a hypothetical elementary particle that mediates the force of gravitation 

in the framework of quantum field theory. If it exists, the graviton is expected to be massless 

(because the gravitational force appears to have unlimited range) and must be a spin-2 boson. The 

spin follows from the fact that the source of gravitation is the stress-energy tensor, a second-rank 

tensor (compared to electromagnetism's spin-1 photon, the source of which is the four-current, a 

first-rank tensor). Additionally, it can be shown that any massless spin-2 field would give rise to a 

force indistinguishable from gravitation, because a massless spin-2 field must couple to (interact 

with) the stress-energy tensor in the same way that the gravitational field does. This result suggests 

that, if a massless spin-2 particle is discovered, it must be the graviton, so that the only 

experimental verification needed for the graviton may simply be the discovery of a massless spin-2 

particle. [2]  

Conclusions  
Researchers predict that axions, if they exist, would be produced invisibly by the Sun, but would 

convert to X-rays as they hit Earth’s magnetic field. This X-ray signal should in theory be strongest 

when looking through the sunward side of the magnetic field, as this is where the Earth’s magnetic 



field is strongest. The high frequency of the X-ray and the uncompensated Planck distribution 

makes the axion a good candidate to be dark matter.  

Hidden photons are predicted in some extensions of the Standard Model of particle physics, and 

unlike WIMPs they would interact electromagnetically with normal matter.  

In particle physics and astrophysics, weakly interacting massive particles, or WIMPs, are among the 

leading hypothetical particle physics candidates for dark matter.   

The gravitational force attracting the matter, causing concentration of the matter in a small space 

and leaving much space with low matter concentration: dark matter and energy.   

There is an asymmetry between the mass of the electric charges, for example proton and electron, 

can understood by the asymmetrical Planck Distribution Law. This temperature dependent energy 

distribution is asymmetric around the maximum intensity, where the annihilation of matter and 

antimatter is a high probability event. The asymmetric sides are creating different frequencies of 

electromagnetic radiations being in the same intensity level and compensating each other. One of 

these compensating ratios is the electron – proton mass ratio. The lower energy side has no 

compensating intensity level, it is the dark energy and the corresponding matter is the dark matter. 

The electric currents causing self maintaining electric potential is the source of the special and 

general relativistic effects.  The Higgs Field is the result of the electromagnetic induction. The 

Graviton is two photons together. [3]  
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