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Abstract

In this paper, we give the elliptic curve (E) given by the equation:

y2 = x3 + px+ q (1)

with p, q ∈ Z not null simultaneous. We study a part of the conditions
verified by (p, q) so that ∃ (x, y) ∈ Z2 the coordinates of a point of the
elliptic curve (E) given by the equation (1).

Key words: elliptic curves, integer points, solutions of degree three
polynomial equations, solutions of Diophantine equations.

1 Introduction
Elliptic curves are related to number theory, geometry, cryptography and data
transmission. We consider an elliptic curve (E) given by the equation:

y2 = x3 + px+ q (2)

where p and q are two integers and we assume in this article that p, q are not
simultaneous equal to zero. For our proof, we consider the equation :

x3 + px+ q − y2 = 0 (3)

of the unknown the parameter x, and p, q, y given with the condition that y ∈ Z+.
We resolve the equation (3) and we discuss so that x is an integer.
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2 Proof
We suppose that y > 0 is an integer, to resolve (3), let:

x = u+ v (4)

where u, v are two complexes numbers. Equation (3) becomes:

u3 + v3 + q − y2 + (u+ v)(3uv + p) = 0 (5)

With the choose of:
3uv + p = 0 =⇒ uv = −p

3
(6)

then, we obtain the two conditions:

uv = −p
3

(7)

u3 + v3 = y2 − q (8)

Hence, u3, v3 are solutions of the equation of second order:

X2 − (y2 − q)X − p3

27
= 0 (9)

Let ∆ the discriminant of (9) given by:

∆ = (y2 − q)2 +
4p3

27
(10)

2.1 Case ∆ = 0

In this case, the (9) has one double root :

X1 = X2 =
y2 − q

2
(11)

As ∆ = 0 =⇒ 4p3

27
= −(y2 − q)2 =⇒ p < 0. y, q are integers then 3|p =⇒ p =

3p1 and 4p31 = −(y2 − q)2 =⇒ p1 = −p22 =⇒ y2 − q = ±2p32 and p = −3p32. As
y2 = q ± 2p32, it exists solutions if:

q ± 2p32 is a square (12)

We suppose that q ± 2p32 is a square. The solution X = X1 = X2 = ±p32. Using
the unknowns u, v, we have two cases:

1 - u3 = v3 = p32;
2 - u3 = v3 = −p32.

2



2.1.1 Case u3 = v3 = p32

The solutions of u3 = p32 are :
a - u1 = p2;

b - u2 = j.p2 with j =
1 + i

√
3

2
is the unitary cubic complex root;

c - u3 = j2.p2.

Case a - u1 = v1 = p2 =⇒ x = 2p2. The condition u1.v1 = −p/3 is verified. The
integers coordinates of the elliptic curve (E) are :

(2p2,+α) (13)
(2p2,−α) (14)

Case b - u2 = p2.j, v2 = p2.j
2 = p2.j̄ =⇒ x = u2 + v2 = p2(j + j̄) = p2, in this

case, the integers coordinates of the elliptic curve (E) are :

(p2,+α) (15)
(p2,−α) (16)

Case c - u2 = p2.j, v2 = p2.j
2 = p2.j̄ , it is the same as case b above.

2.1.2 Case u3 = v3 = −p32
The solutions of u3 = −p32 are :

d - u1 = −p2;
e - u2 = −j.p2;
f - u3 = −j2.p2 = −j̄p2.

Case d - u1 = v1 = −p2 =⇒ x = −2p2. The condition u1.v1 = −p/3 is verified.
The integers coordinates of the elliptic curve (E) are :

(2p2,+α) (2p2,−α) (17)

Case e - u2 = −p2.j, v2 = −p2.j2 = −p2.j̄ =⇒ x = u2+v2 = −p2(j+j̄) = −p2,
in this case, the integers coordinates of the elliptic curve (E) are :

(−p2,+α) (−p2,−α) (18)

Case f - u2 = −p2.j, v2 = −p2.j2 = p2.j̄ it is the same of case e above.
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2.2 Case ∆ > 0

We suppose that ∆ > 0 and ∆ = m2 where m is a positive rational.

∆ = (y2 − q)2 +
4p3

27
=

27(y2 − q)2 + 4p3

27
= m2 (19)

27(y2 − q)2 + 4p3 = 27m2 =⇒ 27(m2 − (y2 − q)2) = 4p3 (20)

2.2.1 We suppose that 3|p

We suppose that 3|p =⇒ p = 3p1. We consider firstly that |p1| = 1.

Case p1 = 1: the equation (20) is written as:

m2 − (y2 − q)2 = 4 =⇒ (m+ y2 − q)(m− y2 + q) = 2× 2 (21)

That gives the system of equations(with m > 0) :{
m+ y2 − q = 1
m− y2 + q = 4

=⇒ m = 5/2 not an integer (22){
m+ y2 − q = 2
m− y2 + q = 2

=⇒ m = 2 and y2 − q = 0 (23){
m+ y2 − q = 4
m− y2 + q = 1

=⇒ m = 5/2 not an integer (24)

We obtain:

X1 = u3 = 1 =⇒ u1 = 1;u2 = j;u3 = j2 = j̄ (25)
X2 = v3 = −1 =⇒ v1 = −1; v2 = −j; v3 = −j2 = −j̄ (26)

x1 = u1 + v1 = 0 (27)
x2 = u2 + v3 = j − j2 = i

√
3 not an integer (28)

x3 = u3 + v2 = j2 − j = −i
√

3 not an integer (29)

As y2 − q = 0, if q = q′2 with q′ a positive integer, we obtain the integer coordi-
nates of the elliptic curve (E):

y2 = x3 + 3x+ q′2 (30)
(0, q′); (0,−q′) (31)

Case p1 = −1: using the same method as above, we arrive to the acceptable
value m = 0, then y2 = q ± 2 =⇒ q ± 2 must be a square to obtain the integer
coordinates of the elliptic curve (E).
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If y2 = q + 2, a square =⇒ (X − 1)2 = 0 =⇒ u3 = v3 = 1, then x1 = 2, x2 = 1.
The integer coordinates of the elliptic curve (E) are:

y2 = x3 − 3x+ q (32)
(1,
√
q + 2); (1,−

√
q + 2); (2,

√
q + 2); (2,−

√
q + 2) (33)

If y2 = q − 2, a square =⇒ (X + 1)2 = 0 =⇒ u3 = v3 = −1, then x1 =
−2, x2 = −1. The integer coordinates of the elliptic curve (E) are:

y2 = x3 − 3x+ q (34)
(−1,

√
q − 2); (−1,−

√
q − 2); (−2,

√
q − 2); (−2,−

√
q − 2) (35)

For the trivial case q = 2 =⇒ y2 = x3 − 3x+ 2 and q − 2, q + 2 are squares, the
integer coordinates of the elliptic curve are:

y2 = x3 − 3x+ 2 (36)
(1, 0); (−2, 0); (2, 2); (2,−2); (−1, 2); (−1,−2) (37)

For q > 2, q − 2 and q + 2 can not be simultaneous square numbers.

Now, we consider that |p1| > 1, the equation (20) is written as:

m2 − (y2 − q)2 = 4p31 =⇒ m2 − (y2 − q)2 = 4p31 (38)

From the last equation (38), (±m,±(y2 − q)) are solutions of the Diophantine
equation :

X2 − Y 2 = N (39)

where N is a positive integer equal to 4p31. A solution (X ′, Y ′) of (39) is used if
Y ′ = y2 − q =⇒ q + Y ′ is a square, then X ′ = m > 0 and ±y = ±

√
q + Y ′.

We return to the general solutions of the equation (39). Let Q(N) the number of
solutions of (39) and τ(N) the number of factorization of N , then we give the
following result concerning the solutions of (39) (see theorem 27.3 of [S]):

- if N≡2(mod 4), then Q(N) = 0;
- if N≡1 or N≡3(mod 4), then Q(N) = [τ(N)/2];
- if N≡0(mod 4), then Q(N) = [τ(N/4)/2]1.

As N = 4p31 =⇒ N≡0(mod 4), then Q(N) = [τ(N/4)/2] = [τ(p31)/2] > 1, but
Q(N) = 1, there is one solution X ′ > 0, Y ′ > 0 so that Y ′+ q is a square. Hence
the contradiction, the hypothesis that 3|p, |p| > 3 is impossible in the case ∆ > 0.

1[x] is the largest integer less or equal to x.
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2.2.2 We suppose that 3 - p

We rewrite the equations (9-20):

X2 − (y2 − q)X − p3

27
= 0

∆ = (y2 − q)2 +
4p3

27
=

27(y2 − q)2 + 4p3

27
= m2

We call:
r = 27(y2 − q)2 + 4p3 =⇒ m2 =

r

27
= ∆ (40)

r can be written as:
l2 − 3(3y2 − 3q)2 = 4p3 (41)

or l, 3(y2 − q) are solutions of the Diophantine equation :

A2 − 3B2 = N (42)

where N is the 4p3. As we consider the last equation with A,B integers and the
coefficient ofB is 3 does not verify≡ 1( mod 4), then equation (42) has a solution
if N can be written as:

N = ±ph11 ...p
hk
k .q

2β1
1 ...qβnn (43)

where pj, qi are prime integers (see chapter 6 of [B]). Having A,B we calculate
y2:

y2 = q +
B

3
=⇒ q +

B

3
a square (44)

Then:

y = ±
√
q +

B

3
(45)

We return to x. m2 =
r

27
=

l2

27
=⇒ m =

l

3
√

3
=
l
√

3

9
. As 3 - p =⇒ 3 - r =⇒

3 - l2 =⇒ 3 - l, then m is an irrational number. The roots of (9) are:

X1 =
y2 − q +m

2
=

9(y2 − q) + l
√

3

18
(46)

X2 =
y2 − q −m

2
=

9(y2 − q)− l
√

3

18
(47)

From the expressions of X1, X2, we conclude that X1 and X2 are irrational num-
bers ∈ R\Q. For the unknowns u, v, we obtain :

u1 = 3
√
X1, u2 = j 3

√
X1, u3 = j2 3

√
X1 (48)

v1 = 3
√
X2, v2 = j 3

√
X2, v3 = j2 3

√
X2 (49)
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As we choose x a real number, then x = u1 + v1 = 3
√
X1 + 3

√
X2. We search x, y

to be integer numbers. We suppose that x = 3
√
X1 + 3

√
X2 is an integer:

x = 3
√
X1 + 3

√
X2

x.( 3
√
X2

1 − 3
√
X1.X2 + 3

√
X2

2 ) = X1 +X2 = y2 − q

x.( 3
√
X2

1 + 3
√
X2

2 +
p

3
) = y2 − q

3
√
X2

1 + 3
√
X2

2 = +
3(y2 − q)− px

3x
= t ∈ Q∗ (50)

with x 6= 0. As x = 3
√
X1 + 3

√
X2 =⇒ 3

√
X2

2 = (x− 3
√
X1)

2 =⇒ x2− 2x 3
√
X1 +

3
√
X2

1 = 3
√
X2

2 . Adding to the two members of the last equation 3
√
X1, we obtain:

3

√
X2

1 − x
3
√
X1 +

x2 − t
2

= 0 (51)

then 3
√
X1 is a root of the equation:

α2 − xα +
x2 − t

2
= 0 (52)

The expression of the roots is:

α =
x±
√
δ

2
(53)

δ = 2t− x2 > 0 (54)

δ is > 0 because 2t − x2 = 2 3
√
X2

1 + 2 3
√
X2

2 − 3
√
X2

1 − 3
√
X2

2 − 2 3
√
X1X2 =

( 3
√
X2

1 − 3
√
X2

2 )2 > 0 as X1 6= X2. Then δ is a square. We conclude that α is a
rational number. It follows that 3

√
X1 is a rational number that we note by s, then

X1 = s3 is also a rational number which is in contradiction with the precedent
result above that X1 is irrational. The hypothesis that x is an integer is false, it
follows that x is a irrational number. Then, no integer coordinates exist when r is
a square.

Case r is not a square: we write :

r = 27(y2 − q)2 + 4p3 =⇒ m2 =
r

27
= ∆ =⇒ m =

√
3r

9

As 3 - r =⇒ 3r is not a square, then m is irrational number. The roots of (9) are:

X1 =
y2 − q +m

2
=

9(y2 − q) +
√

3r

18
(55)

X2 =
y2 − q −m

2
=

9(y2 − q)−
√

3r

18
(56)
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Using the same reasoning as for the case r is a square, there is no integer coordi-
nates for (E) when r is not a square.

In the second part of the paper, we will study the case ∆ < 0.
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