A Note About the Determination of The Integer Coordinates of An Elliptic Curve: Part I

Abdelmajid Ben Hadj Salem

December 6, 2018

Abstract

In this paper, we give the elliptic curve (E) given by the equation: $$
\begin{equation*} y^{2}=x^{3}+p x+q \tag{1} \end{equation*}
$$ with $p, q \in \mathbb{Z}$ not null simultaneous. We study a part of the conditions verified by (p, q) so that $\exists(x, y) \in \mathbb{Z}^{2}$ the coordinates of a point of the elliptic curve (E) given by the equation (1).

Key words: elliptic curves, integer points, solutions of degree three polynomial equations, solutions of Diophantine equations.

1 Introduction

Elliptic curves are related to number theory, geometry, cryptography and data transmission. We consider an elliptic curve (E) given by the equation:

$$
\begin{equation*}
y^{2}=x^{3}+p x+q \tag{2}
\end{equation*}
$$

where p and q are two integers and we assume in this article that p, q are not simultaneous equal to zero. For our proof, we consider the equation :

$$
\begin{equation*}
x^{3}+p x+q-y^{2}=0 \tag{3}
\end{equation*}
$$

of the unknown the parameter x, and p, q, y given with the condition that $y \in \mathbb{Z}^{+}$. We resolve the equation (3) and we discuss so that x is an integer.

2 Proof

We suppose that $y>0$ is an integer, to resolve (3), let:

$$
\begin{equation*}
x=u+v \tag{4}
\end{equation*}
$$

where u, v are two complexes numbers. Equation (3) becomes:

$$
\begin{equation*}
u^{3}+v^{3}+q-y^{2}+(u+v)(3 u v+p)=0 \tag{5}
\end{equation*}
$$

With the choose of:

$$
\begin{equation*}
3 u v+p=0 \Longrightarrow u v=-\frac{p}{3} \tag{6}
\end{equation*}
$$

then, we obtain the two conditions:

$$
\begin{array}{r}
u v=-\frac{p}{3} \\
u^{3}+v^{3}=y^{2}-q \tag{8}
\end{array}
$$

Hence, u^{3}, v^{3} are solutions of the equation of second order:

$$
\begin{equation*}
X^{2}-\left(y^{2}-q\right) X-\frac{p^{3}}{27}=0 \tag{9}
\end{equation*}
$$

Let Δ the discriminant of (9) given by:

$$
\begin{equation*}
\Delta=\left(y^{2}-q\right)^{2}+\frac{4 p^{3}}{27} \tag{10}
\end{equation*}
$$

2.1 Case $\Delta=0$

In this case, the (9) has one double root :

$$
\begin{equation*}
X_{1}=X_{2}=\frac{y^{2}-q}{2} \tag{11}
\end{equation*}
$$

As $\Delta=0 \Longrightarrow \frac{4 p^{3}}{27}=-\left(y^{2}-q\right)^{2} \Longrightarrow p<0 . y, q$ are integers then $3 \mid p \Longrightarrow p=$ $3 p_{1}$ and $4 p_{1}^{3}=-\left(y^{2}-q\right)^{2} \Longrightarrow p_{1}=-p_{2}^{2} \Longrightarrow y^{2}-q= \pm 2 p_{2}^{3}$ and $p=-3 p_{2}^{3}$. As $y^{2}=q \pm 2 p_{2}^{3}$, it exists solutions if:

$$
\begin{equation*}
q \pm 2 p_{2}^{3} \text { is a square } \tag{12}
\end{equation*}
$$

We suppose that $q \pm 2 p_{2}^{3}$ is a square. The solution $X=X_{1}=X_{2}= \pm p_{2}^{3}$. Using the unknowns u, v, we have two cases:

$$
\begin{aligned}
& 1-u^{3}=v^{3}=p_{2}^{3} ; \\
& 2-u^{3}=v^{3}=-p_{2}^{3} .
\end{aligned}
$$

2.1. \quad Case $u^{3}=v^{3}=p_{2}^{3}$

The solutions of $u^{3}=p_{2}^{3}$ are :
a $-u_{1}=p_{2}$;
$\mathrm{b}-u_{2}=j . p_{2}$ with $j=\frac{1+i \sqrt{3}}{2}$ is the unitary cubic complex root;
c $-u_{3}=j^{2} \cdot p_{2}$.
Case a - $u_{1}=v_{1}=p_{2} \Longrightarrow x=2 p_{2}$. The condition $u_{1} \cdot v_{1}=-p / 3$ is verified. The integers coordinates of the elliptic curve (E) are :

$$
\begin{align*}
& \left(2 p_{2},+\alpha\right) \tag{13}\\
& \left(2 p_{2},-\alpha\right) \tag{14}
\end{align*}
$$

Case b- $u_{2}=p_{2} \cdot j, v_{2}=p_{2} \cdot j^{2}=p_{2} \cdot \bar{j} \Longrightarrow x=u_{2}+v_{2}=p_{2}(j+\bar{j})=p_{2}$, in this case, the integers coordinates of the elliptic curve (E) are :

$$
\begin{align*}
& \left(p_{2},+\alpha\right) \tag{15}\\
& \left(p_{2},-\alpha\right) \tag{16}
\end{align*}
$$

Case $\mathrm{c}-u_{2}=p_{2} \cdot j, v_{2}=p_{2} \cdot j^{2}=p_{2} \cdot \bar{j}$, it is the same as case b above.
2.1.2 Case $u^{3}=v^{3}=-p_{2}^{3}$

The solutions of $u^{3}=-p_{2}^{3}$ are :

$$
\begin{aligned}
& \mathrm{d}-u_{1}=-p_{2} ; \\
& \mathrm{e}-u_{2}=-j \cdot p_{2} ; \\
& \mathrm{f}-u_{3}=-j^{2} \cdot p_{2}=-\bar{j} p_{2} .
\end{aligned}
$$

Case d - $u_{1}=v_{1}=-p_{2} \Longrightarrow x=-2 p_{2}$. The condition $u_{1} \cdot v_{1}=-p / 3$ is verified. The integers coordinates of the elliptic curve (E) are :

$$
\begin{equation*}
\left(2 p_{2},+\alpha\right) \quad\left(2 p_{2},-\alpha\right) \tag{17}
\end{equation*}
$$

Case e $-u_{2}=-p_{2} \cdot j, v_{2}=-p_{2} \cdot j^{2}=-p_{2} \cdot \bar{j} \Longrightarrow x=u_{2}+v_{2}=-p_{2}(j+\bar{j})=-p_{2}$, in this case, the integers coordinates of the elliptic curve (E) are :

$$
\begin{equation*}
\left(-p_{2},+\alpha\right) \quad\left(-p_{2},-\alpha\right) \tag{18}
\end{equation*}
$$

Case $\mathrm{f}-u_{2}=-p_{2} \cdot j, v_{2}=-p_{2} \cdot j^{2}=p_{2} \cdot \bar{j}$ it is the same of case e above.

2.2 Case $\Delta>0$

We suppose that $\Delta>0$ and $\Delta=m^{2}$ where m is a positive rational.

$$
\begin{array}{r}
\Delta=\left(y^{2}-q\right)^{2}+\frac{4 p^{3}}{27}=\frac{27\left(y^{2}-q\right)^{2}+4 p^{3}}{27}=m^{2} \\
27\left(y^{2}-q\right)^{2}+4 p^{3}=27 m^{2} \Longrightarrow 27\left(m^{2}-\left(y^{2}-q\right)^{2}\right)=4 p^{3} \tag{20}
\end{array}
$$

2.2.1 We suppose that $3 \mid p$

We suppose that $3 \mid p \Longrightarrow p=3 p_{1}$. We consider firstly that $\left|p_{1}\right|=1$.
Case $p_{1}=1$: the equation (20) is written as:

$$
\begin{equation*}
m^{2}-\left(y^{2}-q\right)^{2}=4 \Longrightarrow\left(m+y^{2}-q\right)\left(m-y^{2}+q\right)=2 \times 2 \tag{21}
\end{equation*}
$$

That gives the system of equations(with $m>0$) :

$$
\begin{align*}
& \left\{\begin{array}{l}
m+y^{2}-q=1 \\
m-y^{2}+q=4
\end{array} \Longrightarrow m=5 / 2\right. \text { not an integer } \tag{22}\\
& \left\{\begin{array}{l}
m+y^{2}-q=2 \\
m-y^{2}+q=2
\end{array} \Longrightarrow m=2 \text { and } y^{2}-q=0\right. \tag{23}\\
& \left\{\begin{array}{l}
m+y^{2}-q=4 \\
m-y^{2}+q=1
\end{array} \Longrightarrow m=5 / 2\right. \text { not an integer } \tag{24}
\end{align*}
$$

We obtain:

$$
\begin{array}{r}
X_{1}=u^{3}=1 \Longrightarrow u_{1}=1 ; u_{2}=j ; u_{3}=j^{2}=\bar{j} \\
X_{2}=v^{3}=-1 \Longrightarrow v_{1}=-1 ; v_{2}=-j ; v_{3}=-j^{2}=-\bar{j} \\
x_{1}=u_{1}+v_{1}=0 \\
x_{2}=u_{2}+v_{3}=j-j^{2}=i \sqrt{3} \text { not an integer } \\
x_{3}=u_{3}+v_{2}=j^{2}-j=-i \sqrt{3} \text { not an integer } \tag{29}
\end{array}
$$

As $y^{2}-q=0$, if $q=q^{\prime 2}$ with q^{\prime} a positive integer, we obtain the integer coordinates of the elliptic curve (E) :

$$
\begin{array}{r}
y^{2}=x^{3}+3 x+q^{\prime 2} \\
\quad\left(0, q^{\prime}\right) ;\left(0,-q^{\prime}\right) \tag{31}
\end{array}
$$

Case $p_{1}=-1$: using the same method as above, we arrive to the acceptable value $m=0$, then $y^{2}=q \pm 2 \Longrightarrow q \pm 2$ must be a square to obtain the integer coordinates of the elliptic curve (E).

If $y^{2}=q+2$, a square $\Longrightarrow(X-1)^{2}=0 \Longrightarrow u^{3}=v^{3}=1$, then $x_{1}=2, x_{2}=1$. The integer coordinates of the elliptic curve (E) are:

$$
\begin{gather*}
y^{2}=x^{3}-3 x+q \tag{32}\\
(1, \sqrt{q+2}) ;(1,-\sqrt{q+2}) ;(2, \sqrt{q+2}) ;(2,-\sqrt{q+2}) \tag{33}
\end{gather*}
$$

If $y^{2}=q-2$, a square $\Longrightarrow(X+1)^{2}=0 \Longrightarrow u^{3}=v^{3}=-1$, then $x_{1}=$ $-2, x_{2}=-1$. The integer coordinates of the elliptic curve (E) are:

$$
\begin{gather*}
y^{2}=x^{3}-3 x+q \tag{34}\\
(-1, \sqrt{q-2}) ;(-1,-\sqrt{q-2}) ;(-2, \sqrt{q-2}) ;(-2,-\sqrt{q-2}) \tag{35}
\end{gather*}
$$

For the trivial case $q=2 \Longrightarrow y^{2}=x^{3}-3 x+2$ and $q-2, q+2$ are squares, the integer coordinates of the elliptic curve are:

$$
\begin{gather*}
y^{2}=x^{3}-3 x+2 \tag{36}\\
(1,0) ;(-2,0) ;(2,2) ;(2,-2) ;(-1,2) ;(-1,-2) \tag{37}
\end{gather*}
$$

For $q>2, q-2$ and $q+2$ can not be simultaneous square numbers.
Now, we consider that $\left|p_{1}\right|>1$, the equation 20 is written as:

$$
\begin{equation*}
m^{2}-\left(y^{2}-q\right)^{2}=4 p_{1}^{3} \Longrightarrow m^{2}-\left(y^{2}-q\right)^{2}=4 p_{1}^{3} \tag{38}
\end{equation*}
$$

From the last equation (38), $\left(\pm m, \pm\left(y^{2}-q\right)\right)$ are solutions of the Diophantine equation :

$$
\begin{equation*}
X^{2}-Y^{2}=N \tag{39}
\end{equation*}
$$

where N is a positive integer equal to $4 p_{1}^{3}$. A solution $\left(X^{\prime}, Y^{\prime}\right)$ of (39) is used if $Y^{\prime}=y^{2}-q \Longrightarrow q+Y^{\prime}$ is a square, then $X^{\prime}=m>0$ and $\pm y= \pm \sqrt{q+Y^{\prime}}$.

We return to the general solutions of the equation (39). Let $Q(N)$ the number of solutions of $\sqrt{39}$ and $\tau(N)$ the number of factorization of N, then we give the following result concerning the solutions of (39) (see theorem 27.3 of [S]):

- if $N \equiv 2(\bmod 4)$, then $Q(N)=0$;
- if $N \equiv 1$ or $N \equiv 3(\bmod 4)$, then $Q(N)=[\tau(N) / 2]$;
- if $N \equiv 0(\bmod 4)$, then $Q(N)=[\tau(N / 4) / 2]^{1}$.

As $N=4 p_{1}^{3} \Longrightarrow N \equiv 0(\bmod 4)$, then $Q(N)=[\tau(N / 4) / 2]=\left[\tau\left(p_{1}^{3}\right) / 2\right]>1$, but $Q(N)=1$, there is one solution $X^{\prime}>0, Y^{\prime}>0$ so that $Y^{\prime}+q$ is a square. Hence the contradiction, the hypothesis that $3|p,|p|>3$ is impossible in the case $\Delta>0$.

[^0]
2.2.2 We suppose that $3 \nmid p$

We rewrite the equations (9-20):

$$
\begin{array}{r}
X^{2}-\left(y^{2}-q\right) X-\frac{p^{3}}{27}=0 \\
\Delta=\left(y^{2}-q\right)^{2}+\frac{4 p^{3}}{27}=\frac{27\left(y^{2}-q\right)^{2}+4 p^{3}}{27}=m^{2}
\end{array}
$$

We call:

$$
\begin{equation*}
r=27\left(y^{2}-q\right)^{2}+4 p^{3} \Longrightarrow m^{2}=\frac{r}{27}=\Delta \tag{40}
\end{equation*}
$$

r can be written as:

$$
\begin{equation*}
l^{2}-3\left(3 y^{2}-3 q\right)^{2}=4 p^{3} \tag{41}
\end{equation*}
$$

or $l, 3\left(y^{2}-q\right)$ are solutions of the Diophantine equation :

$$
\begin{equation*}
A^{2}-3 B^{2}=N \tag{42}
\end{equation*}
$$

where N is the $4 p^{3}$. As we consider the last equation with A, B integers and the coefficient of B is 3 does not verify $\equiv 1(\bmod 4)$, then equation (42) has a solution if N can be written as:

$$
\begin{equation*}
N= \pm p_{1}^{h_{1}} \ldots p_{k}^{h_{k}} \cdot q_{1}^{2 \beta_{1}} \ldots q_{n}^{\beta_{n}} \tag{43}
\end{equation*}
$$

where p_{j}, q_{i} are prime integers (see chapter 6 of $\left.[\overline{\mathrm{B}}]\right)$. Having A, B we calculate y^{2} :

$$
\begin{equation*}
y^{2}=q+\frac{B}{3} \Longrightarrow q+\frac{B}{3} \text { a square } \tag{44}
\end{equation*}
$$

Then:

$$
\begin{equation*}
y= \pm \sqrt{q+\frac{B}{3}} \tag{45}
\end{equation*}
$$

We return to $x . m^{2}=\frac{r}{27}=\frac{l^{2}}{27} \Longrightarrow m=\frac{l}{3 \sqrt{3}}=\frac{l \sqrt{3}}{9}$. As $3 \nmid p \Longrightarrow 3 \nmid r \Longrightarrow$ $3 \nmid l^{2} \Longrightarrow 3 \nmid l$, then m is an irrational number. The roots of 9$\}$ are:

$$
\begin{align*}
& X_{1}=\frac{y^{2}-q+m}{2}=\frac{9\left(y^{2}-q\right)+l \sqrt{3}}{18} \tag{46}\\
& X_{2}=\frac{y^{2}-q-m}{2}=\frac{9\left(y^{2}-q\right)-l \sqrt{3}}{18} \tag{47}
\end{align*}
$$

From the expressions of X_{1}, X_{2}, we conclude that X_{1} and X_{2} are irrational numbers $\in \mathbb{R} \backslash \mathbb{Q}$. For the unknowns u, v, we obtain :

$$
\begin{align*}
& u_{1}=\sqrt[3]{X_{1}}, \quad u_{2}=j \sqrt[3]{X_{1}}, \quad u_{3}=j^{2} \sqrt[3]{X_{1}} \tag{48}\\
& v_{1}=\sqrt[3]{X_{2}}, \quad v_{2}=j \sqrt[3]{X_{2}}, \quad v_{3}=j^{2} \sqrt[3]{X_{2}} \tag{49}
\end{align*}
$$

As we choose x a real number, then $x=u_{1}+v_{1}=\sqrt[3]{X_{1}}+\sqrt[3]{X_{2}}$. We search x, y to be integer numbers. We suppose that $x=\sqrt[3]{X_{1}}+\sqrt[3]{X_{2}}$ is an integer:

$$
\begin{gather*}
x=\sqrt[3]{X_{1}}+\sqrt[3]{X_{2}} \\
x \cdot\left(\sqrt[3]{X_{1}^{2}}-\sqrt[3]{X_{1} \cdot X_{2}}+\sqrt[3]{X_{2}^{2}}\right)=X_{1}+X_{2}=y^{2}-q \\
x \cdot\left(\sqrt[3]{X_{1}^{2}}+\sqrt[3]{X_{2}^{2}}+\frac{p}{3}\right)=y^{2}-q \\
\sqrt[3]{X_{1}^{2}}+\sqrt[3]{X_{2}^{2}}=+\frac{3\left(y^{2}-q\right)-p x}{3 x}=t \in \mathbb{Q}^{*} \tag{50}
\end{gather*}
$$

with $x \neq 0$. As $x=\sqrt[3]{X_{1}}+\sqrt[3]{X_{2}} \Longrightarrow \sqrt[3]{X_{2}^{2}}=\left(x-\sqrt[3]{X_{1}}\right)^{2} \Longrightarrow x^{2}-2 x \sqrt[3]{X_{1}}+$ $\sqrt[3]{X_{1}^{2}}=\sqrt[3]{X_{2}^{2}}$. Adding to the two members of the last equation $\sqrt[3]{X_{1}}$, we obtain:

$$
\begin{equation*}
\sqrt[3]{X_{1}^{2}}-x \sqrt[3]{X_{1}}+\frac{x^{2}-t}{2}=0 \tag{51}
\end{equation*}
$$

then $\sqrt[3]{X_{1}}$ is a root of the equation:

$$
\begin{equation*}
\alpha^{2}-x \alpha+\frac{x^{2}-t}{2}=0 \tag{52}
\end{equation*}
$$

The expression of the roots is:

$$
\begin{array}{r}
\alpha=\frac{x \pm \sqrt{\delta}}{2} \\
\delta=2 t-x^{2}>0 \tag{54}
\end{array}
$$

δ is >0 because $2 t-x^{2}=2 \sqrt[3]{X_{1}^{2}}+2 \sqrt[3]{X_{2}^{2}}-\sqrt[3]{X_{1}^{2}}-\sqrt[3]{X_{2}^{2}}-2 \sqrt[3]{X_{1} X_{2}}=$ $\left(\sqrt[3]{X_{1}^{2}}-\sqrt[3]{X_{2}^{2}}\right)^{2}>0$ as $X_{1} \neq X_{2}$. Then δ is a square. We conclude that α is a rational number. It follows that $\sqrt[3]{X_{1}}$ is a rational number that we note by s, then $X_{1}=s^{3}$ is also a rational number which is in contradiction with the precedent result above that X_{1} is irrational. The hypothesis that x is an integer is false, it follows that x is a irrational number. Then, no integer coordinates exist when r is a square.

Case r is not a square: we write :

$$
r=27\left(y^{2}-q\right)^{2}+4 p^{3} \Longrightarrow m^{2}=\frac{r}{27}=\Delta \Longrightarrow m=\frac{\sqrt{3 r}}{9}
$$

As $3 \nmid r \Longrightarrow 3 r$ is not a square, then m is irrational number. The roots of (9) are:

$$
\begin{align*}
& X_{1}=\frac{y^{2}-q+m}{2}=\frac{9\left(y^{2}-q\right)+\sqrt{3 r}}{18} \tag{55}\\
& X_{2}=\frac{y^{2}-q-m}{2}=\frac{9\left(y^{2}-q\right)-\sqrt{3 r}}{18} \tag{56}
\end{align*}
$$

Using the same reasoning as for the case r is a square, there is no integer coordinates for (E) when r is not a square.

In the second part of the paper, we will study the case $\Delta<0$.

References

[S] B.M. Stewart : Theory of numbers. 2sd ed. The Macmillan Company, NewYork (1964).
[B] E.D. Bolker : Elementary number theory: an algebraic approach. W.A. Benjamin, Inc., New-York (1970).

[^0]: ${ }^{1}[x]$ is the largest integer less or equal to x.

