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Mathematics Institute [2]. After elimination of the pressure, we obtain the
fundamental equations function of the velocity vector u and vorticity vector
Ω = curl(u), then we deduce the new equations for the description of the mo-
tion of viscous incompressible fluids, derived from the Navier-Stokes equations,
given by:

ν∆Ω − ∂Ω

∂t
= 0

∆p = −
i=3∑
i=1

j=3∑
j=1

∂ui
∂xj

∂uj
∂xi

Then, we give a proof of that the solutions of the Navier-Stokes equations u
and p are smooth functions and u verifies the condition of bounded energy.

Keywords Prime numbers · Fermat’s Last Theorem · Diophantine equations.

Mathematics Subject Classification (2010) 11AXX · 11D41

To the memory of my Father who taught me arithmetic.

? The idea of the title was inspired from the title of the supplement of the book of O.A.
Ladyzhenskaya [1].

Abdelmajid Ben Hadj Salem
6, Rue du Nil, Cité Soliman Er-Riadh
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1 Introduction

As it was described in the paper cited above, the Euler and Navier-Stokes equa-
tions describe the motion of a fluid in Rn (n = 2 or 3). These equations are to
be solved for an unknown velocity vector u(x, t) = (ui(x, t), u2(x, t), . . . , un(x, t))T ∈
Rn and pressure p(x, t) ∈ R defined for position x ∈ Rn and time t ≥ 0.

Here we are concerned with incompressible fluids filling all of Rn. The
Navier-Stokes equations are given by:

∂ui
∂t

+

n∑
j=1

uj
∂ui
∂xj

= ν∆ui −
∂p

∂xi
+ fi(x, t) i ∈ {1, ., n} (x ∈ Rn, t ≥ 0) (1)

divu =

i=n∑
i=1

∂ui
∂xi

= 0 (x ∈ Rn, t ≥ 0) (2)

with the initial conditions:

u(x, 0) = uo(x) (x ∈ Rn) (3)

where uo(x) a given vector function of class C∞, fi(x, t) are the components
of a given external force (e.g gravity), ν is a positive coefficient (viscosity),
and ∆ is the Laplacian in the space variables. Euler equations are equations
(1) (2) (3) with ν = 0.

2 The Navier-Stokes Equations

We try to present a solution to the Navier-Stokes equations following assump-
tions (A) as described in [2] that summarized here:

* (A) Existence and smooth solutions ∈ R3 the Navier-Stokes
equations:

- Take ν > 0. Let u0(x) a smooth function such that div(u0(x)) = 0 and
satisfying:

||∂δxju
0(x)|| ≤ CδK(1 + ||x||)−K on R3 ∀δ, K (4)

- Take f ≡ 0. Then show that there are functions p(x, t), u(x, t) of class C∞

on R3 × [0,+∞) satisfying (1),(2),(3),(4) and:∫
R3

||u(x, t)||2dx < C , ∀t ≥ 0, (bounded energy) (5)
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We consider the Navier-Stokes equations in this case, we take ν > 0 and
fi ≡ 0, then equations (1) are written for n = 3 as :

∂u1
∂t

+ u1
∂u1
∂x

+ u2
∂u1
∂y

+ u3
∂u1
∂z
− ν∆u1 = −∂p

∂x
(6)

∂u2
∂t

+ u1
∂u2
∂x

+ u2
∂u2
∂y

+ u3
∂u2
∂z
− ν∆u2 = −∂p

∂y
(7)

∂u3
∂t

+ u1
∂u3
∂x

+ u2
∂u3
∂y

+ u3
∂u3
∂z
− ν∆u3 = −∂p

∂z
(8)

Let:

A(u) =



∂u1
∂x

∂u1
∂y

∂u1
∂z

∂u2
∂x

∂u2
∂y

∂u2
∂z

∂u3
∂x

∂u3
∂y

∂u3
∂z


(9)

The equations (6-7-8) can be written under vectorial form:

∂u

∂t
+A(u).u = ν∆u− gradp (10)

Let Ω the vector curl(u), then:

Ω =

ω1

ω2

ω3

 =

∣∣∣∣∣∣
∂x
∂y
∂z

∧

∣∣∣∣∣∣
u1
u2
u3

=

 ∂yu3 − ∂zu2
∂zu1 − ∂xu3
∂xu2 − ∂yu1

 (11)

Taking the curl of the both members of (10), then, equation (10) becomes as
follows:

A(u).Ω −A(Ω).u = ν∆Ω − ∂Ω

∂t
(12)

where:

A(Ω) =



∂ω1

∂x

∂ω1

∂y

∂ω1

∂z

∂ω2

∂x

∂ω2

∂y

∂ω2

∂z

∂ω3

∂x

∂ω3

∂y

∂ω3

∂z


(13)

The equations (12) are the fundamental equations of this study. These are
nonlinear partial differential equations of the third order. Their resolutions are
the solutions of the Navier-Stokes equations.
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3 The Study of The Fundamental Equations (12)

3.1 A New Fundamental Equations of the Navier-Stokes Equations

We re-write the equations (12):

A(u).Ω −A(Ω).u = ν∆Ω − ∂Ω

∂t

We can also write it :

A(−u).(−Ω)−A(−Ω).(−u) = ν∆Ω − ∂Ω

∂t
(14)

As u and Ω are not independent variables, we have curl(−u) = −curl(u) =
−Ω, we obtain :

A(−u).(−Ω)−A(−Ω).(−u) = ν∆(−Ω)− ∂(−Ω)

∂t
(15)

Comparing the last two equations (14-15), we arrive to:

ν∆Ω − ∂Ω

∂t
= ν∆(−Ω)− ∂(−Ω)

∂t
= −

(
ν∆Ω − ∂Ω

∂t

)
Hence:

ν∆Ω − ∂Ω

∂t
= 0 (16)

From the equation (12), we get necessary that:

A(u).Ω −A(Ω).u = 0 (17)

The first new fundamental equation is (16), from it we will obtain u(x, t).
Taking the divergence of the both members of equation (10), we obtain the
known equation determining p(x, t) :

∆p = −
3∑

i,j=1

∂ui
∂xj
· ∂uj
∂xi

(18)

It is therefore the new fundamental differential system:


ν∆Ω − ∂Ω

∂t
= 0 =⇒ u

∆p = −
3∑

i,j=1

∂ui
∂xj
· ∂uj
∂xi

=⇒ p

(19)
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4 Resolution of the equations (19)

From the first equation of (19), we can write that:

curl(ν∆u− ∂u

∂t
) = 0 (20)

then:

Case 1- ν∆u− ∂u

∂t
≡ 0 (x ∈ Rn, t ≥ 0);

Case 2- ν∆u − ∂u

∂t
= K(t) with K is a vector function depending only of

t.

4.1 Resolution of the equations (19) case 1

Let the change of variables:

x = νX (21)

y = νY (22)

z = νZ (23)

t = νT (24)

u(x, y, z, t) = U(X,Y, Z, T ) (25)

p(x, y, z, t) = P (X,Y, Z, T ) (26)

Then:

∂xudx+ ∂yudy + ∂zudz + ∂tudt = ∂XUdX + ∂Y UdY + ∂ZUdZ + ∂TUdT

ν(∂xudX + ∂yudY + ∂zudZ + ∂tudT ) = ∂XUdX + ∂Y UdY + ∂ZUdZ + ∂TUdT

∂xu =
1

ν
∂XU, ∂yu =

1

ν
∂Y U, ∂zu =

1

ν
∂ZU, ∂tu =

1

ν
∂TU (27)

Then the equation

∂u

∂t
− ν∆u = 0

becomes:

∂U

∂T
−∆U = 0 (28)

This is the heat equation!
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4.1.1 Resolution of the Equation (28)

Noting that U0(X,Y, Z) = U0(X) = U(X,Y, Z, 0) = u(x, y, z, 0) = u0(x, y, z),
then the solution of (28) with T ≥ 0 satisfying:

U ∈ R3 and of class C∞(R3 × [0,+∞)) (29)

U(X , 0) = U0(X ) (30)

is given by [3]:

U(X , T ) =
1

2
√
π

∫
R3

U0(α, β, )√
T

e
− (X − α)2 + (Y − β)2 + (Z−)2

4T dV (31)

where dV = dαdβd and U(X , T ) is unique with U(X , 0) = U0(X ), then u is
unique.

We denote:

X = (X,Y, Z)T (32)

Γ = (α, β, )T (33)

Then, we can write the norm of U(X , T ) as:

||U(X , T )|| ≤ e
−X

2 + Y 2 + Z2

4T

2
√
πT

∫
R3

||U0(α, β, )||e
− (||Γ ||2 − 2Γ.X )

4T dV

(34)

The presence of the term e
−X

2 + Y 2 + Z2

4T implies that if ||X|| −→ +∞,
||U(X , T )|| −→ 0 fast enough [4]. Then, for t fixed, ||u(x, y, z, t)|| −→ 0 when√
x2 + y2 + z2 −→ +∞, hence, from now, we assume that we are dealing only

with such rapidly decreasing velocities.

4.1.2 Expression of U

We have:

U1 =
1

2
√
π

∫
R3

U0
1 (α, β, )√

T
e
− (X − α)2 + (Y − β)2 + (Z−)2

4T dV (35)

U2 =
1

2
√
π

∫
R3

U0
2 (α, β, )√

T
e
− (X − α)2 + (Y − β)2 + (Z−)2

4T dV (36)

U3 =
1

2
√
π

∫
R3

U0
3 (α, β, )√

T
e
− (X − α)2 + (Y − β)2 + (Z−)2

4T dV (37)
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4.1.3 Checking div(U) = 0

Let us calculate ∂XU1, we get:

∂U1

∂X
=
−1

4
√
π

∫
R3

(X − α)U0
1 (α, β, )

T
√
T

e
− (X − α)2 + (Y − β)2 + (Z−)2

4T dV

(38)
We can write the above expression as follows:

∂U1

∂X
=
−1

2
√
πT

∫
R2

dβd

∫ α=+∞

α=−∞
U0
1 (α, β, )

∂

∂α

(
e−

(X−α)2+(Y−β)2+(Z−)2

4T

)
dα

(39)
Now we do an integration by parts, we get:

∂U1

∂X
=
−1

2
√
πT

∫
R2

dβd

U0
1 (α, β, ).e

− (X − α)2 + (Y − β)2 + (Z−)2

4T


α=+∞

α=−∞

+

1

2
√
πT

∫
R2

dβd

∫ α=+∞

α=−∞
e
− (X − α)2 + (Y − β)2 + (Z−)2

4T
∂U0

1 (α, β, )

∂α
.dα(40)

Taking into account the assumption that:

||∂δXjU
0(X )|| ≤ νCδK(1 + ν||X ||)−K on R3 ∀δ, K (41)

where Xj denotes one of the coordinates X,Y, Z, and choosing K > 1 and
δ = 0, we obtain :

||U0(X )|| ≤ C0K(1 + ν||X ||)−K (42)

and the first term of the right member of (40) is zero. Then:

∂U1

∂X
=

1

2
√
πT

∫
R2

dβd

∫ α=+∞

α=−∞
e
− (X − α)2 + (Y − β)2 + (Z−)2

4T
∂U0

1 (α, β, )

∂α
.dα

(43)
or:

∂U1

∂X
=

1

2
√
πT

∫
R3

e
− (X − α)2 + (Y − β)2 + (Z−)2

4T
∂U0

1 (α, β, )

∂α
.dV (44)

As a result:

div(U) =
∑
Xj

∂Uj
∂Xj

=
1

2
√
πT

∫
R3

e
− (X − α)2 + (Y − β)2 + (Z−)2

4T
∑
αj

∂U0
j (α, β, )

∂α
.dV = 0

(45)

because U0(α, β, ) satisfies div(U0) =
∑
αj

∂U0
j (α, β, )

∂αj
= 0.
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4.1.4 Estimation of

∫
R3

||U(X, T )||2dV

We have:

||U(X , T )||2 =
∑
i U

2
i =

1

4πT

∥∥∥∥∥∥∥
∫
R3

U0(α, β, ).e
− (X − α)2 + (Y − β)2 + (Z−)2

4T dV

∥∥∥∥∥∥∥
2

≤ 1

4πT

∫
R3

∥∥U0(α, β, )
∥∥2 .e− (X − α)2 + (Y − β)2 + (Z−)2

2T dV (46)

Using the condition (42):

||U0(X )|| ≤ C0K(1 + ν||X ||)−K

We obtain as a result:

||U(X , T )||2 ≤ C2
0K

4πT

∫
R3

e
− (X − α)2 + (Y − β)2 + (Z−)2

2T

(1 + ν||
√
α2 + β2+2||)2K

dαdβd (47)

Let us now majorize

∫
R3

||u(x , t)||2dxdydz :∫
R3

||u(x , t)||2dxdydz =

∫
R3

||U(X , T )||2dxdydz = ν3
∫
R3

||U(X , T )||2dXdY dZ

≤ ν3C2
0K

4πT

∫
R3


∫
R3

e
− (X − α)2 + (Y − β)2 + (Z−)2

2T

(1 + ν||
√
α2 + β2+2||)2K

dαdβd

 dXdY dZ (48)

As the integral

∫
R3

e−X
2−Y 2−Z2

dXdY dZ < +∞, we can permute the two

triple integrals of the above equation. Let:

τ0 =
ν3C2

0K

4π
(49)

we obtain:∫
R3

||u(x , t)||2dxdydz ≤ τ0
T

∫
R3

∫
R3

e
− (X − α)2 + (Y − β)2 + (Z−)2

2T dXdY dZ

 . dαdβd

(1 + ν||
√
α2 + β2+2||)2K

(50)
Let:

I =

∫
R3

e
− (X − α)2 + (Y − β)2 + (Z−)2

2T dXdY dZ (51)
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and let the following change of variables:
X = X−α√

2T
=⇒ dX =

√
2TdX and X2 = (X−α)2

2T

Y = Y−β√
2T

=⇒ dY =
√

2TdY and Y 2 = (Y−β)2
2T

Z = Z−√
2T

=⇒ dZ =
√

2TdZ and Z2 = (Z−)2
2T

(52)

I is written as:

I = (
√

2T )3
[∫ +∞

−∞
e−X

2

dX

]3
= 2T

√
2T

[
2

∫ +∞

0

e−ξ
2

dξ

]3
= 2T

√
T .π
√
π = 2πT

√
πT

(53)

using the formula 2

∫ +∞

0

e−ξ
2

dξ =
√
π. Then the equation (50) becomes:∫

R3

||u(x , t)||2dxdydz ≤ 2τ0π
√
πT

∫
R3

dαdβd

(1 + ν||
√
α2 + β2+2||)2K

(54)

Let us now:

B =

∫
R3

dαdβd

(1 + ν||
√
α2 + β2+2||)2K

(55)

and we use the spherical coordinates:α = rsinθcosϕ
β = rsinθsinϕ
= rcosθ

(56)

the form of the volume dαdβd = r2sinθdrdθdϕ and B becomes:

B =

∫ θ=π

θ=0

sinθdθ

∫ ϕ=2π

ϕ=0

dϕ

∫ r

0

r2dr

(1 + νr)2K
= 4π

∫ r

0

r2dr

(1 + νr)2K
(57)

We take K = 2, the integral B is convergent when r → +∞. Let:

F = limr→+∞

∫ r

0

r2dr

(1 + νr)4
=

∫ +∞

0

r2dr

(1 + νr)4
=

∫ 1

0

r2dr

(1 + νr)4
+

∫ +∞

1

r2dr

(1 + νr)4

(58)
But : ∫ 1

0

r2dr

(1 + νr)4
<

∫ 1

0

r2dr =

[
r3

3

]1
0

=
1

3
(59)

We calculate now

∫ +∞

1

r2dr

(1 + νr)4
. Let the change of variables:

ξ = 1 + νr ⇒ r =
ξ − 1

ν
⇒ dr =

dξ

ν
(60)

then:∫ +∞

1

r2dr

(1 + νr)4
=

1

ν3

∫ +∞

1+ν

ξ2 − 2ξ + 1

ξ4
dξ = l(ν) avec l(ν) =

3ν2 + 9ν + 5

ν3(1 + ν)3

(61)
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As a result:

B < 4π(
1

3
+ l(ν)) (62)

Hence the important result:∫
R3

||u(x , t)||2dxdydz < 8τ0π
2
√
πT

(
1

3
+ l(ν)

)
(63)

or: ∫
R3

||u(x , t)||2dxdydz < +∞ ∀t (64)

let: ∫
R3

||U(X , T )||2dXdY dZ < +∞ ∀T (65)

because: ∫
R3

||U(X , T )||2dXdY dZ =
1

ν3

∫
R3

||u(x , t)||2dxdydz

4.1.5 The expression of partial derivatives of U(X,T )

We begin with the first partial derivative ∂X of the first component of U(X,T ):
it is given by the equation (44):

∂U1

∂X
=

1

2
√
πT

∫
R3

e
− (X − α)2 + (Y − β)2 + (Z−)2

4T
∂U0

1 (α, β, )

∂α
.dV

Let us calculate
∂2U1

∂X2
. We obtain:

∂2U1

∂X2
=

−1

4T
√
πT

∫
R3

(X − α)e
− (X − α)2 + (Y − β)2 + (Z−)2

4T
∂U0

1 (α, β, )

∂α
.dV

=
−1

2
√
πT

∫
R3

∂

∂α
e
− (X − α)2 + (Y − β)2 + (Z−)2

4T .
∂U0

1 (α, β, )

∂α
.dV

=
−1

2
√
πT

∫
R2

dβd

 ∂

∂α
U0
1 (α, β, ).e

− (X − α)2 + (Y − β)2 + (Z−)2

4T


α=+∞

α=−∞

+

1

2
√
πT

∫
R2

dβd

∫ α=+∞

α=−∞
e
− (X − α)2 + (Y − β)2 + (Z−)2

4T
∂2U0

1 (α, β, )

∂α2
.dα(66)
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Taking into account the assumption (41), we obtain:

∂2U1

∂X2
=

1

2
√
πT

∫
R3

e
− (X − α)2 + (Y − β)2 + (Z−)2

4T
∂2U0

1 (α, β, )

∂α2
.dαdβd

(67)

Using the same assumption cited above, we obtain that

∥∥∥∥∂2U1

∂X2

∥∥∥∥ −→ 0 when

||X|| −→ +∞. Then for t fixed ||∂xu(x, y, z, t)|| −→ 0 if
√
x2 + y2 + z2 −→

+∞. We easily verify this property for the derivatives of u(x, y, z, t) concerning
the spatial coordinates of all order, with t fixed.

4.1.6 The expression of p(x, y, z, t)

We rewrite equation (10):

∂ui
∂t

+

n∑
j=1

uj
∂ui
∂xj
− ν∆ui = − ∂p

∂xi

It can be written under vectorial form:

∇p = ν∆u− ∂u

∂t
−A(u).u (68)

with the matrix A(u) given by (9). As ν∆u− ∂u

∂t
= 0, then the equation (68)

becomes:
∇p = −A(u).u (69)

As u ∈ R3 and of class C∞(R3×[0,+∞)), ∂ip are of class C∞(R3×[0,+∞)) =⇒
p(x, y, z, t) is also of class C∞(R3 × [0,+∞)).

With the variables X,Y, Z, T , the pressure verifies the equation:

∆P = − ∂Ui
∂Xj

.
∂Uj
∂Xi

(70)

we denote:

H = H(X,Y, Z, T ) =
∂Ui
∂Xj

.
∂Uj
∂Xi

(71)

The equation (70) becomes:
∆P = −H (72)

It is the Poisson equation.

Definition 1 The function :

Φ(X ) =
1

4π||X ||
(73)

defined for ||X || ∈ R3,X 6= O is the fundamental solution of Laplace equation.
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The solution of Poisson equation (72) is given by [5]:

P = P (X,Y, Z, T ) = P (X , T ) =
1

4π

∫
R3

1

||X −Q ||
H(Q)dQ (74)

where Q = (X ′, Y ′, Z ′)T ∈ R3 and dQ = dX ′dY ′dZ ′ the volume form.

From equation (51), we can write for example, the first component of ∇p :

∂p

∂x
= −

∑
j

uj
∂u1
∂xj

(75)

Using the new variables, we obtain:

∂P

∂x
= −

∑
j

Uj
∂U1

∂Xj
=⇒ P = −

∑
i

∫ X

0

Ui(α, Y, Z, T )
∂U1(α, Y, Z, T )

∂αi
dα

(76)
Then:

|P | ≤
∑
i

|X||Ui(X,Y, Z, T )|
∣∣∣∣∂U1(X,Y, Z, T )

∂Xi

∣∣∣∣ ≤ 3||X ||.||U ||.
∥∥∥∥∂U (X,Y, Z, T )

∂Xi

∥∥∥∥
(77)

As seen above, ||U || and

∥∥∥∥∂U (X,Y, Z, T )

∂Xi

∥∥∥∥ tend to zero if ||X =
√
X2 + Y 2 + Z2|| −→

+∞. With the presence of the term e−||X ||
2

in the expression of the vectors

U and its first derivative ∂XU , ||X ||.||U ||.
∥∥∥∂U (X,Y,Z,T )

∂Xi

∥∥∥ tend to zero as

||X || −→ +∞. Then |P | −→ 0.

Again, from equation (51), we can write for the vector ∇p :

||∇p|| =

√√√√∑
j

(
∂p

∂xj

)2

≤ ||A(u)||.||u|| (78)

Taking ||A(u)|| = max

∥∥∥∥ ∂ui∂xj

∥∥∥∥, then:

∣∣∣∣ ∂p∂xi
∣∣∣∣ ≤ ||∇p|| ≤ max ∥∥∥∥ ∂ui∂xj

∥∥∥∥ .||u(x, y, z, t)|| (79)

As seeing in paragraph 411, for t fixed, ||u(x, y, z, t)|| and ||∂xiu(x, y, z, t)||
tend to zero as

√
x2 + y2 + z2 → +∞. We easily verify this property for the

derivatives of p concerning the spatial coordinates of all order, with t fixed.
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Let us study limX−→+∞
∂P

∂T
. With the variables X,Y, Z, T , we have for ex-

ample:

∂p

∂x
= −

∑
i

ui
∂u1
∂xi

=⇒ ∂P

∂X
= −

∑
i

Ui
∂U1

∂Xi
=⇒ P = −

∑
i

∫ X

0

Ui(α, β, , T )
∂U1(α, β, , T )

∂αi
dα

(80)
We calculate ∂TP (X,Y, Z, T ), we obtain:

∂P

∂T
= −

∑
i

∫ X

0

(
∂Ui
∂T

.
∂U1

∂αi
+ Ui

∂2U1

∂αi∂T

)
dα (81)

We suppose that X > 0, then:∣∣∣∣∂P∂T
∣∣∣∣ ≤∑

i

(∣∣∣∣X.∂Ui∂T
.
∂U1

∂αi

∣∣∣∣+

∣∣∣∣Ui.X. ∂2U1

∂αi∂T

∣∣∣∣) (82)

The presence of e

X2 + Y 2 + Z2

4T in the bounded expression of the six terms

of the right member of the above inequality gives that lim

∣∣∣∣∂P∂T
∣∣∣∣ −→ 0 when

√
X2 + Y 2 + Z2 −→ +∞. We verify easily that the derivatives ∂δX,Y,Z,TP of

all orders, for T fixed, tend to zero as
√
X2 + Y 2 + Z2 −→ +∞.

We have given a proof of smooth solutions u(x, y, z, t), p(x, y, z, t) of Navier-
Stokes equations, defined for (x, y, z) ∈ R3 and t ∈ [0, τ) for any τ ∈ R.

4.2 Resolution of the equations (19) case 2

With the new variables X,Y, Z, T the equation of case 2 is written as:

∆U − ∂U

∂T
= K(T ) (83)

with K(T ) = νK(t). We put U = U −
∫ T

0

K(τ)dτ , then the new function U

verifies:

∆U − ∂U

∂T
= 0 (84)

The solution of (83) is the function U = U −
∫ T

0

K(τ)dτ where U is the

solution of the case 1 studied above. The function U verifies the same remarks
studies above as U .
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5 Conclusion

In this work, we have obtained a solution u that verifies the conditions (A) of
existence and smooth solutions ∈ R3 of the Navier-Stokes equation. It remains
the study of the cases:

- u = λΩ , with λ is a function of (x, y, z, t);
- there is a scalar function ϕ(x, y, z) and u ∧Ω = gradϕ.
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