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Abstract. In this paper, we bring forward a completely perturbed nuclear norm minimization method

to tackle a formulation of completely perturbed low-rank matrices recovery. In view of the matrix version

of the restricted isometry property (RIP) and the Frobenius-robust rank null space property (FRNSP), this

paper extends the investigation to a completely perturbed model taking into consideration not only noise but

also perturbation, derives sufficient conditions guaranteeing that low-rank matrices can be robustly and stably

reconstructed under the completely perturbed scenario, as well as finally presents an upper bound estimation of

recovery error. The upper bound estimation can be described by two terms, one concerning the total noise, and

another regarding the best r-approximation error. Specially, we not only improve the condition corresponding

with RIP, but also ameliorate the upper bound estimation in case the results reduce to the general case.

Furthermore, in the case of E = 0, the obtaining conditions are optimal.

Key words. Compressed sensing; low-rank matrices; perturbation of measurement operator; constrained

nuclear norm minimization.

1 Introduction

Low-rank matrix recovery (LMR) is a rapidly developing research field which has a variety of applications

including quantum state tomograph [1], machine learning [2] [3], system identification [4], and computer vision

[5]. From the mathematical point of view, we can depict it as

y = A(X), (1.1)

where y ∈ Rm is a given vector, X ∈ Rn1×n2 is the desired matrix being low-rank or approximately low-rank,

and A : Rn1×n2 → Rm is a known measurement operator which is given by

A(X) =
[
tr(X⊤A(1)), tr(X⊤A(2)), · · · , tr(X⊤A(m))

]⊤
. (1.2)

∗Corresponding author, E-mail: wjjmath@gmail.com, wjj@swu.edu.cn(J.J. Wang)
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Here, tr(·) is the trace function, and X⊤ is the transpose of X and A(1), A(2), · · · , A(m) are called measure-

ment matrices. The objective of LMR is to reconstruct the unknown low-rank matrix X basing on the linear

measurement y and the measurement operator A.

In practice, the measurement y is generally contaminated by noise z, and think about the noisy LMR model

as follows:

ŷ = A(X) + z, (1.3)

where ŷ is the observed measurement which is corrupted by the noise vector z, and z is the additive noise,

independent of X. However, more LMR models can be encountered in which not only the measurement y is

perturbed by z, but also the measurement operator A is obstructed by E , namely, the measurement operator

A is substituted with Â = A + E in (1.3) brought in a multiplicative noise E(X) relating with X. The totally

perturbed problems usually arise in a great deal of applications involving remote sensing [6], source separation

[7], telecommunications [8] and so forth. To look for the optimal solution from such completely perturbed

problem, a general method is to solve the constrained nuclear norm minimization (for short as NNM) as follows:

min
Z̃∈Rn1×n2

∥Z̃∥∗ s.t. ∥Â(Z̃)− ŷ∥2 ≤ ϵ′A,r,y, (1.4)

where ϵ′A,r,y ≥ 0 is a total noise, and ∥Z̃∥∗ is the nuclear norm of the matrix X, viz, the sum of its singular

values. When n1 = n2 and the matrix X = diag(x) (x ∈ Rn1) is diagonal, the model (1.4) degenerates to the

completely perturbed sparse signal recovery problem

min
z̃∈Rn1

∥z̃∥1 s.t. ∥Âz̃ − ŷ∥2 ≤ ϵ′A,r,y, (1.5)

where ∥z̃∥1 is the l1-norm of the vector ẑ, viz, the sum of the absolute value of its elements, and Â = A+ E ∈

Rm×n1 is a sensing matrix with E denoting perturbations to the matrix A. In [9], Herman and Strohmer

gave a sufficient condition to ensure the stable and robust reconstruction of sparse signals, and at the same

moment they provided an upper bound estimation of error. Later, Zhang et al. [10] generalized Herman and

Strohmer’ result to the block-sparse setting. In particular, they not only enhanced the condition associating

with block-restricted isometry property, but also bettered the upper bound estimation of error.

In [11], Candès and Plan first proposed the concept of restricted isometry constant (for short as RIC) of a

measurement operator, which is given by as follows:

Definition 1.1. (RIP for operator [11]) We say that a measurement operator A satisfies the restricted isometry

property with constant δr if δr is the smallest value δ ∈ (0, 1) such that

(1− δ)∥X∥2F ≤ ∥A(X)∥22 ≤ (1 + δ)∥X∥2F (1.6)

holds for all matrices X of rank at most r (wrote as r-rank), where ∥X∥F :=
√
⟨X,X⟩ =

√
tr(X⊤X) is the

Frobenius norm of the matrix X.

The matrix version of the restricted isometry property (abbreviated as RIP) is an important tool in theo-

retical analysis of LMR. There exist a few of sufficient conditions based on RIP for exact LMR (i.e., in (1.4),
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z = 0 and E = 0) or noisy/partially perturbed LMR (i.e., in (1.4), E = 0). These comprise δ4r < 0.558, and

δ3r < 0.4721 [12], δ2k < 0.4931 [13], δk < 1/3 [14], δk + θδ2r+k < θ − 1 with θ > 1 and k = ⌈2rθ2/(2−p)⌉

(0 < p ≤ 1) [15],
√
2δmax{r+⌈3k/2⌉,2k}(k/(2r))

1/p−1/2δ2r+k < (k/(2r))1/p−1/2 [16], δ4r ∈ [
√
3/2, 1) [17], and

δtr <
√
(t− 1)/t for fixed t > 1 consisting of constrained NNM [18] and regularized NNM [19].

Moreover, another critical tool for the analysis of low-rank recovery is the Frobenius-robust rank null space

property (FRNSP) of the measurement operator A, which was introduced by Kabanava et al. [21], extending

the sparse vector recovery to the situation of low-rank matrices. The concept states as follows:

Definition 1.2. (FRNSP for operator [21]) The measurement operator A is said to satisfy the Frobenius-robust

rank null space property of order r with constants 0 < ρ < 1 and τ > 0 if for all X ∈ Rn1×n2 , the singular

values of X fulfills

∥X[r]c∥F ≤ ρ√
r
∥X[r]∥∗ + τ∥A(X)∥2. (1.7)

However, the aforementioned works are taken into account only in unperturbed scenario (i.e., E = 0), viz,

the measurement operator A is not perturbed by E . From the viewpoint of application, it is more practical to

investigate the low-rank matrix recovery in the completely perturbed scenario. Specifically, we want to realize

what a requirement to assure robust reconstruction of low-rank matrices, as well as what is the estimation

of reconstruction error. In this paper, we make an unflagging effort to extend the constrained nuclear norm

minimization to make sure the capability of the completely perturbed model. Based on RIP condition for Â,

the present paper will show the performance of low-rank matrices recovery via the constrained nuclear norm

minimization in the completely perturbed model. For better understanding, the main contributions of this work

are as follows. First of all, we establish a sufficient condition to ensure the robust and stable reconstruction of

low-rank matrices via the completely perturbed nuclear norm minimization. The derived condition extends and

improves the previous works concerning complete perturbation, which is proved sharp by [13]. Secondly, the

approximation accuracy between the solution and the original matrix is described by a best r-rank approximation

error and a total noise, which gives a theoretical support to refine the recovery precision. The result reveals

that stableness and robustness regarding the reconstruction of low-rank matrices in the presence of total noise.

Finally, discuss another sufficient condition ensuring reconstruction via certain properties of null space of the

measurement operator.

The reminder of the paper is constructed as follows. In Section 2, we provide some notations and our main

results. We present some necessary lemmas and the proof of main results in Section 3. Finally, conclusion are

given in 4.
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2 Notations and the main results

Before introducing our main results, we present some symbols similar to [9], which quantify the perturbations

E and z with different upper bounds as follows:

∥E∥op
∥A∥op

≤ ϵA,
∥E∥(r)op

∥A∥(r)op

≤ ϵ
(r)
A ,

∥z∥2
∥y∥2

≤ ϵy, (2.8)

where ∥A∥op is the operator norm of the measurement operator A, i.e., ∥A∥op = sup{∥A(X)∥2/∥X∥F : X ∈

Rn1×n2 with X ̸= 0}, and ∥A∥(r)op is the operator norm of A whose original image set is defined in matrix

space composed of r-rank nonzero matrices, i.e., ∥A∥(r)op = sup{∥A(X)∥2/∥X∥F : X ∈ Rn1×n2 with X ̸=

0 and being r-rank}, and meanwhile we represent

tr =
∥X[r]c∥F
∥X[r]∥F

, sr =
∥X[r]c∥∗√
r∥X[r]∥F

, κ
(r)
A =

√
1 + δr√
1− δr

, αA =
∥A∥op√
1− δr

, (2.9)

where X[r]c = X −X[r] with X[r] being the best r-rank approximation of the matrix X, and its singular values

are made up of r-largest singular values of the matrix X.

We additionally suppose that n1 ≤ n2 and we denote the singular value decomposition (SVD) of X ∈

Rn1×n2 by X =
∑n1

i=1 σi(X)ui(X)(vi(X))⊤, where ui(X) and vi(X) are respectively the left and right singular

value vectors of X. Without loss of generality, we assume that σ1(X) ≥ σ2(X) ≥ · · · ≥ σn1(X). For any

positive integer s, we represent [s] = {1, 2, · · · , s}, and Bc stands for the complement set of B in [n1], i.e.,

Bc = [n1]\B for any B ⊂ [n1]. For an index set B ⊂ [n1] and a vector x ∈ Rn1 , we represent xB to be

the vector that is equal to x on B, and zero otherwise, and similarly XB =
∑

i∈B σi(X)ui(X)(vi(X))⊤ and

X[s] =
∑s

i=1 σi(X)ui(X)(vi(X))⊤. Using the notations and symbols above, we provide the main results for

reconstruction of low-rank matrices via the completely perturbed nuclear norm minimization as follows:

Theorem 2.1. For given relative perturbations ϵA, ϵ
(r)
A , ϵ

(2r)
A , and ϵy in (2.8), suppose that the RIC of the

measurement operator A satisfies

δ2r <

√
2
2 + 1

(1 + ϵ
(2r)
A )2

− 1, (2.10)

a general r-rank matrix X fulfills

tr + sr <
1

κ
(r)
A

, (2.11)

and the total noise is

ϵ′A,r,y =

[
ϵ
(r)
A κ

(r)
A + ϵAαAtr

1− κ
(r)
A (tr + sr)

+ ϵy

]
∥y∥2. (2.12)

Then the solution X∗ of the completely perturbed nuclear norm minimization (1.4) obeys

∥X −X∗∥F ≤ Cϵ′A,r,y +D
∥X[s]c∥∗√

r
, (2.13)

where

C =
2
√
1 + δ2r(1 + ϵ

(2r)
A )

√
2
2 + 1− (1 + δ2r)(1 + ϵ

(2r)
A )2

,
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D =

√
2
2 [(1 + δ2r)(1 + ϵ

(2r)
A )2 − 1] +

√
2[

√
2
2 − (1 + δ2r)(1 + ϵ

(2r)
A )2 + 1][(1 + δ2r)(1 + ϵ

(2r)
A )2 − 1] + 1

2
√
2
2 + 1− (1 + δ2r)(1 + ϵ

(2r)
A )2

.

Remark 2.2. Theorem 2.1 presents a sufficient condition for the reconstruction of low-rank matrices via con-

strained nuclear norm minimization. The gained condition mainly involves two aspects: on the one hard, as far

as RIC is concerned, (2.10) characterizes the reconstruction condition for low-rank matrices, and simultaneously

improves the results in [9] [10] because n1 = n2 and the matrix X = diag(x) (x ∈ Rn1) is diagonal, our results

reduce to the conventional compressed sensing. Specifically, the upper bound of RIC δ2r <
√

2
2 +1

(1+ϵ
(2r)
A )2

−1 is weaker

than δ2r <
√
2

(1+ϵ
(2r)
A )2

− 1 in [9] and δ2r < 1.5

(1+ϵ
(2r)
A )2

− 1 in [10]. Factually, in the case of E = 0 (i.e., ϵ
(2r)
A = 0),

which means that the measurement operator A is not perturbed by E, it has been proved [13] that the bound of

RIC δ2r <
√
2/2 is sharp, namely, it is not possible to improve that bound. On the other hard, with respect

to the restriction to matrices to be recovered, one can easily check that (2.11) is able to be satisfied when the

unknown matrices are low-rank.

Remark 2.3. The inequality (2.13) shows that the upper bound estimation of recovery error is controlled by the

total noise ϵ′A,r,y and the best r-rank approximation error. When n1 = n2 and the matrix X = diag(x) (x ∈ Rn1)

is diagonal, our results not only incorporate portion of results in [9] [10] [13], but also acquire a tighter upper

bound estimation of reconstruction error than that in [9] [10]. In particular, the error bound noise constant C

and the error bound compressibility constant D are less than C1 and C0 in [9], D1 and D2 in [10], respectively,

i.e.,

C < C1 =
4
√
1 + δ2r(1 + ϵ

(2r)
A )

1− (
√
2 + 1)[(1 + δ2r)(1 + ϵ

(2r)
A )2 − 1]

,

D < C0 =
2{1 + (

√
2− 1)[(1 + δ2r)(1 + ϵ

(2r)
A )2 − 1]}

1− (
√
2 + 1)[(1 + δ2r)(1 + ϵ

(2r)
A )2 − 1]

and

C < D1 =
2
√
2
√
1 + δ2r(1 + ϵ

(2r)
A )

1− 2[(1 + δ2r)(1 + ϵ
(2r)
A )2 − 1]

,

D < D2 =
2{1− (2−

√
2)[(1 + δ2r)(1 + ϵ

(2r)
A )2 − 1]}

1− 2[(1 + δ2r)(1 + ϵ
(2r)
A )2 − 1]

.

Remark 2.4. When no noise and perturbation are introduced, our completely perturbed nuclear norm model

will return to the general low-rank matrices recovery, and will bring about exact reconstruction when matrices

are r-rank. In this case, our results contain part of the Theorem 1.4 in [13].

In the following, we extend the result of Theorem 2.1 to the general case, whose proof is similar to that of

Theorem 2.1, stated below.

Corollary 2.5. For given relative perturbations ϵA, ϵ
(r)
A , ϵ

(2r)
A , and ϵy in (2.8), we assume that the RIC of the

measurement operator A satisfies

δtr <

√
t−1
t + 1

(1 + ϵ
(tr)
A )2

− 1, (2.14)
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for t ≥ 1 and (2.11) and (2.12) hold. Then the solution X∗ of the completely perturbed nuclear norm minimiza-

tion (1.4) satisfies

∥X −X∗∥F ≤ C ′ϵ′A,r,y +D′ ∥X[s]c∥∗√
r

, (2.15)

where

C ′ =
2
√
2
√
t(t− 1)(1 + δtr)(1 + ϵ

(tr)
A )

t[
√

t−1
t + 1− (1 + δtr)(1 + ϵ

(tr)
A )2]

,

D′ =

{
t

[√
t− 1

t
+ 1− (1 + δtr)(1 + ϵ

(tr)
A )2

]}−1

×
{
4
√
2[(1 + δtr)(1 + ϵ

(tr)
A )2 − 1] +

√
2t

(√
t− 1

t
− δtr

)

+ 4

√√√√t

[√
t− 1

t
− (1 + δtr)(1 + ϵ

(tr)
A )2 + 1

]
[(1 + δtr)(1 + ϵ

(tr)
A )2 − 1]

}
.

Remark 2.6. When t = 2, the results of Corollary 2.5 coincide with Theorem 2.1.

Remark 2.7. When E = 0, i.e., ϵA = 0, the results of Corollary 2.5 not only are the same as part of Proposition

3.1 [18], but also we gain a tighter upper bound estimation of error than that in [18]. Particularly, the error

bound compressibility constant D′ are less than D′′, i.e.,

D′ =

√
2δtr +

√
t(
√

(t− 1)/t− δtr)δtr

t(
√
(t− 1)/t− δtr)

+

√
2

2

<

√
2δtr +

√
t(
√

(t− 1)/t− δtr)δtr

t(
√
(t− 1)/t− δtr)

+ 1 = D′′.

Besides, in the case of E = 0, it has been showed [18] that the condition (2.14) for t ≥ 4/3 is sharp.

Theorem 2.8. Let ϵA, ϵ
(r)
A , ϵ

(2r)
A , and ϵy in (2.8), assume that the measurement operator A obeys the Frobenius-

robust space property of order r with constants
√
rτϵA∥A∥op < ρ < 1 and τ > 0, and (2.11) and (2.12) hold.

Then the minimizer X∗ of the model (1.4) fullfils

∥X −X∗∥F ≤ Ĉϵ′A,r,y + D̂
∥X[s]c∥∗√

r
, (2.16)

where

Ĉ =
2τ

1 + τϵA∥A∥op

[
3 + ρ− τϵA∥A∥op(ρ+

√
r)

1 + τϵA∥A∥op

]
·
[
1− ρ+

τϵA∥A∥op(ρ+
√
r)

1 + τϵA∥A∥op

]−1

,

D̂ = 2

[
1 + ρ− τϵA∥A∥op(ρ+

√
r)

1 + τϵA∥A∥op

]2
·
[
1− ρ+

τϵA∥A∥op(ρ+
√
r)

1 + τϵA∥A∥op

]−1

.

Remark 2.9. The theorem demonstrates the stability and robustness of (1.4). The inequality (2.16) indicates

the estimation of the reconstruction error is bounded by two terms, one about total noise, and another regarding

best r-rank approximation error.

Remark 2.10. In the case of E = 0, i.e., ϵA = 0, we obtain the same results as Theorem 3.1 in [21].
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3 The proof of main results

In this section, we will prove our main results. To establish the results, the following lemmas will be useful.

First, we provide the lemma below comprising an inequality concerning δr and δ̂r.

Lemma 3.1. (RIP for perturbation of measurement operator Â) Suppose that the RIC of order r for the

measurement operator A is δr, relative perturbation upper bound corresponding with the measurement operator

E is ϵ
(r)
A and fix the constant δ̂r,max = (1 + δr)(1 + ϵ

(r)
A )2 − 1. Then the RIC δ̂r ≤ δ̂r,max for Â = A + E is the

smallest nonnegative constant such that

(1− δ̂r)∥X∥2F ≤ ∥Â(X)∥22 ≤ (1 + δ̂r)∥X∥2F (3.17)

holds for all r-rank matrices X ∈ Rn1×n2 .

Proof of the lemma 3.1. The proof of lemma is inspired by [9]. First of all, define lr and ur as the smallest

nonnegative numbers such that

(1− lr)∥X∥2F ≤ ∥Â(X)∥22 ≤ (1 + ur)∥X∥2F (3.18)

holds for all matrices X rank at most r. By applying the triangle inequality, the concept of RIC and (2.8), we

get

∥Â(X)∥22 ≤ (∥A(X)∥2 + ∥E(X)∥2)2

≤ (
√
1 + δr + ∥E∥(r)op )

2∥X∥2F

≤ (
√
1 + δr + ϵ

(r)
A ∥A∥(r)op )

2∥X∥2F
(a)

≤ (
√
1 + δr + ϵ

(r)
A

√
1 + δr)

2∥X∥2F

= (1 + δr)(1 + ϵ
(r)
A )2∥X∥2F , (3.19)

where (a) follows from the fact that ∥A∥(r)op ≤
√
1 + δr. Due to the notion of ur, it implies that

1 + ur ≤ (1 + δr)(1 + ϵ
(r)
A )2. (3.20)

By employing the inequality above, we get an minimal upper bound

ur = (1 + δr)(1 + ϵ
(r)
A )2 − 1, (3.21)

fulfilling the concept of ur. Likewise, combining with the reverse triangular inequality, the concept of RIC and

(2.8), we obtain

lr = 1− (1− δr)(1− ϵ
(r)
A )2, (3.22)

meeting the notion of lr. Observe that 1− ur ≤ 1− lr and 1 + lr ≤ 1 + ur. Accordingly, for given δr and ϵ
(r)
A ,

we select δ̂r,max = ur as the smallest nonnegative constant making (3.18) symmetric. Obviously, the real RIC

δ̂r for Â satisfies δ̂r ≤ δ̂r,max. The proof is complete.
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Lemma 3.2. ([20]) Suppose that the measurement operator A fulfills the upper bound of the RIP in (1.6).

Then, for every matrix X, we obtain

∥A(X)∥2 ≤
√
1 + δr

(
∥X∥F +

∥X∥∗√
r

)
. (3.23)

Now, we present a sufficient condition for the lower bound of the image of an arbitrary matrix related to the

best r-rank approximation and truncation of X and the RIC of A.

Lemma 3.3. Suppose that condition (2.11) in Theorem 2.1. Then, for general matrix X, its image under A

can be controlled by the following great than 0 quantity

∥A(X)∥2 ≥
√
1− δr

[
∥X[r]∥F − κ

(r)
A

(
∥X[r]c∥F +

∥X[r]c∥∗√
r

)]
.

Proof of the lemma 3.3. By applying Lemma 3.2 and (2.11), we get

∥A(X)∥2 ≥ ∥A(X[r])∥2 − ∥A(X[r]c)∥2

≥
√

1− δr∥X[r]∥F −
√

1 + δr

(
∥X[r]c∥F +

∥X[r]c∥∗√
r

)
=
√

1− δr

[
1−

√
1 + δr√
1− δr

(∥X[r]c∥F
∥X[r]∥F

+
∥X[r]c∥∗√
r∥X[r]∥F

)]
∥X[r]∥F

=
√

1− δr[1− κ
(r)
A (tr + sr)]∥X[r]∥F

> 0.

The following lemma gives an upper bound of the size of the total perturbation, which is induced by E and

z.

Lemma 3.4. Suppose that (2.11) in Theorem 2.1 and denote

ϵ′A,r,y =

[
ϵ
(r)
A κ

(r)
A + ϵAαAtr

1− κ
(r)
A (tr + sr)

+ ϵy

]
∥y∥2,

where ϵA, ϵ
(r)
A , ϵy are determined by (2.8), and κ

(r)
A , αA, tr, sr in (2.9). Then the total perturbation satisfies

∥E(X)∥2 + ∥z∥2 ≤ ϵ′A,r,y. (3.24)

Proof of the lemma 3.4. By making use of Lemma 3.3, we get

∥E(X)∥2
∥A(X)∥2

≤
∥E(X[r])∥2 + ∥E(X[r]c)∥2

∥A(X)∥2

≤
∥E∥(r)op ∥X[r]∥F + ∥E∥op∥X[r]c∥F

√
1− δr

[
∥X[r]∥F − κ

(r)
A

(
∥X[r]c∥F +

∥X[r]c∥∗√
r

)]
≤

(ϵ
(r)
A ∥A∥(r)op + ϵA∥A∥optr)

√
1− δr[1− κ

(r)
A (tr + sr)]

≤
ϵ
(r)
A κ

(r)
A + ϵAαAtr

1− κ
(r)
A (tr + sr)

. (3.25)

Combining with (3.25) and the inequality ∥z∥2 ≤ ϵy∥y∥2, the desired result follows.
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Cai and Zhang [18] developed a novel technique which plays a crucial role in the proof of main results. This

result shows that any point in a polytope can be expressed as a convex combination of sparse vectors.

Lemma 3.5. ([18]) For a positive number α and a positive integer k, the polytope T (α, k) ⊂ Rn is defined by

T (α, k) = {v ∈ Rn : ∥v∥∞ ≤ α, ∥v∥1 ≤ kα},

where ∥v∥∞ = max1≤i≤n |vi|. For arbitrary v ∈ Rn, the set U(α, k, v) ∈ Rn is defined by

U(α, k, v) = {u ∈ Rn : supp(u) ⊂ supp(v), ∥u∥0 ≤ k, ∥u∥1 = ∥v∥1, ∥u∥∞ ≤ α},

where supp(u) is the support of u, i.e., supp(u) = {i : ui ̸= 0}, and ∥u∥0 = |supp(u)|. Then v ∈ T (α, k) iff v

is in the convex hull of U(α, k, v). In particular, any v ∈ T (α, k) can be represented as

v =

L∑
i=1

γiui,

where ui ∈ U(α, k, v) and 0 ≤ γi ≤ 1,
∑L

i=1 γi = 1.

Lemma 3.6. ([16]) (a) Let M,N ∈ Rn1×n2 be matrices satisfying M⊤N = 0 and MN⊤ = 0. Then

∥M +N∥2F = ∥M∥2F + ∥N∥2F . (3.26)

(b) Let M,N ∈ Rn1×n2 be matrices with the row and column spaces of M and N being orthogonal. Then (3.26)

holds.

Lemma 3.7. For given ϵA as (2.8), let the measurement operator A satisfy the Frobenius-robust rank null space

property with constants
√
rτϵA∥A∥op < ρ < 1 and τ > 0 if for all X ∈ Rn1×n2 , the singular values of X meet

(1.7) and fix constants τ̂ = τ/(1 + τϵA∥A∥op) and ρ̂ = ρ− τϵA∥A∥op(ρ+
√
r)

1+τϵA∥A∥op
. Then the measurement operator Â

obeys the Frobenius-robust rank null space property of order r with constants 0 < ρ̂ < 1 and τ̂ > 0.

Remark 3.8. When E = 0, i.e., ϵA = 0, signifying that there exists no perturbation in the measurement

operator A, then τ̂ = τ and ρ̂ = ρ. In this case, the Definition 3.1 [21] is incorporated in our lemma, namely,

we derive the same result as Definition 1.2.

Proof of the lemma 3.7. By applying the triangle inequality and (2.8), we get

∥Â(X)∥2 ≤ ∥A(X)∥2 + ∥E(X)∥2

≤ ∥A(X)∥2 + ∥E∥op∥X∥F

≤ ∥A(X)∥2 + ϵA∥A∥op∥X∥F , (3.27)

Applying the Frobenius-robust rank null space property of Â and noting the fact that ∥X∥F ≤ ∥X∥∗ for any

X and combining with (3.27),

∥X[r]∥F ≤ ρ̂√
r
∥X∥∗ + τ̂∥A(X)∥2 + τ̂ ϵA∥A∥op∥X∥F

9



≤ ρ̂√
r
∥X∥∗ + τ̂∥A(X)∥2 + τ̂ ϵA∥A∥op(∥X[r]∥F + ∥X[r]c∥F )

≤ ρ̂√
r
∥X∥∗ + τ̂∥A(X)∥2 + τ̂ ϵA∥A∥op(∥X[r]∥F + ∥X[r]c∥∗). (3.28)

Observing the condition of τ̂ = τ/(1 + τϵA∥A∥op) with τ > 0, by rearranging the terms in (3.28), we get

∥X[r]∥F ≤ 1

1− τ̂ ϵA∥A∥op

(
ρ̂√
r
+ τ̂ ϵA∥A∥op

)
∥X[r]c∥∗ +

τ̂

1− τ̂ ϵA∥A∥op
∥A(X)∥2. (3.29)

Hence, τ̂ = τ/(1 + τϵA∥A∥op) and ρ̂ = ρ − τϵA∥A∥op(ρ+
√
r)

1+τϵA∥A∥op
. For given ϵA as (2.8), ∥A∥op and τ > 0, to make

ρ̂ ∈ (0, 1), we solve the inequality below

0 < ρ− τϵA∥A∥op(ρ+
√
r)

1 + τϵA∥A∥op
< 1,

which implies

√
rτϵA∥A∥op < ρ < 1 + (

√
r + 1)τϵA∥A∥op.

Combining with the inequality above and ρ ∈ (0, 1), the lemma is proved.

The following lemma presents a matrix version of Stechkin’s bound which extends the result of sparse vectors

[22] to that case of low-rank matrices.

Lemma 3.9. ([21]) Let X ∈ Rn1×n2 and r ≤ n1. Then, for p > 0,

∥X[r]c∥p ≤ ∥X∥∗
r1−1/p

.

Lemma 3.10. ([23]) For any X,Y ∈ Rn1×n2 , we have

n1∑
i=1

|σi(X)− σi(Y )|∗ ≤ ∥X − Y ∥∗.

With preparations above, we now prove our main results.

Proof of the theorem 2.1. Firstly, we reveal the estimation (2.13). Let X∗ = X − Z, where X is the matrix

that we wish to recover, and X∗ is the minimizer of (1.4). We exploit the following inequality which has been

showed by Mohan and Fazel (see (7) in [12]).

∥Z[r]c∥∗ ≤ ∥Z[r]∥∗ + 2∥X[r]c∥∗. (3.30)

Denote β = (∥Z[r]∥∗ + 2∥X[r]c∥∗)/r, and

D1 = {i ∈ [r]c : σi(Z) > β},

D2 = {i ∈ [r]c : σi(Z) ≤ β}.

Hence, Z[r]c is partitioned into two parts, i.e.,

Z[r]c = ZD1 + ZD2 .

10



Due to the definitions above and (3.30), we get

∥ZD1∥∗ ≤ ∥Z[r]c∥∗ ≤ βr.

Set rank(ZD1) = |D1| = n. In view of the definition of D1, it leads to

βr ≥ ∥ZD1∥∗ =
∑
i∈D1

σi ≥
∑
i∈D1

β = nβ.

That is, n ≤ r. Furthermore, we get rank(Z[r] + ZD1) = r + n ≤ 2r,

∥σD2(Z)∥1 = ∥ZD2∥∗ = ∥Z[r]c∥∗ − ∥ZD1∥∗

≤ βr − nβ = (r − n)β,

∥σD2(Z)∥∞ = ∥ZD2∥op ≤ β. (3.31)

From the triangular inequality and ∥Â(X)− ŷ∥2 ≤ ϵ′A,r,y, it implies that

∥Â(Z)∥2 ≤ ∥Â(X)− ŷ∥2 + ∥Â(X∗)− ŷ∥2 ≤ 2ϵ′A,r,y, (3.32)

which deduces ⟨
Â(Z[r] + ZD1), Â(Z)

⟩ (a)

≤ ∥Â(Z[r] + ZD1)∥2∥Â(Z)∥2
(b)

≤ 2ϵ′A,r,y

√
1 + δ̂2r∥Z[r] + ZD1∥F , (3.33)

where (a) follows from Hölder’s inequality, and (b) is due to the definition of RIC for Â and (3.32). By employing

Lemma 3.5 and (3.31), we can represent σD2(Z) as σD2(Z) =
∑L

i=1 γiwi, where wi ∈ U(β, r − n, σD2(Z)). By

further defining

Φi =

n1∑
j=1

wi[j]uj(Z)(vj(Z))⊤, i = 1, 2, · · · , L,

where wi[j] denotes the jth element of wi, we can express ZD2 as

ZD2 =
L∑

i=1

γiΦi, (3.34)

and one can easily see that Φi is (r − n)-rank and ∥Φi∥op = ∥wi∥∞ ≤ β. Therefore,

∥Φi∥F ≤
√
rank(Φi)∥Φi∥op ≤

√
r − n∥Φi∥op ≤

√
rβ. (3.35)

Define Ψi = Z[r] + ZD1 + λΦi, where 0 ≤ λ ≤ 1. It is easy to see that

L∑
j=1

γjΨj −
1

2
Ψi = Z[r] + ZD1 + λZD2 −

1

2
Ψi

=

(
1

2
− λ

)
(Z[r] + ZD1)−

1

2
λΦi + λZ. (3.36)
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Since Z[r], ZD1 ,Φi are r-rank, n-rank, (r−n)-rank, respectively, Ψi and
∑L

j=1 γjΨj − 1
2Ψi−λZ = ( 12 −λ)(Z[r]+

ZD1
)− 1

2λΦi are all 2r-rank matrices. Put

∆ = ∥Z[r] + ZD1∥F , Q =
2∥X[r]c∥∗√

r
.

By utilizing Hölder’s inequality, we get

∥Φi∥F ≤
√
rβ =

√
r
∥Z[r]∥∗ + 2∥X[r]c∥∗

r

≤ ∥Z[r]∥F +
2∥X[r]c∥∗√

r

≤ ∥Z[r] + ZD1∥F +
2∥X[r]c∥∗√

r

= ∆+Q. (3.37)

We make use of the identity below (see (25) in [18]).

L∑
i=1

γi

∥∥∥∥∥∥Â
 L∑

j=1

γjΨj −
1

2
Ψi

∥∥∥∥∥∥
2

2

=
L∑

i=1

γi
4
∥Â(Ψi)∥22. (3.38)

A combination of (3.33), (3.36), the definition of RIP for Â and Lemma 3.6, we can reckon the left side of (3.38)

L∑
i=1

γi∥Â(
L∑

j=1

γjΨj −
1

2
Ψi)∥22

=

L∑
i=1

γi∥Â((
1

2
− λ)(Z[r] + ZD1)−

1

2
λΦi + λZ)∥22

=

L∑
i=1

γi∥Â((
1

2
− λ)(Z[r] + ZD1)−

1

2
λΦi)∥22

+ λ(1− λ)
⟨
Â(Z[r] + ZD1), Â(Z)

⟩
≤ (1 + δ̂2r)

L∑
i=1

γi∥(
1

2
− λ)(Z[r] + ZD1)−

1

2
λΦi∥2F

+ λ(1− λ)

√
1 + δ̂2r∥Z[r] + ZD1)∥F · (2ϵ′A,r,y)

= (1 + δ̂2r)
L∑

i=1

γi

[
(
1

2
− λ)2∥Z[r] + ZD1∥2F +

1

4
λ2∥Φi∥2F

]
+ λ(1− λ)

√
1 + δ̂2r∥Z[r] + ZD1∥F · (2ϵ′A,r,y). (3.39)

On the other side, due to the definition of Ψi, we derive

L∑
i=1

γi
4
∥Â(Ψi)∥22 =

L∑
i=1

γi
4
∥Â(Z[r] + ZD1 + λΦi)∥22

(a)

≤
L∑

i=1

γi
4
(1− δ̂2r)∥Z[r] + ZD1 + λΦi∥2F

(b)
=

L∑
i=1

(1− δ̂2r)
γi
4
(∥Z[r] + ZD1∥2F + λ2∥Φi∥2F ), (3.40)
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where (a) is due to the definition of RIP, and (b) follows from Lemma 3.6. Combining with (3.37), (3.39) and

(3.40), we get

0 =
L∑

i=1

γi

∥∥∥∥∥∥Â
 L∑

j=1

γjΨj −
1

2
Ψi

∥∥∥∥∥∥
2

2

−
L∑

i=1

γi
4
∥Â(Ψi)∥22

≤ (1 + δ̂2r)
L∑

i=1

γi

[
(
1

2
− λ)2∥Z[r] + ZD1∥2F +

1

4
λ2∥Φi∥2F

]
+ λ(1− λ)

√
1 + δ̂2r∥Z[r] + ZD1∥F · (2ϵ′A,r,y)

−
L∑

i=1

(1− δ̂2r)
γi
4
(∥Z[r] + ZD1∥2F + λ2∥Φi∥2F )

=
L∑

i=1

γi

{[
(1 + δ̂2r)(

1

2
− λ)2 − 1

4
(1− δ̂2r)

]
∥Z[r] + ZD1∥2F +

1

2
λ2δ̂2r∥Φi∥2F

}
+ λ(1− λ)

√
1 + δ̂2r∥Z[r] + ZD1∥F · (2ϵ′A,r,y)

≤
[
λ(λ− 1) + (

1

2
− λ+

3

2
λ2)δ̂2r

]
∆2

+

[
λ(1− λ)

√
1 + δ̂2r · (2ϵ′A,r,y) + δ̂2rλ

2Q

]
∆+

1

2
δ̂2rλ

2Q2.

Select λ =
√
2− 1, we get

−2λ2

(√
2

2
− δ̂2r

)
∆2 +

[
λ2

√
2(1 + δ̂2r) · (2ϵ′A,r,y) + δ̂2rλ

2Q

]
∆+

1

2
δ̂2rλ

2Q2 ≥ 0.

That is,

λ2

{
−2

(√
2

2
− δ̂2r

)
∆2 +

[√
2(1 + δ̂2r) · (2ϵ′A,r,y) + δ̂2rQ

]
∆+

1

2
δ̂2rQ

2

}
≥ 0,

which is a second-order inequality for ∆. Consequently, we get

∆ ≤ 1

4(
√
2
2 − δ̂2r)

{√
2(1 + δ̂2r) · (2ϵ′A,r,y) + δ̂2rQ

+

{[√
2(1 + δ̂2r) · (2ϵ′A,r,y) + δ̂2rQ

]2
+ 4(

√
2

2
− δ̂2r)δ̂2rQ

2

}1/2}

≤

√
2(1 + δ̂2r)
√
2
2 − δ̂2r

ϵ′A,r,y +
δ̂2r +

√
(
√
2
2 − δ̂2r)δ̂2r

2(
√
2
2 − δ̂2r)

Q.

By taking advantage of (3.30) and Hölder’s inequality, one can easily verify that

∥Z[r]c∥2F ≤ ∥Z[r]c∥op · ∥Z[r]c∥∗

≤
∥Z[r]∥∗

r
(∥Z[r]∥∗ + 2∥X[r]c∥∗)

≤ ∥Z[r]∥2F +
2∥Z[r]∥F ∥X[r]c∥∗√

r
.
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Finally, by the aforementioned inequalities and Lemma 3.1, we obtain

∥Z[r]∥F ≤
√
∥Z[r]∥2F + ∥Z[r]c∥2F

≤

√
2∥Z[r]∥2F +

2∥Z[r]∥F ∥X[r]c∥∗√
r

≤
√
2∥Z[r]∥F +

√
2

2

∥X[r]c∥∗√
r

≤
√
2∆ +

√
2

2

∥X[r]c∥∗√
r

≤ 2
√

1 + δ̂2r
√
2
2 − δ̂2r

ϵ′A,r,y

+

√
2
2 δ̂2r +

√
2(

√
2
2 − δ̂2r)δ̂2r +

1
2

√
2
2 − δ̂2r

∥X[r]c∥∗√
r

≤
2
√
1 + δ2r(1 + ϵ

(2r)
A )

√
2
2 + 1− (1 + δ2r)(1 + ϵ

(2r)
A )2

ϵ′A,r,y

+

[√
2

2
+ 1− (1 + δ2r)(1 + ϵ

(2r)
A )2

]−1{√
2

2
[(1 + δ2r)(1 + ϵ

(2r)
A )2 − 1]

+

√
2[

√
2

2
− (1 + δ2r)(1 + ϵ

(2r)
A )2 + 1][(1 + δ2r)(1 + ϵ

(2r)
A )2 − 1] +

1

2

}∥X[r]c∥∗√
r

.

Proof of the theorem 2.8. By using Lemma 3.10, we get

∥X∗∥∗ = ∥X − (X −X∗)∥∗ ≥
n1∑
i=1

|σi(X)− σi(X −X∗)|

=
r∑

i=1

|σi(X)− σi(X −X∗)|+
n1∑

i=r+1

|σi(X)− σi(X −X∗)|

≥
r∑

i=1

(σi(X)− σi(X −X∗)) +

n1∑
i=r+1

(σi(X −X∗)− σi(X)).

Therefore, by Hölder’s inequality and the minimality of X∗,

∥(X −X∗)[r]c∥∗ ≤ ∥X∗∥∗ − ∥X[r]∥∗ + ∥(X −X∗)[r]∥∗ + ∥X[r]c∥∗

≤ ∥X∗∥∗ − ∥X∥∗ +
√
r∥(X −X∗)[r]∥F + 2∥X[r]c∥∗

≤
√
r∥(X −X∗)[r]∥F + 2∥X[r]c∥∗. (3.41)

Making use of the Frobenius-robust rank null space property of Â and (3.32), we get

∥(X −X∗)[r]c∥∗ ≤ ρ̂∥(X −X∗)[r]c∥∗ +
√
rτ̂ · (2ϵ′A,r,y) + 2∥X[r]c∥∗. (3.42)

By arranging the terms in (3.42), we get

∥(X −X∗)[r]c∥∗ ≤ 1

1− ρ̂
(
√
rτ̂ · (2ϵ′A,r,y) + 2∥X[r]c∥∗). (3.43)
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Combining with Hölder’s inequality, the Frobenius-robust rank null space property of Â and (3.43), we get

∥X −X∗∥∗ = ∥(X −X∗)[r]∥∗ + ∥(X −X∗)[r]c∥∗

≤
√
r∥(X −X∗)[r]∥F + ∥(X −X∗)[r]c∥∗

≤ (1 + ρ̂)∥(X −X∗)[r]c∥∗ + τ̂
√
r · (2ϵ′A,r,y)

≤ 2(1 + ρ̂)

1− ρ̂
∥X[r]c∥∗ +

2τ̂
√
r

1− ρ̂
· (2ϵ′A,r,y). (3.44)

By the Frobenius-robust rank null space property of Â, Lemmas 3.7 and 3.9 and (3.44), we get

∥X −X∗∥F ≤ ∥(X −X∗)[r]∥F + ∥(X −X∗)[r]c∥F

≤ ρ̂√
r
∥(X −X∗)[r]c∥∗ + τ̂∥A(X −X∗)∥2 +

∥X −X∗∥∗√
r

≤ 1 + ρ̂√
r

∥X −X∗∥∗ + τ̂ · (2ϵ′A,r,y)

≤ 2(1 + ρ̂)2

1− ρ̂

∥X[r]c∥∗√
r

+
2(3 + ρ̂)τ̂

1− ρ̂
ϵ′A,r,y

=
2τ

1 + τϵA∥A∥op

[
3 + ρ− τϵA∥A∥op(ρ+

√
r)

1 + τϵA∥A∥op

]
·
[
1− ρ+

τϵA∥A∥op(ρ+
√
r)

1 + τϵA∥A∥op

]−1

ϵ′A,r,y

+ 2

[
1 + ρ− τϵA∥A∥op(ρ+

√
r)

1 + τϵA∥A∥op

]2
·
[
1− ρ+

τϵA∥A∥op(ρ+
√
r)

1 + τϵA∥A∥op

]−1 ∥X[r]c∥∗√
r

.

We complete the proof.

4 Conclusion

This work primarily considers completely perturbed issue exploiting the constrained nuclear norm mini-

mization for the low-rank matrices recovery. We establish two main results, which present sufficient conditions

and the associating upper bound estimations of recovery error. The gained results give a robust and stable

assurance for reconstructing low-rank matrices in the presence of total noise. The actual meanings of gained

results include two aspects: firstly, it can instruct the choice of the measurement operators for the low-rank

matrices reconstruction, viz, the recovery ability can be better facilitated by an operator with smaller RIC than

a bigger one; secondly, it can also offer a theoretical support for bounding error.
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[23] Horn, R. & Johnson, C. Topics in Matrix Analysis. Cambridge: Cambridge University Press, 1991.

17


