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Abstract

In this paper, we give the elliptic curve (E) given by the equation:
y'=a’+pr+g (D)

with p,¢ € Z not null simultaneous. We study a part of the conditions
verified by (p, q) so that 3 (z,y) € Z2 the coordinates of a point of the
elliptic curve (E) given by the equation (1.
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1 Introduction

Elliptic curves are related to number theory, geometry, cryptography and data
transmission. We consider an elliptic curve (E) given by the equation:

v =2 +pr+q (2)

where p and ¢ are two integers and we assume in this article that p, ¢ are not
simultaneous equal to zero. For our proof, we consider the equation :

:zc3—|—px+q—y2:() 3)

of the unknown the parameter x, and p, ¢, y given with the condition that y € Z*.
We resolve the equation (3]) and we discuss so that z is an integer.



2 Proof

We suppose that y > 0 is an integer, to resolve (3), let:
r=u+v 4)

where u, v are two complexes numbers. Equation (3]) becomes:

W+ 1P+ g -y + (u+v)(3uw +p) =0 )
With the choose of:
3uv+p:O:>uv:—§ 6)

then, we obtain the two conditions:

p
= — — 7
UV 3 (7
u3—|—v3:y2—q (8)
Hence, u?, v? are solutions of the equation of second order:
2 2 P3
X2 _ — X -—"-=0 9
(V" — )X~ 5= 9)
Let A the discriminant of (9) given by:
4p3
A=’ —q’+—= 10
(" —a)"+ (10)

2.1 Case A =0

In this case, the (9) has one double root :

X1 =Xy = (11)

43
AsA =0 — 2_p7 = —(y2—q)2 —> p < 0. y, ¢ are integers then 3|p = p =

3prand dp} = —(y* — q)> = p1 = —p3 = y* — ¢ = £2pj and p = —3p3. As
y* = q £ 2p3, it exists solutions if:

q % 2p3 is a square (12)

We suppose that ¢ & 2p3 is a square. The solution X = X; = X, = +p3. Using
the unknowns u, v, we have two cases:
Lo = = p

2-ud == —p3.



2.1.1 Caseu?® = v3 = pj

The solutions of u? = p3 are :
a-uy = p2;
. .. 1+iv3, ) .
b - uy = j.po with j = T\/_ is the unitary cubic complex root;
C-us = j2.p2.
Case a- u; = v; = py = x = 2py. The condition u;.v; = —p/3 is verified. The
integers coordinates of the elliptic curve (E) are :
(2p2, +a) (13)
(2p2, —a) (14)

Case b - uy = pa.j, va = pa.j* = pa.j => @ = Uz + v2 = p2(j + j) = po, in this
case, the integers coordinates of the elliptic curve (£) are :

(p2, +a) (15)
(P2, —) (16)

Case ¢ - Uy = Py.J, V9 = pa.j> = pa.j , it is the same as case b above.

2.1.2 Caseu® =v3 = —pj

The solutions of u® = —p3 are :
d-up = —py;
- Uy = —].pa;

f-uy =—j2p2 = —jpo.

Case d - u; = v = —py => = = —2ps. The condition u;.v; = —p/3 is verified.
The integers coordinates of the elliptic curve (£) are :

(2p2a +O{) (22927 —OZ) (17)

C&SCG-UQ = —pg.j, Vg = —pg.jQ = —pQ,j — T = Ug+Vy = —pg(]—i—j) = —po,
in this case, the integers coordinates of the elliptic curve (E) are :

(=p2, +a)  (=p2, —) (18)

Case f - uy = —ps.j, U3 = —ps.j2 = py.j it is the same of case e above.



2.2 Case A >0

We suppose that A > 0 and A = m? where m is a positive rational.

4p*  27(y* — q)? + 4p? 2
_— = = m
27 27

A=(y’—q)’+
27(y2 — q)2 +4p® =2Tm* = 27(m2 — (y2 — q)Q) = 4p3

2.2.1 We suppose that 3|p
We suppose that 3|p = p = 3p;. We consider firstly that |p;| = 1.

Case p, = 1: the equation (20) is written as:
m? = (y? —q)? =4 = (m+y* —q)(m—y* +q) =2 x2
That gives the system of equations(with m > 0) :

2— =
{ mty —g=1 —> m = 5/2 not an integer

m—y*+q=4
Mty —q =2 — m=2andy’* —q¢=0
m—y?+q=2 - by —a=
mty—q=4 —> m = 5/2 not an integer
m—y*+qg=1 - &
We obtain:
Xl:u3:1:>u1:1;u2:j;u3:j2:3
Xo=v'=-l=u=-Lun=—ju=—j"=-j

T =U +V = 0
To = Uy + v3 = j — j> = iv/3not an integer

T3 = uz + vy = j> — j = —iv/3not an integer

(19)

(20)

3y

(22)

(23)

(24)

(25)
(26)
(27)
(28)
(29)

As y? — q = 0, if ¢ = ¢ with ¢ a positive integer, we obtain the integer coordi-

nates of the elliptic curve (E):

y* =2’ + 31 + ¢ (30)
(Oa q/)v (Oa _q/) (31)
Case p; = —1: using the same method as above, we arrive to the acceptable

value m = 0, then y?> = g & 2 = ¢ & 2 must be a square to obtain the integer

coordinates of the elliptic curve (£).



Ify? =q+2,asquare = (X — 1) =0= w3 =0 = 1, thenz; = 2,25 = 1.
The integer coordinates of the elliptic curve (E) are:

y? =22 —3x4¢q (32)
Ify? = qg—2,asquare = (X +1)? = 0 = v*> = v® = —1, then v, =
—2,x9 = —1. The integer coordinates of the elliptic curve (E) are:

yvi=12%—-3r+¢ (34)

(—1L,vVa—=2); (=1, —vq = 2); (=2,va = 2); (-2, —/q = 2) (35)

For the trivial case ¢ = 2 = y? = 2® — 3z + 2 and ¢ — 2, ¢ + 2 are squares, the
integer coordinates of the elliptic curve are:

W2 = o~ 342 (36)
(1,0);(=2,0);(2,2); (2, -2); (—1,2); (1, -2) (37)

For g > 2, ¢ — 2 and ¢ + 2 can not be simultaneous square numbers.

Now, we consider that |p;| > 1, the equation is written as:
m? — (y2 — q)2 = 4p:£) — m? — (y2 — q)2 = 4p:f (38)

From the last equation (38)), (+m, +(y* — ¢)) are solutions of the Diophantine
equation :
X?-Y?*=N (39)

where N is a positive integer equal to 4p?. A solution (X', Y”) of is used if
Y' =y? —qg= q+ Y isasquare, then X' =m > 0and £y = £/q + Y.

We return to the general solutions of the equation (39). Let Q(N) the number of
solutions of and 7(NV) the number of factorization of N, then we give the
following result concerning the solutions of (see theorem 27.3 of [IS]]):

- if N=2(mod 4), then Q(N) = 0;

-if N=1 or N=3(mod 4), then Q(N) = [7(N)/2];

-if N=0(mod 4), then Q(N) = [r(N/4)/2]]]

As N = 4p? = N=0(mod 4), then Q(N) = [7(N/4)/2] = [7(p3)/2] > 1, but
Q(N) = 1, there is one solution X’ > 0,Y” > 0 so that Y’ + ¢ is a square. Hence
the contradiction, the hypothesis that 3|p, |p| > 3 is impossible in the case A > 0.

![z] is the largest integer less or equal to .



2.2.2 We suppose that 3 { p

We rewrite the equations (9}20):

2_ 2_ _i_
X —(y"—q¢)X =0

27
ap*  21(y* — g +4p°
A = 2 — 2 _— = = 2
We call: ,
r:27(y2—q)2+4p3:>m2:§:A (40)
r can be written as:
12 —3(3y* — 3¢)* = 4p° (41)
or [, 3(y? — q) are solutions of the Diophantine equation :
A*-3B°=N (42)

where N is the 4p3. As we consider the last equation with A, B integers and the
coefficient of B is 3 does not verify = 1( mod 4), then equation has a solution
if N can be written as:
N = £ pl .o g (43)
where p;, ¢; are prime integers (see chapter 6 of [Bl]). Having A, B we calculate
2.
Yo

B B
y2=q+§:>q+§ a square (44)
Then:
B
y==1/q+ 3 (45)

r 12 ) V3
Wereturn to 2. m? = — = — = m= —— = 22 As3{p=>3{r =
eretun to z. m* = oo = oo m 33 5 s31p tr

311* = 311, then m is an irrational number. The roots of (9) are:
Y gtm 9y —q) +1V3

X 46

1 5 13 (46)
2 2 _ _

X, =Y g m _ 9y f; V3 47)

From the expressions of X7, X», we conclude that X; and X5 are irrational num-
bers € R\ Q. For the unknowns u, v, we obtain :

up = /X1, up = jvX1, uz=73*yX; (48)
v = VX, vy =jvXs, v3=7*VXs (49)

6



As we choose x a real number, then x = u; + v; = v/ X1 + v X5. We search x, y
to be integer numbers. We suppose that x = v/ X; + v/ X5 is an integer:

Tr = \3/X1 + \3/X2
%.(\3/ X12 — \S/Xl.XQ —+ \3/ XQQ) = Xl —|—X2 = y2 —q
e (VX + YR+ =y —q

2

32 — g) —
\S/X_12+€/Y§=+(y 3? 2 _teq (50)

withz # 0. Asz = /X| + VXo = /X2 = (v — /X)) = 22 — 22X, +
¢/ X% = {/X3. Adding to the two members of the last equation v/ X, we obtain:

2
¢
ox?—ay/X + 2 ;=0 51)

then v/ X7 is a root of the equation:

2
—1
o’ —za+ = =0 (52)
The expression of the roots is:
£V
o BEVE (53)
2
6=2t—1>>0 (54)

§ is > 0 because 2t — 22 = 2/ X2 + 23/XZ — /X7 — /X3 - 2UYX1 Xy =
(/X% — Y/X3)? > 0as X; # Xo. Then ¢ is a square. We conclude that a is a
rational number. It follows that </ X is a rational number that we note by s, then
X, = s?is also a rational number which is in contradiction with the precedent
result above that X; is irrational. The hypothesis that = is an integer is false, it
follows that x is a irrational number. Then, no integer coordinates exist when 7 is
a square.

Case r is not a square: we write :

3
7’:27(y2—q)2—|—4p3:>m2:2L7:A:>m:g

As 3 1 r = 3r is not a square, then m is irrational number. The roots of @]) are:

P ogtm 9@ -+ Vi

X — 55

1 5 13 (55)
2 _ _ 9 2 _ 3

X, =Y g m _ 9y i’; V3r (56)



Using the same reasoning as for the case r is a square, there is no integer coordi-
nates for (E£) when r is not a square.

In the second part of the paper, we will study the case A < 0.
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