
1

Compressed Monte Carlo
for Distributed Bayesian Inference

Luca Martino>, Vı́ctor Elvira∗
> Dep. of Signal Processing, Universidad Rey Juan Carlos (URJC) and Universidad Carlos III de Madrid (UC3M)

∗ IMT Lille Douai, Cité Scientifique, Rue Guglielmo Marconi, 20145, Villeneuve dAscq 59653, (France)

Abstract—Bayesian models have become very popular over the
last years in several fields such as signal processing, statistics and
machine learning. Bayesian inference needs the approximation
of complicated integrals involving the posterior distribution. For
this purpose, Monte Carlo (MC) methods, such as Markov Chain
Monte Carlo (MCMC) and Importance Sampling (IS) algorithms,
are often employed. In this work, we introduce theory and
practice of a Compressed MC (C-MC) scheme, in order to
compress the information contained in a could of samples. C-
MC is particularly useful in a distributed Bayesian inference
framework, when cheap and fast communications with a central
processor are required. In its basic version, C-MC is strictly
related to the stratification technique, a well-known method used
for variance reduction purposes. Deterministic C-MC schemes
are also presented, which provide very good performance. The
compression problem is strictly related to moment matching
approach applied in different filtering methods, often known
as Gaussian quadrature rules or sigma-point methods. The
connections to herding algorithms and quasi-Monte Carlo per-
spective are also discussed. Numerical results confirm the benefit
of the introduced schemes, outperforming the corresponding
benchmark methods.

Index Terms—Bayesian Inference, Markov Chain Monte Carlo
(MCMC), Importance Sampling, Particle Filtering, Gaussian
Quadrature, Sigma Points, Herding Algorithms, quasi-Monte
Carlo methods, Distributed Algorithms

I. INTRODUCTION

An essential problem in signal processing, statistics, and
machine learning is the estimation of unknown parameters
in probabilistic models from noisy observations. Within the
Bayesian inference framework, these problems are addressed
by constructing posterior probability density functions (pdfs)
of the unknowns [2, 5, 44]. Unfortunately, the computation
of statistical quantities related to these posterior distributions
(such as moments or credible intervals) is analytically
impossible in most real-world applications. As a consequence,
developing approximate inference algorithms is of utmost
interest. Monte Carlo (MC) techniques come to the rescue for
solving most difficult problems of inference [25, 43]. They are
state-of-the-art tools for approximating complicated integrals
involving sophisticated multidimensional target densities,
based on random drawing of samples [43]. Markov Chain
Monte Carlo (MCMC) algorithms, Importance Sampling (IS)
schemes and its sequential version (particle filtering) are the
most important classes of MC methods [25, 44].

E-mail: lmartino@ing.uc3m.es

Determinism and support points. In order to reduce
the computational demand of the Monte Carlo methods and
the variance of the corresponding estimators, deterministic
procedures have been included within the sampling
algorithms. In the so-called variance reduction techniques
(e.g., conditioning, stratification, antithetic sampling, and
control variates), negative correlation among the generated
samples is forced/induced, hence obtaining more efficient
estimators [40, 48]. In Quasi-Monte Carlo (QMC) methods,
deterministic sequences of samples are employed based on the
concept of low-discrepancy, avoiding all kind of randomness
[12, 13, 39]. In the same line, deterministic approximations of
the posterior distribution based on quadrature, cubature rules
or unscented transformations are often applied, when are
available [1, 20, 49, 44]. These techniques provide a set of
particles deterministically chosen (often called sigma points),
in order to match perfectly the estimation of a pre-established
number of moments of the posterior density. Most of them are
derived for the Gaussian distribution [44]. These techniques
are usually used in filtering applications as extension of the
standard Kalman filtering and as alternative to the particle
filtering techniques based on MC sampling. The quadrature
rules are very efficient since with N weighted particles
summarized exactly the first 2N non-central moments.
However, quadrature approximations are available only for
certain target densities. Indeed, the true values of the moments
must be known and a solution of an highly non-linear system
must be provided. Clearly, this is possible only for specific
target densities. More generally, the idea of sigma points
is strictly connected to the need of summarizing a given
distribution (and/or function) with a set of representative,
support points, deterministically selected [29, 28]. This is
an important topic is in computational statistics and has
gained increasing attention in the last years: some relevant
examples are the herding algorithms [9, 10, 22, 16], the
studies about the representative points previously mentioned
[28, 29], as well as the space-filling and experimental designs
[15, 19, 41]. Some of them have been applied jointly with
MC schemes or used for numerical integration problems
[22, 16].

Parallel and Distributed Computation. Distributed
algorithms have become a very active topic during the past
years favored by fast technological developments (e.g., see
[8]). Considering L independent computing machines, we
can distinguish two scenarios. In parallel computing, all the

2

machines have access to the data, and algorithms are designed
to run fast on this set of L processors [3, 42, 35, 33]. In a
complete distributed framework, each machine can process
only a subset of data [38, 45]. The data splitting can be
required due to the amount of data (Big Data) or for a demand
of the specific application, as in a wireless sensor network
with limited transmission power where local inference
analyses are needed. In this scenario, specific techniques
have been designed for providing a distributed or diffused
inference depending if a central node is available or not,
respectively [4, 23, 36, 37]. Generally, a common and key
requirement is to properly summarize the local information
before transmitting to other nodes [38, 3, 42].

Contribution. In this work, we introduce different schemes
for compressing the information contained in N Monte
Carlo samples into M < N weighted particles, based on
the stratification approach [40, 43]. In the Compressed
Monte Carlo (C-MC) schemes, we replace the particle MC
approximation obtained by N unweighted samples (e.g.,
generated by an MCMC algorithm) or weighted samples
(e.g., generated by an IS algorithm), with another particle
approximation with M < N summary weighted samples.
Clearly, we desire to reduce the loss of information in
terms of moment matching, in the same fashion of the
quadrature rules. In this sense, the M summary particles can
be considered as approximate sigma points. Furthermore,
for a specific choice of the partition (see the case of
unweighted C-MC samples in Section IV-D), an approximate
low-discrepancy sequence (i.e., a QMC sequence) is obtained.
Several alternatives are presented and discussed, including the
random or deterministic selection of the summary particles.
The C-MC approach has a direct application in a parallel
and/or distributed Bayesian framework, as graphically
represented in Figure 1. Indeed, in this scenario, different
local low-power nodes must transmit to a central node
the results of their local Bayesian analysis, in order to
provide a common complete inference [38, 3, 42]. The
transmission should have the minimum possible cost and
contain the maximum amount of information. Hence,
the information must be properly compressed before be
transmitted (see Section V for further details). C-MC is an
improvement of the bootstrap strategy, applied in different
works regarding parallel sequential Monte Carlo schemes,
where several resampled particles are transmitted jointly
with the proper aggregated weight [3, 42, 47, 30]. Another
possible application is inside the so-called parallel partitioned
particle filters and multiple particle filters as alternative to
the use of first moment estimators or the use of sigma points
for approximating marginal posterior distributions [11, 34].
Furthermore, C-MC can be also applied within adaptive
Monte Carlo schemes in order to obtain a good construction
of the adaptive proposal density [7, 6, 32]. Indeed, C-MC can
also return a mixture of densities as output, which can use
as proposal pdf inside the adaptive MC technique [26, 6, 5].
Finally, note that sampling from the C-MC mixture can be
employed as an alternative procedure to the resampling steps
in particle filtering, in the same fashion of the works [21] and

[24]. We provide some application examples in the numerical
experiments.

Structure of the work. Section II introduces the basic
setup of the Bayesian inference problem and describes the
goal of the paper jointly with some possible solutions already
presented in the literature. In Section III, we introduce the
C-MC method whereas, in Section IV we provide further
analysis and information. In Section V, we describe the
application of C-MC in a distributed framework. Section VI
provides some numerical results, and some conclusions are
contained in Section VII.

II. BACKGROUND

A. Problem statement

In many real-world applications, the interest lies in obtain-
ing information about the posterior probability density func-
tion (pdf) of set of unknown parameters given the observed
data. Mathematically, denoting the vector of unknowns as
x = [x1, ..., xdx

]> ∈ D ⊆ RdX and the observed data as
y ∈ RdY , the pdf is defined as

π̄(x|y) =
`(y|x)g(x)
Z(y)

∝ π(x|y) = `(y|x)g(x), (1)

where `(y|x) is the likelihood function, g(x) is the prior pdf,
and Z(y) is the normalization factor, that is usually called
marginal likelihood or Bayesian evidence. From now on, we
remove the dependence on y to simplify the notation. A
particular integral involving the random variable X ∼ π̄(x) =
1
Zπ(x) is then given by

I , Eπ̄[h(X)] =
∫
D
h(x)π̄(x)dx =

1
Z

∫
D
h(x)π(x)dx, (2)

where h(x) can be any integrable function of x.1 For the sake
of simplicity, we assume that the functions h(x) and π̄(x)
are continuous in D, and the integrand function, h(x)π̄(x),
in Eq. (2) is integrable. More generally, we are interested
in finding a particle approximation π̂(N)(x) of the measure
of π̄(x) [25]. In many practical scenarios, we cannot obtain
an analytical solution of (2). One possible alternative is to
use different deterministic quadrature rules or formulas based
on sigma points for approximating the integral I [1, 20, 44].
However, these deterministic techniques are available only in
specific scenarios, i.e., for some particular pdfs π̄(x). Hence,
Monte Carlo schemes are often preferred and applied in order
to estimate I and provide a particle approximation π̂(N)(x).

B. Monte Carlo sampling techniques

If it is possible to draw N independent samples, {xn}Nn=1,
directly from π̄(x), then we can construct a particle approx-
imation π̂(N)(x) = 1

N

∑N
n=1 δ(x − xn) of the measure of π̄

1For the sake of simplicity, we have assumed h(x) : RdX → R and
the integral I ∈ R is a scalar value. However, a more proper assumption is
h(x) : RdX → Rs and I ∈ Rs where s ≥ 1. All the techniques and results
in this work are valid for the more general mapping with s ≥ 1, but we keep
the simpler notation for s = 1.

3

.

Central Node

Local Node
1

<latexit sha1_base64="xK8QlNJxaZFaGDMZZqQIIEn+MgA=">AAACEnicbVDLSsNAFJ34rPEVdelmsFh0UxIR1F3BjQuRCvYBTSiTyaQdOsmkMxOxhHyDG3/FjQtF3Lpy5984bbPQ1gMXDufcy733+AmjUtn2t7GwuLS8slpaM9c3Nre2rZ3dpuSpwKSBOeOi7SNJGI1JQ1HFSDsRBEU+Iy1/cDn2W/dESMrjOzVKiBehXkxDipHSUtc6rriRzx+ya44Rgzc8IDl0XbMC3eEwRQGcujCHTtcq21V7AjhPnIKUQYF61/pyA47TiMQKMyRlx7ET5WVIKIoZyU03lSRBeIB6pKNpjCIivWzyUg4PtRLAkAtdsYIT9fdEhiIpR5GvOyOk+nLWG4v/eZ1UhedeRuMkVSTG00VhyqDicJwPDKggWLGRJggLqm+FuI8EwkqnaOoQnNmX50nzpOrYVef2tFy7KOIogX1wAI6AA85ADVyBOmgADB7BM3gFb8aT8WK8Gx/T1gWjmNkDf2B8/gDEcZw4</latexit><latexit sha1_base64="xK8QlNJxaZFaGDMZZqQIIEn+MgA=">AAACEnicbVDLSsNAFJ34rPEVdelmsFh0UxIR1F3BjQuRCvYBTSiTyaQdOsmkMxOxhHyDG3/FjQtF3Lpy5984bbPQ1gMXDufcy733+AmjUtn2t7GwuLS8slpaM9c3Nre2rZ3dpuSpwKSBOeOi7SNJGI1JQ1HFSDsRBEU+Iy1/cDn2W/dESMrjOzVKiBehXkxDipHSUtc6rriRzx+ya44Rgzc8IDl0XbMC3eEwRQGcujCHTtcq21V7AjhPnIKUQYF61/pyA47TiMQKMyRlx7ET5WVIKIoZyU03lSRBeIB6pKNpjCIivWzyUg4PtRLAkAtdsYIT9fdEhiIpR5GvOyOk+nLWG4v/eZ1UhedeRuMkVSTG00VhyqDicJwPDKggWLGRJggLqm+FuI8EwkqnaOoQnNmX50nzpOrYVef2tFy7KOIogX1wAI6AA85ADVyBOmgADB7BM3gFb8aT8WK8Gx/T1gWjmNkDf2B8/gDEcZw4</latexit><latexit sha1_base64="xK8QlNJxaZFaGDMZZqQIIEn+MgA=">AAACEnicbVDLSsNAFJ34rPEVdelmsFh0UxIR1F3BjQuRCvYBTSiTyaQdOsmkMxOxhHyDG3/FjQtF3Lpy5984bbPQ1gMXDufcy733+AmjUtn2t7GwuLS8slpaM9c3Nre2rZ3dpuSpwKSBOeOi7SNJGI1JQ1HFSDsRBEU+Iy1/cDn2W/dESMrjOzVKiBehXkxDipHSUtc6rriRzx+ya44Rgzc8IDl0XbMC3eEwRQGcujCHTtcq21V7AjhPnIKUQYF61/pyA47TiMQKMyRlx7ET5WVIKIoZyU03lSRBeIB6pKNpjCIivWzyUg4PtRLAkAtdsYIT9fdEhiIpR5GvOyOk+nLWG4v/eZ1UhedeRuMkVSTG00VhyqDicJwPDKggWLGRJggLqm+FuI8EwkqnaOoQnNmX50nzpOrYVef2tFy7KOIogX1wAI6AA85ADVyBOmgADB7BM3gFb8aT8WK8Gx/T1gWjmNkDf2B8/gDEcZw4</latexit><latexit sha1_base64="xK8QlNJxaZFaGDMZZqQIIEn+MgA=">AAACEnicbVDLSsNAFJ34rPEVdelmsFh0UxIR1F3BjQuRCvYBTSiTyaQdOsmkMxOxhHyDG3/FjQtF3Lpy5984bbPQ1gMXDufcy733+AmjUtn2t7GwuLS8slpaM9c3Nre2rZ3dpuSpwKSBOeOi7SNJGI1JQ1HFSDsRBEU+Iy1/cDn2W/dESMrjOzVKiBehXkxDipHSUtc6rriRzx+ya44Rgzc8IDl0XbMC3eEwRQGcujCHTtcq21V7AjhPnIKUQYF61/pyA47TiMQKMyRlx7ET5WVIKIoZyU03lSRBeIB6pKNpjCIivWzyUg4PtRLAkAtdsYIT9fdEhiIpR5GvOyOk+nLWG4v/eZ1UhedeRuMkVSTG00VhyqDicJwPDKggWLGRJggLqm+FuI8EwkqnaOoQnNmX50nzpOrYVef2tFy7KOIogX1wAI6AA85ADVyBOmgADB7BM3gFb8aT8WK8Gx/T1gWjmNkDf2B8/gDEcZw4</latexit>

Local Node
`

<latexit sha1_base64="6HC6U/SY7gZscbJXe5qZqJGe2z4=">AAACFXicbVDLSsNAFJ34rPVVdelmsFhcSElEUHcFNy5EKtgHNKFMJjft0EkmnZmIJfQn3Pgrblwo4lZw5984fSy09cCFwzn3cu89fsKZ0rb9bS0sLi2vrObW8usbm1vbhZ3duhKppFCjggvZ9IkCzmKoaaY5NBMJJPI5NPze5chv3INUTMR3epCAF5FOzEJGiTZSu3BcciNfPGTXghKOb0QAQ+y6+RJ2+/2UBHjiYiMC5+1C0S7bY+B54kxJEU1RbRe+3EDQNIJYU06Uajl2or2MSM0oh2HeTRUkhPZIB1qGxiQC5WXjr4b40CgBDoU0FWs8Vn9PZCRSahD5pjMiuqtmvZH4n9dKdXjuZSxOUg0xnSwKU461wKOIcMAkUM0HhhAqmbkV0y6RhGoTZN6E4My+PE/qJ2XHLju3p8XKxTSOHNpHB+gIOegMVdAVqqIaougRPaNX9GY9WS/Wu/UxaV2wpjN76A+szx+B6J2+</latexit><latexit sha1_base64="6HC6U/SY7gZscbJXe5qZqJGe2z4=">AAACFXicbVDLSsNAFJ34rPVVdelmsFhcSElEUHcFNy5EKtgHNKFMJjft0EkmnZmIJfQn3Pgrblwo4lZw5984fSy09cCFwzn3cu89fsKZ0rb9bS0sLi2vrObW8usbm1vbhZ3duhKppFCjggvZ9IkCzmKoaaY5NBMJJPI5NPze5chv3INUTMR3epCAF5FOzEJGiTZSu3BcciNfPGTXghKOb0QAQ+y6+RJ2+/2UBHjiYiMC5+1C0S7bY+B54kxJEU1RbRe+3EDQNIJYU06Uajl2or2MSM0oh2HeTRUkhPZIB1qGxiQC5WXjr4b40CgBDoU0FWs8Vn9PZCRSahD5pjMiuqtmvZH4n9dKdXjuZSxOUg0xnSwKU461wKOIcMAkUM0HhhAqmbkV0y6RhGoTZN6E4My+PE/qJ2XHLju3p8XKxTSOHNpHB+gIOegMVdAVqqIaougRPaNX9GY9WS/Wu/UxaV2wpjN76A+szx+B6J2+</latexit><latexit sha1_base64="6HC6U/SY7gZscbJXe5qZqJGe2z4=">AAACFXicbVDLSsNAFJ34rPVVdelmsFhcSElEUHcFNy5EKtgHNKFMJjft0EkmnZmIJfQn3Pgrblwo4lZw5984fSy09cCFwzn3cu89fsKZ0rb9bS0sLi2vrObW8usbm1vbhZ3duhKppFCjggvZ9IkCzmKoaaY5NBMJJPI5NPze5chv3INUTMR3epCAF5FOzEJGiTZSu3BcciNfPGTXghKOb0QAQ+y6+RJ2+/2UBHjiYiMC5+1C0S7bY+B54kxJEU1RbRe+3EDQNIJYU06Uajl2or2MSM0oh2HeTRUkhPZIB1qGxiQC5WXjr4b40CgBDoU0FWs8Vn9PZCRSahD5pjMiuqtmvZH4n9dKdXjuZSxOUg0xnSwKU461wKOIcMAkUM0HhhAqmbkV0y6RhGoTZN6E4My+PE/qJ2XHLju3p8XKxTSOHNpHB+gIOegMVdAVqqIaougRPaNX9GY9WS/Wu/UxaV2wpjN76A+szx+B6J2+</latexit><latexit sha1_base64="6HC6U/SY7gZscbJXe5qZqJGe2z4=">AAACFXicbVDLSsNAFJ34rPVVdelmsFhcSElEUHcFNy5EKtgHNKFMJjft0EkmnZmIJfQn3Pgrblwo4lZw5984fSy09cCFwzn3cu89fsKZ0rb9bS0sLi2vrObW8usbm1vbhZ3duhKppFCjggvZ9IkCzmKoaaY5NBMJJPI5NPze5chv3INUTMR3epCAF5FOzEJGiTZSu3BcciNfPGTXghKOb0QAQ+y6+RJ2+/2UBHjiYiMC5+1C0S7bY+B54kxJEU1RbRe+3EDQNIJYU06Uajl2or2MSM0oh2HeTRUkhPZIB1qGxiQC5WXjr4b40CgBDoU0FWs8Vn9PZCRSahD5pjMiuqtmvZH4n9dKdXjuZSxOUg0xnSwKU461wKOIcMAkUM0HhhAqmbkV0y6RhGoTZN6E4My+PE/qJ2XHLju3p8XKxTSOHNpHB+gIOegMVdAVqqIaougRPaNX9GY9WS/Wu/UxaV2wpjN76A+szx+B6J2+</latexit>

Local Node
L

<latexit sha1_base64="sLC27mZbfPnyhql2OVW0NG0vAn8=">AAACEnicbVDLSsNAFJ3UV42vqEs3g8Wim5KIoO4KblwUqWAf0IQymUzaoZNMOjMRS8g3uPFX3LhQxK0rd/6N08dCWw9cOJxzL/fe4yeMSmXb30ZhaXllda24bm5sbm3vWLt7TclTgUkDc8ZF20eSMBqThqKKkXYiCIp8Rlr+4Grst+6JkJTHd2qUEC9CvZiGFCOlpa51UnYjnz9kNY4Rgzc8IDl0XbMM3eEwRQGcujCHta5Vsiv2BHCRODNSAjPUu9aXG3CcRiRWmCEpO46dKC9DQlHMSG66qSQJwgPUIx1NYxQR6WWTl3J4pJUAhlzoihWcqL8nMhRJOYp83Rkh1Zfz3lj8z+ukKrzwMhonqSIxni4KUwYVh+N8YEAFwYqNNEFYUH0rxH0kEFY6RVOH4My/vEiapxXHrji3Z6Xq5SyOIjgAh+AYOOAcVME1qIMGwOARPINX8GY8GS/Gu/ExbS0Ys5l98AfG5w/tXZxT</latexit><latexit sha1_base64="sLC27mZbfPnyhql2OVW0NG0vAn8=">AAACEnicbVDLSsNAFJ3UV42vqEs3g8Wim5KIoO4KblwUqWAf0IQymUzaoZNMOjMRS8g3uPFX3LhQxK0rd/6N08dCWw9cOJxzL/fe4yeMSmXb30ZhaXllda24bm5sbm3vWLt7TclTgUkDc8ZF20eSMBqThqKKkXYiCIp8Rlr+4Grst+6JkJTHd2qUEC9CvZiGFCOlpa51UnYjnz9kNY4Rgzc8IDl0XbMM3eEwRQGcujCHta5Vsiv2BHCRODNSAjPUu9aXG3CcRiRWmCEpO46dKC9DQlHMSG66qSQJwgPUIx1NYxQR6WWTl3J4pJUAhlzoihWcqL8nMhRJOYp83Rkh1Zfz3lj8z+ukKrzwMhonqSIxni4KUwYVh+N8YEAFwYqNNEFYUH0rxH0kEFY6RVOH4My/vEiapxXHrji3Z6Xq5SyOIjgAh+AYOOAcVME1qIMGwOARPINX8GY8GS/Gu/ExbS0Ys5l98AfG5w/tXZxT</latexit><latexit sha1_base64="sLC27mZbfPnyhql2OVW0NG0vAn8=">AAACEnicbVDLSsNAFJ3UV42vqEs3g8Wim5KIoO4KblwUqWAf0IQymUzaoZNMOjMRS8g3uPFX3LhQxK0rd/6N08dCWw9cOJxzL/fe4yeMSmXb30ZhaXllda24bm5sbm3vWLt7TclTgUkDc8ZF20eSMBqThqKKkXYiCIp8Rlr+4Grst+6JkJTHd2qUEC9CvZiGFCOlpa51UnYjnz9kNY4Rgzc8IDl0XbMM3eEwRQGcujCHta5Vsiv2BHCRODNSAjPUu9aXG3CcRiRWmCEpO46dKC9DQlHMSG66qSQJwgPUIx1NYxQR6WWTl3J4pJUAhlzoihWcqL8nMhRJOYp83Rkh1Zfz3lj8z+ukKrzwMhonqSIxni4KUwYVh+N8YEAFwYqNNEFYUH0rxH0kEFY6RVOH4My/vEiapxXHrji3Z6Xq5SyOIjgAh+AYOOAcVME1qIMGwOARPINX8GY8GS/Gu/ExbS0Ys5l98AfG5w/tXZxT</latexit><latexit sha1_base64="sLC27mZbfPnyhql2OVW0NG0vAn8=">AAACEnicbVDLSsNAFJ3UV42vqEs3g8Wim5KIoO4KblwUqWAf0IQymUzaoZNMOjMRS8g3uPFX3LhQxK0rd/6N08dCWw9cOJxzL/fe4yeMSmXb30ZhaXllda24bm5sbm3vWLt7TclTgUkDc8ZF20eSMBqThqKKkXYiCIp8Rlr+4Grst+6JkJTHd2qUEC9CvZiGFCOlpa51UnYjnz9kNY4Rgzc8IDl0XbMM3eEwRQGcujCHta5Vsiv2BHCRODNSAjPUu9aXG3CcRiRWmCEpO46dKC9DQlHMSG66qSQJwgPUIx1NYxQR6WWTl3J4pJUAhlzoihWcqL8nMhRJOYp83Rkh1Zfz3lj8z+ukKrzwMhonqSIxni4KUwYVh+N8YEAFwYqNNEFYUH0rxH0kEFY6RVOH4My/vEiapxXHrji3Z6Xq5SyOIjgAh+AYOOAcVME1qIMGwOARPINX8GY8GS/Gu/ExbS0Ys5l98AfG5w/tXZxT</latexit>

Figure 1. Graphical representation of a distributed Bayesian inference framework with L local computational nodes. Each local node addresses a posterior
density, which is generally different in each node. If we consider just a parallel framework each node addresses the same posterior. In this example, a C-MC
scheme compresses the information of N Monte Carlo samples (depicted by dots) with M = 5 summary weighted particles shown by circles (in each node).
The size of the circles is proportional to the corresponding C-MC summary weight.

[43]. Therefore, replacing π̄(x) with π̂(N)(x) in Eq. (2), we
obtain the standard Monte Carlo estimator of I ,

ÎN =
1
N

N∑
n=1

h(xn). (3)

When sampling from π̄(x) is not possible, alternative MC
methods are used [25, 43] For instance, the MCMC algorithms
generate correlated samples {xn}Nn=1 that, after a burn-in
period, are distributed according to π̄(x). Another possible
approach is based on the importance sampling (IS) technique
[43, 5]. Let us consider now N samples {xn}Nn=1 drawn
from a proposal pdf, q(x), with heavier tails than the target,
π̄(x). We assign a weight to each sample and then we can be
normalized them as follows,

wi =
π(xi)
q(xi)

, w̄i =
wi∑N
j=1 wj

, (4)

with i = 1, ..., N . Therefore, the moment of interest can be
approximated as

ÎN =
1

NẐ

N∑
i=1

wih(xi) =
N∑
i=1

w̄ih(xi), (5)

where Ẑ = 1
N

∑N
j=1 wj is a unbiased estimator of Z =∫

D π(x)dx [43]. More generally, all the described Monte Carlo
schemes approximate the measure of π̄(x) as

π̂(N)(x) =
N∑
n=1

β̄nδ(x− xn), and ÎN =
N∑
n=1

β̄nh(xn), (6)

where δ(x) is the Dirac delta function, β̄n = 1
N in the standard

Monte Carlo and MCMC methods, and β̄n = w̄n = 1

N bZ π(xn)
q(xn)

in the IS technique. However, we always refer to the former
case as unweighted Monte Carlo samples since the weights
β̄n = 1

N are equal for all n. Tables I-II summarize the main

notation of the work.2

C. Goal

In this work, we address the problem of summarizing the
information contained in a set of N weighted or unweighted
samples generated by a Monte Carlo sampling technique, with
a smaller amount M < N of weighted samples. This problem
is strictly related to the more general challenge: summarizing
the required information of a given target density π̄(x), using a
particle approximation (with the smallest amount of weighted
particles). Clearly, in general, there is a loss of information.
More precisely, given a Monte Carlo approximation π̂(N)(x)
in Eq. (6), with N samples, we desire to construct another
particle approximation

π̃(M)(x) =
M∑
m=1

āmδ(x− sm), (7)

where M < N ,
∑M
m=1 ām = 1, and sm ∈ D, sharing

with π̂(N) the required properties. The goal is to compress
the statistical information contained in π̂(N)(x), reducing as
much as possible the loss of information. We refer to ām as
summary weights and, to sm, as summary particles. The rate
of compression is clearly given by η = N

M . Note that when
η = 1 we have no compression whereas, when η = N , we
have the maximum compression (1 ≤ η ≤ N).

D. Related works

In the literature, two families of possible solutions have
been proposed for different but related purposes. The first
one is based on a bootstrap technique, and can be always
used. The second one is the moment-matching approach, and

2In this work, the words sample and particle are used as synonyms. More-
over, the expression unweighted samples is equivalent to equally weighted
samples when referred to normalized weights. Note that the IS method provide
also an estimator of the marginal likelihood, i.e., bZ = 1

N

PN
n=1 wn.

4

is available only for a limited type target pdfs π̄(x).

Bootstrap solution. Let us assume we have N unweighted
samples. A simple approach for compression consists in
choosing uniformly M samples within the N possible ones.
Similarly, in the case of weighted samples, this strategy
consists in resampling M times within the set {xn}Nn=1

according to the normalized weights w̄n, n = 1, ..., N
[3]. Then, a proper aggregated weight is associated to the
resampled particles [3, 31, 30]. This kind of compression
scheme has been widely used in different works (explicitly
or implicitly), from distributed particle filtering methods and
other sophisticated Monte Carlo algorithms [3, 42, 35, 47].

Moment-matching solution. For simplicity and without
loss of generality, let us consider dX = 1, i.e., x ∈ R.
For some specific types of target pdfs π̄(x) and specific
domains D, it is possible to obtain a deterministic particle
approximation π̃(M)(x) =

∑M
m=1 ρmδ(x − sm) where the

weights ρm and the particles sm are solutions of the nonlinear
moment-matching system below,
M∑
m=1

ρms
r
m =

∫
D
xrπ̄(x)dx for r = 1, ..., R = 2M, (8)

where the true values of the first 2M non-central moments,∫
D x

rπ̄(x)dx, must be known. Hence we have 2M unknowns
(the M weights ρm and the M particles sm) and R = 2M
equations. Since the system is highly nonlinear, in general,
the analytical solution is available only in few particular
cases. These solutions are called Gaussian Quadratures
[44], the corresponding deterministic particle approximation
provide a perfect-matching with the first 2M moments (zero
loss of information in the approximation of these moments).
Quadrature rules and related sigma point methods have been
widely applied within several generalized Kalman filtering
techniques [1, 20, 44].

III. COMPRESSED MONTE CARLO (C-MC)

In this work, we introduce a compression approach which
improves the bootstrap strategy and extends the applicability
of the moment-matching scheme, both described above. We
consider the cases of compressing unweighted and weighted
samples, e.g., the N samples have been previously generated
by an MCMC algorithm or an IS technique, respectively.
Figure 2 shows two examples of C-MC approximation with
M = 10 summary particles. The size of the circles is
proportional to the corresponding summary weight.

A. Stratification

The underlying grounds of C-MC are based on the so-called
stratified sampling [27, 40]. The idea is to divide the support
domain D of the random variable X into M separate and
mutually exclusive regions. More specifically, let us consider

an integer M ∈ N+, and a partition P = {X1,X2,,XM}
of the state space with M disjoint subsets,

X1 ∪ X2 ∪ ... ∪ XM = D,
Xi ∪ Xk = ∅, i 6= k, ∀i, j ∈ {1, ...,M}.

(9)

We assume that all Xm are convex sets. Then, in the simplest
version, one sample is drawn from each sub-region, and finally
all the generated samples are combined for providing an
estimator of I , Eπ̄[f(X)]. We also denote the area of π̄(x)
restricted in Xm as

ām = P(X ∈ Xm) =
∫
Xm

π̄(x)dx =
1
Z

∫
Xm

π(x)dx,

=
Zm
Z

=
Zm∑M
j=1 Zj

,
(10)

where Zm =
∫
Xm

π(x)dx and Z =
∑M
j=1 Zj =

∫
D π̄(x)dx.

Clearly, note that
∑M
m=1 ām = 1. The target density can be

expressed as a mixture of M non-overlapped densities,

π̄(x) =
M∑
m=1

ām

[
1
ām

π̄(x)IXm
(x)
]

=
M∑
m=1

āmπ̄m(x), (11)

where

π̄m(x) =
1
ām

π̄(x)IXm
(x) =

1
Zm

π(x)IXm
(x), (12)

is a density, and IXm
(x) is an indicator function that is 1

when x ∈ Xm and 0 otherwise.

Stratified MC estimators. In order to simulate a sample
x∗ from π̄(x), we can draw an index j∗ ∈ {1, ...,M}
according to the probability mass function ām, m = 1, ...,M
and the draw x∗ ∼ π̄j∗(x). Alternatively, we can yield an
approximation of the measure of π̄, drawing one sample
from each region, i.e., sm ∼ π̄m(x), and then assign to each
sample the weight ām, m = 1, ...,M . Therefore, in this
scenario, the corresponding estimator of the integral I in Eq.
(2) and the particle approximation are, respectively,

ĨM =
M∑
m=1

āmh(sm), and π̃(M)(x) =
M∑
m=1

āmδ(x− sm) (13)

where sm ∼ π̄m(x) = 1
Zm

π(x)IXm
(x), hence sm ∈ Xm.

See the Supplementary Material, for extensions and
further details.

B. C-MC algorithms

Let us consider N unweighted samples Stot = {xn}Nn=1

simulated from target pdf π̄(x), through some standard Monte
Carlo scheme (either independent or correlated). Alternatively,
if an importance sampling scheme has been applied, we have
N weighted samples {xn, wn}Nn=1 (see Section II). Let M <
N be a constant value. Given the partition in Eq. (9), i.e.,
X1 ∪ X2 ∪ ... ∪ XM = D formed by convex, disjoint sub-
regions Xm, we denote as

Sm = {x̃m,1,, x̃m,Jm
} ⊆ Stot = {x1,,xN}

5

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Figure 2. One run of a C-MC scheme with M = 10, for two different clouds of N = 103 samples (represented by dots). Each figure represents a different
target π̄(x) (shown by the contour plots). The size of the circles is proportional to the corresponding summary weight.

the set of all the samples contained in the m-th region Xm,
i.e., x̃m,j ∈ Xm, with m = 1, ...,M , j = 1, ...Jm, where
Jm = |Sm| is the cardinality of the m-th set Sm. Clearly,
we have

∑M
m=1 Jm = N , Sm ⊂ Xm, and ∪Mm=1Sm = Stot.

We can compress the information contained in the particle
approximation of Eq. (6), constructing an empirical stratified
approximation based on M weighted particles {sm, âm}Mm=1,
i.e.,

π̃(M)(x) =
M∑
m=1

âmδ(x− sm), (14)

so that for a specific moment the resulting estimator is

ĨM =
M∑
m=1

âmh(sm). (15)

In different applications, it is useful to define an aggregated
weight W associated to the discrete measure π̃(M), e.g., for
further combination purposes in the distributed framework
[3, 42, 30]. The definition of âm and sm will be different,
depending if we have unweighted or weighted Monte Carlo
samples, as shown below.

Compressed Unweighted Sampling (CUS). In this scenario,
each sample sm ∈ {x̃m,1,, x̃m,Jm

} is obtained resampling
once within Sm with equal weights 1

Jm
. Namely, sm is

uniformly chosen in Sm. Moreover, we define

âm =
Jm
N
, W = N =

M∑
m=1

Jm, (16)

that is an unbiased estimator of ām in Eq. (10) since,
by assumption, all the samples {xn}Nn are distributed
according to π̄(x) and, hence, {x̃m,j}Jm

j=1 are distributed as
π̄m(x) = 1

Zm
π̄(x)IXm(x), as well.

Compressed Importance Sampling (CIS). Let us denote the

unnormalized and normalized weights of the samples of Sm,

w̃m,j =
π(x̃m,j)
q(x̃m,j)

, w̄m,j =
w̃m,j∑Jm

k=1 w̃m,k
, (17)

for j = 1, ..., Jm. Each sample sm ∈ {x̃m,1,, x̃m,Jm} is
obtained resampling once within Sm according to the proba-
bility mass function (pmf) defined by {w̄m,j}Jm

j=1. Moreover,
let us define

Ẑm =
1
Jm

Jm∑
j=1

w̃m,j , (18)

that is an unbiased estimator of 1
Cm

∫
Xm

π(x)dx where Cm =∫
Xm

q(x)dx. Then, we have

âm =
JmẐm

NẐ
, W = NẐ =

M∑
m=1

JmẐm. (19)

Note that the weights âm in both cases, for CUS and CIS,
are unbiased estimators of ām in Eq. (10). Let also define the
unnormalized C-MC weights am = âmW . Unlike in CUS, in
CIS these weights, am, can be employed for estimating the
marginal likelihood Z. Indeed, we can define

Z̃CIS =
1
N

M∑
m=1

am =
1
N

M∑
m=1

JmẐm,

=
1
N

M∑
m=1

Jm

 1
Jm

Jm∑
j=1

w̃m,j

 = Ẑ,

(20)

recovering perfectly the IS estimator Ẑ.3

Extensions and particular cases. Several summary
particles can be also considered within a sub-region
Xm, instead of just one. Therefore, if we resample
Km particles uniformly in Xm for CUS or according
to w̄m,j for CIS, then the C-MC approximation will

3Note that, in the definition of the estimator eZCIS, it appears the factor 1
N

instead of 1
M

.

6

be π̃(V)(x) =
∑M
m=1

∑Km

i=1
bam

Km
δ(x − sm,i), where

V =
∑M
m=1Km. Note that CIS can be seen as an

extension of Group Importance Sampling (GIS) [30] and the
related approaches [3, 42, 47], where the different groups of
samples belong to different sub-regions (Xm) of the entire
domain (D). Namely, the bootstrap approach described in
Section II-D can be seen as a special case of C-MC with a
unique region M = 1, X1 = D, and V = K1 particles are
resampled within {xn}Nn=1. For the sake of simplicity, in
the rest of the work we consider Km = 1, for all m, and
V = M , except when we explicitly state the opposite.

IV. ANALYSIS OF C-MC

Proper partition and consistency. Let us focus in the way
the partition is formed. A partition rule is proper if, when
M = N , then Sm = {x̃m = xm} (note that m = n in this
case), i.e., in the limit case of M = N we consider all the
MC samples as summary samples. Recall that, for M < N ,
the C-MC estimators are unbiased as shown in the Supp.
Material with Km = 1 and V = M . Furthermore, if
the partition rule is proper for M = N , C-MC estimators
coincide with the classical Monte Carlo estimators. Hence, as
M → N and N →∞, the consistency is ensured.

Save in transmission. Let us consider the parallel or
distributed framework with a common central node. Note
that, the unnormalized C-MC weights knowing all the
{am}Mm=1, we can recover âm = am

W with W =
∑M
m=1 am.

In C-MC, only the M pairs {am, sm}Mm=1 are transmitted to
the central node, instead of the N pairs. Since, x, s ∈ RdX ,
without compression, we need to transmit NdX scalar
values in case on unweighted samples, or N(dX + 1) scalar
values in the case of weighted samples. With the proposed
compression, the transmission of only M(dX + 1) scalar
values are required.

A. Loss

For the sake of simplicity and without loss of generality,
in this section we consider the scalar case dX = 1. Let us
assume that we are particularly interested in the estimates of
the first R moments of π̄. The standard MC estimators, given
the N samples, are denoted as

Î
(r)
N =

N∑
n=1

β̄nx
r
n ≈

∫
D
xrπ̄(x)dx, for r = 1, ..., R, (21)

where the weights are β̄n = 1
N for the unweighted sample

methods, and β̄n = w̄n = 1

N bZ π(xn)
q(xn) for the IS technique.

Thus, if we apply C-MC, we summarize the N samples with
M pairs {sm, âm}Mm=1 obtaining the estimators

Ĩ
(r)
M =

M∑
m=1

âms
r
m. (22)

We are interested in reproducing the values of Î(r)
N using less

samples with C-MC (M < N). Hence, for a specific r-th
moment, the information loss for a C-MC scheme can be

measured with the squared error, i.e., `(r) = (Î(r)
N − Ĩ(r)

M)2.
More generally, considering r = 1, ..., R, we can define the
loss as

LR =
R∑
r=1

ξ2
r`(r) =

R∑
r=1

ξ2
r

(
Î

(r)
N − Ĩ

(r)
M

)2

, (23)

which is a weighted average of the squared errors, with
weights ξ2

r . For instance, we can set ξ2
r ∝ 1hbI(r)

N

i2 if Î(r)
N 6= 0

so that LR is equivalent to a sum of the relative errors, or
simply ξ2

r = 1
R . Note that the loss depends on the chosen

partition, as well as the specific realizations of {xn}Nn=1 and
{sm, âm}Mm=1.

CIS estimator of the marginal likelihood with zero-loss.
In the weighted sample scenario, we have also the estimator
of the marginal likelihood Î

(0)
N = Ẑ = 1

N

∑N
n=1 wn. The

corresponding CIS estimator is Ĩ(0)
M = Z̃CIS = Ẑ shown in

Eq. (20), so that

`(0) =
(
Ĩ

(0)
M − Ẑ

)2

=
(
Z̃CIS − Ẑ

)2

= 0. (24)

Namely, using CIS, we always recover the IS estimator of
the marginal likelihood, without any loss.

Further considerations. We can express Î
(r)
N as a convex

combination as partial MC estimators Î(r)
Jm

=
∑Jm

j=1 γ̄m,j x̃
r
m,j

considering only the samples in Xm where γ̄m,j = 1
Jm

for
CUS, whereas γ̄m,j = 1

Jm
bZm

π(exm,j)
q(exm,j) for CIS. Namely, we

can write (see Table II for recalling the notation)

Î
(r)
N =

N∑
n=1

β̄nx
r
n =

M∑
m=1

Jm∑
j=1

β̄m,j x̃
r
m,j , (25)

=
M∑
m=1

âm

Jm∑
j=1

γ̄m,j x̃
r
m,j =

M∑
m=1

âmÎ
(r)
Jm
, (26)

where, in the first line, we have changed the representation
from Stot = {xn}Mn=1 = ∪Mm=1Sm to the equivalent rep-
resentation {Sm}Mm=1, with Sm = {x̃m,j}Mm=1. Note that,
the equality β̄m,j = âmγ̄m,j holds (see Table II). Therefore,
considering the loss at the r-th moment `(r), we have

`(r) =
(
Î

(r)
N − Ĩ

(r)
M

)2

(27)

=

 M∑
m=1

âm

Jm∑
j=1

γ̄m,j x̃
r
m,j −

M∑
m=1

âms
r
m

2

(28)

=

 M∑
m=1

âm

 Jm∑
j=1

γ̄m,j x̃
r
m,j − srm

2

(29)

=

(
M∑
m=1

âmem(r)

)2

, (30)

where em(r) =
∑Jm

j=1 γ̄m,j x̃
r
m,j − srm. This motivates an

adaptive procedure for building a good partition, as we present
in Section IV-D.

7

B. Deterministic compression schemes

The CUS and CIS approaches described above choose
randomly one summary particle in each sub-regions Xm (by a
resampling step), based on the stratification idea. In the same
fashion of the deterministic rules and sigma-point construction
discussed in Section II-D, we can set

sm =
Jm∑
j=1

γ̄m,jx̃m,j ≈ Eπ[X ∈ Xm], (31)

where we recall γ̄m,j = 1
Jm

for CUS, whereas γ̄m,j =
1

Jm
bZm

π(exm,j)
q(exm,j) for CIS. Note that, with this choice of the

summary particles, we have

`(1) = 0, (32)

as shown in Appendix A. Moreover, with the choice sm in
Eq. (31) and r even, note that em(r) = varbπm

[
X

r
2
]
, i.e.,

em(r) is the variance with respect to particle approximation
π̂m(x) =

∑Jm

j=1 γ̄m,jδ(x− x̃m,j), hence

`(r) =

(
M∑
m=1

âmvarbπm

[
X

r
2
])2

, with r even. (33)

The choice in Eq. (31) is interesting since it provides a very
good performance (see Section VI) and also it resembles a
deterministic quadrature rule with weighted nodes (it can be
interpreted an approximate sigma-point construction [20, 44]).
Zero-loss compression. Furthermore, if we are interested only
in one specific moment h(x) of π̄, it is convenient to apply
C-MC with the following summary particles

sm =
Jm∑
j=1

γ̄m,jh(x̃m,j) ≈ Eπ̄[h(X) ∈ Xm], (34)

as highlighted by the theorem below.

Theorem 1. If sm as in Eq. (34) is chosen, for m = 1, ...,M ,4

we have ĨM = ÎN , i.e., zero-compression loss.

See Appendix A for the proof. Therefore, if we are
interested in only one specific moment of π̄(x), we can
obtain a perfect compression choosing the summary particles
as in Eq. (34). Table II provides a list of the different weights
used in this work.

C. Compression by kernel density estimation

In Eq. (14), we can replace the delta functions with Gaussian
kernels N (x|sm,Σm), of mean sm and with a dX × dX
covariance matrix Σm the dX × dX obtained by an empirical
estimation considering the samples in Xm, i.e.,

Σm =
Jm∑
j=1

γ̄m,j(x̃m,j − sm)(x̃m,j − sm)>, (35)

4Note that in this case sm ∈ R is a scalar value since, for simplicity, we
have assumed h(x) : RdX → R, instead of the more general assumption
h(x) : RdX → Rs with s ≥ 1. All the considerations are also valid for
s ≥ 1.

where sm is defined in Eq. (31). Hence, in this case, we have

π̃(M)(x) =
M∑
m=1

âmN (x|sm,Σm). (36)

Recalling, âm = am

W and W =
∑M
m=1 am, in this scenario,

the M triplets {am, sm,Σm}Mm=1 must be transmitted in the
central node. In this case, the transmission of M(d2

X+dX+1)
scalar values are required, i.e., Md2

X more values than with
the C-MC particle approximation.

D. Choice of the partition

In this section, we discuss some examples of practical
choices of the partition, and then a possible adaptive proce-
dure. Given the N samples xn = [xn,1, ..., xn,dX

]> ∈ D ⊆
RdX , with n = 1, ..., N . Then, we list three practical choices
from the simplest to the more sophisticated strategy:

P1 Random grid, where each component of the elements of
the grid are contained within the intervals min

n=1,...,N
xn,i

and max
n=1,...,N

xn,i, for each i = 1, ..., dX .

P2 Uniform deterministic grid, where each component of the
elements of the grid are contained within the intervals

min
n=1,...,N

xn,i and max
n=1,...,N

xn,i, for each i = 1, ..., dX .

P3 Voronoi partition obtained by a clustering algorithm with
M clusters (e.g., the well-known k-means algorithm).

Adaptive procedure. Set t = 0 and choose an initial
partition P0 = {X1,X2, ...,XM0} of the domain D, with
M0 = |P0| disjoint sub-regions, obtained with the approach
P2, for instance. Decide also the stopping condition, choosing
a maximum number of sub-regions Mmax < N or a threshold
for the loss L. Therefore, while Mt ≤ Mmax or LR ≥ L
(where LR is computed as in Eq. (23)), split the m∗-th sub-
region, with

m∗ = arg max
m

R∑
r=1

ξrâmem(r). (37)

Repeat the procedure above until achieve the desired stopping
condition is reached. Recall that we define as proper any
partition rule such that when M = N , then sm = x̃m = xn
and âm = β̄n (note that m = n in this case), i.e., in the
limit case with M = N we consider all the MC samples as
summary samples.
Unweighted CUS particles. We can choice a partition such
that the CUS weights, âm, are equals. Indeed, if the partition
is chosen such that Jm = M

N for all m, then âm = 1
M . In this

case, the partition is related to the empirical quantiles of the
target distribution and we can interpret the C-MC particles as
an approximate quasi-Monte Carlo (QMC) samples. Indeed,
as the number of MC samples N grows, the distribution of
the nodes sm follows the definition of low-discrepancy [39].
Furthermore, since âm = 1

M for all m then, in a distributed
scenario, the transmission of summary weights can be avoided:
the only information still required is the aggregated weight
W = N , as we show in the next section. However, we recall
that the performance in terms of information loss (see Section

8

IV-A) depends also to the empirical variance σ̂2
m, or more

generally em(r), of each sub-region.

V. APPLICATION TO DISTRIBUTED INFERENCE

In this section, we consider L independent computational
nodes where the Monte Carlo computation is performed in
parallel. Moreover, we consider a central node where the trans-
mitted local information is properly combined, as represented
in Figure 1. We distinguish three different scenarios. In the
first one, from now on referred as parallel framework, the
same dataset y ∈ RdY and the same model is shared by
all the local nodes. Thus, all the L nodes address the same
inference problem, i.e., they deal with the same posterior
density. In the second scenario, referred as model selection
case, all the nodes have accessed to the entire dataset y, but
each local node considers a different possible model (differ-
ent likelihood and/or prior functions), hence they deal with
different posteriors. The third case is the distributed scenario,
where the observed data are divided over the L local nodes,
y = [y1, ...yL]>. Hence, each node addresses a different sub-
posterior density which considers only a subset of the data,
y` ∈ Rd` (note that

∑L
`=1 d` = dY). In these frameworks,

a particle compression is often required for reducing the
computational and the transmission cost. Below, we develop
the three frameworks.
Parallel framework. We assume the use of N` particles
{x(`)

n }N`
n=1 in each local node. First of all, we consider the

transmission of all the particles of the central node, without
any compression. In this case, the complete Monte Carlo
approximation with N =

∑L
`=1N` particles can be expressed

as

π̂
(N)
tot (x) =

L∑
`=1

W`∑N`

j=1Wj

N∑̀
n=1

β̄(`)
n δ(x− x(`)

n) (38)

=
L∑
`=1

ρ̄` π̂
(N`)
` (x), (39)

where ρ̄` = W`PN`
j=1Wj

, and β̄(`)
n = 1

N`
, W` = N` in the case of

unweighted samples, or β̄(`)
n = 1

N`
bZ(`)

π(x(`)
n)

q(x
(`)
n)

, W` = N`Ẑ
(`) in

the case of weighted samples. Therefore, the complete Monte
Carlo approximation π̂

(LN)
tot (x) is a convex combination of

the L local particle approximations π̂(N`)
` (x). If we apply a

compression scheme transmitting M` < N` samples, π̃(M`)
` (x)

as in Eq. (14) or (36), then the joint particle approximation in
the central node is

π̃
(M)
tot (x) =

L∑
`=1

ρ̄` π̃
(M`)
` (x). (40)

with M =
∑L
`=1M`. We aim to have a small loss of

information between the particle approximations, π̃(M)
tot and

π̂
(N)
tot . In [3, 42, 47, 30], the bootstrap strategy described in

Section II-D is applied for the compression. In the numerical
experiments, we compare the performance of this strategy with
the C-MC approach.
Model Selection framework. The model selection application

is an extension of the parallel framework. Indeed, all the
nodes process the entire set of data y, but each local node
considers a different possible model M`, hence they address
different posterior distributions π̄(x|y,M`). In order to tackle
this problem, based on the Bayesian Model Averaging (BMA)
approach, we need an estimation of the marginal likelihood
of each model Ẑ(`) (e.g., see [46, 33]). For this reason,
it is preferable to apply an IS scheme where an estimator
of the marginal likelihood is easily provided. The equations
are the same of the previous parallel scenario, i.e., we have
π̂

(N)
tot (x) =

∑L
`=1

N`
bZ(`)PL

k=1Nk
bZ(k) π̂

(N`)
` (x) without compression,

and π̃
(M)
tot (x) =

∑L
`=1

N`
bZ(`)PL

k=1Nk
bZ(k) π̃

(M`)
` (x), with compres-

sion. In this scenario, ρ̄` = N`
bZ(`)PL

k=1Nk
bZ(k) , for ` = 1, ..., L,

represents an approximation of the posterior probability mass
function (pmf) of the model given the data, i.e., p(M`|y).
Distributed framework. For the sake of simplicity, let us
consider N` = N

L and M` = M
L , for all ` = 1, ..., L. In this

case, all the nodes consider the same model as in the parallel
scenario, but each local node can process only a portion of the
observed data, y` ∈ Rd` , with

∑L
`=1 d` = dY . Considering a

disjoint subsets of data and a split contribution of the prior as
in [38], the complete posterior can be factorized as

π̄tot(x) ∝
L∏
`=1

π̄`(x). (41)

In different works [38, 45], local approximations of the sub-
posteriors are provided and transmitted to the central node,
obtaining

π̂
(N)
tot (x) ∝

L∏
`=1

π̂
(N`)
` (x). (42)

The simplest approach considers Gaussian local approxima-
tions [38, 45]. A more sophisticated approach proposed in [38,
Section 3.2] considers a mixture of Gaussian pdfs as KDE
local approximation using all the N` = N

L samples in each
node, i.e.,

π̂
(N`)
` (x) =

N∑̀
n=1

β̄(`)
n N (x|x(`)

n , δI), (43)

with δ > 0 and I is a dX × dX identity matrix. It is
easy to see that π̂

(N)
tot (x) in Eq. (42) can be expressed

as a mixture of NL
` Gaussian components [38, 18]. It is

possible to draw from this mixture, but clearly the cost
depends of the number of NL

` components [18]. Therefore,
here the advantage of using a compressed local mixture,
π̃(M`)(x) =

∑M`

m=1 âmN (x|sm,Σm) with M` < N`, is even
more apparent than in the parallel scenarios described above.
Indeed, using C-MC, we obtain π̂

(M)
tot (x) ∝

∏L
`=1 π̃

(M`)
` (x),

that can be expressed as a mixture of ML
` Gaussian pdfs

[38, 18].

VI. NUMERICAL EXPERIMENTS

In the section, we test the proposed C-MC techniques and
compare the performance with the corresponding benchmark
scheme, i.e., the bootstrap solution proposed in [3] and also

9

used in [42, 35, 47, 30]. In the first experiment, we apply the
compression techniques to two sets of Monte Carlo samples.
In the second experiment, we consider a localization problem
in a wireless sensor network and the use of L local processors.

A. First numerical analysis

Let us consider for simplicity the case of x ∈ R. Moreover,
we consider two possible target densities: the first one is a
Gamma pdf

π̄(x) ∝ xα−1 exp
(
−x
κ

)
, (44)

with α = 4 and κ = 0.5, and the second one is a mixture of
two Gaussians,

π̄(x) =
1
2
N (x| − 2, 1) +

1
2
N (x|4, 0.25). (45)

Experiments. We generate N = 105 Monte Carlo samples
from both and compare the bootstrap strategy (BS) with differ-
ent C-MC schemes. More specifically, we consider two kind of
partition procedures: random (P1) and uniform (P2) described
in Section IV-D. Furthermore we compare the stochastic
and the deterministic choices of the summary particles sm
described in Section III. Therefore, for the deterministic C-
MC we refer to the use of Eq. (31) for sm. We repeat the
experiment 500 independent runs and average the results. At
each run, we compute the loss L5 with ξ2

r = 1, for r = 1, ..., 5
(i.e., the loss in the first 5 moments) provided by the different
techniques. Figure 3 depicts the averaged L5 as function of
the number M of summary particles. Figure 3-(a) refers to
the Gamma target pdf, whereas Figure 3-(b) corresponds to
the Gaussian mixture pdf. The results of the BS method are
displayed with triangles. The stochastic C-MC schemes are
shown with dashed lines, whereas the deterministic C-MC
schemes with solid lines.
Discussion. In all cases, C-MC outperforms BS and the de-
terministic C-MC schemes provide the better results. Clearly,
the partition P2 (depicted with circles) outperforms P1 (shown
with squares). Note that P1 represents the simplest and perhaps
the worst possible construction of the partition. However, it is
important to remark that the C-MC schemes, even with P1,
outperform the BS method.

B. Localization in a sensor network with Parallel AIS schemes

In this section, we test the C-MC technique considering the
problem of positioning a target in R2 using a range measure-
ments in a wireless sensor network [14, 17]. Specifically, the
target position is modeled as a random vector X = [X1, X2]>,
hence the actual position of the target is a specific realization
X = x. The data (range measurements) are obtained from
3 sensors located at h1 = [3,−8]>, h2 = [10, 0]>, h3 =
[0, 10]>, as shown in Figure 4-(d). The likelihood function is
induced by the following observation model,

Yj = 20 log (||x− hj ||) +Bj , j = 1, 2, 3, (46)

where Bj ∼ N (bj ; 0, λ2
j). We consider the true position of the

target as x∗ = [x∗1 = 2.5, x∗2 = 2.5]> and set λj = 6. Then,
we generate one measurement yj from each sensor according

0 100 200 300 400 500
M

10-6

10-4

10-2

100

102

104

106
BS
C-MC P2
C-MC P1
Det C-MC P2
Det C-MC P1

(a) Gamma target pdf

0 100 200 300 400 500
M

10-5

100

105

BS
C-MC P2
C-MC P1
Det C-MC P2
Det C-MC P1

(b) Mixture target pdf

Figure 3. The loss L5 as function of M . The results obtained by the bootstrap
strategy [3, 42, 30] in Section II-D is depicted with a solid line and rhombuses.
The results of C-MC with a random partition (P1) and with a grid partition
(P2) are shown by squares and circles, respectively. The results obtained with
the deterministic choice of sm in Eq. (31) are shown with solid lines (squares
and circles), whereas the results random choice of sm are provided with
dashed lines (squares and circles).

to the model in Eq. (46), obtaining the vector y = [y1, y2, y3].
Assuming a uniform prior in the rectangle Rz = [−30, 30]2,
then the posterior density is

π̄(x) ∝

"
3Y

j=1

exp

„
− 1

2λ2
j

(yj − 20 log (||z− hj ||)2
«#

IRz (x), (47)

where IRz
(x) is an indicator function that is 1 if x ∈ Rz ,

otherwise is 0.
Parallel setup. We assume L local computational nodes. At
each one, we run an adaptive importance sampler, specifically
a standard Population Monte Carlo (PMC) scheme [7]. Each
PMC delivers N` weighted samples as an approximation of the
posterior of Eq. (47), after a certain number of iterations [5].
Therefore, we have π̂(N`)

` local approximations of N` particles.
In this setting, we have a clear improvement in term of
computational times since L different PMC algorithms are run
in parallel. When all the samples are transmitted to the central
node, we obtain a complete particle approximation π̂(N)

tot as in

10

Eq. (38) with N =
∑L
`=1N` (we set N` = N

L). However, in
general due to the transmission cost, a particle compression is
applied. In this case, we have L local approximations π̃(M`)

` ,
and the central node performs the fusion obtaining π̃

(M)
tot as

in Eq. (40) with M =
∑L
`=1M` (we set M` = M

L). We
measure the quality of the approximation π̃(M)

tot computing the
loss (i.e., mean square error) in the estimation of the mean
vector, the covariance matrix, skewness, and kurtosis vectors
(i.e., overall 9 scalar values) with respect to π̂(N)

tot . We compare
the bootstrap strategy (BS) suggested in [3, 42, 47, 30] and
C-MC. For building the partition for C-MC, in each local
node we perform a k-means clustering with M` clusters (the
clustering is applied after resampling N` times the weighted
particles given by PMC). Thus, the partition is given by the
M` Voronoi regions. Then, we consider again the weighted
samples produced by the PMC and build the summary weights
âm and summary samples sm for each Voronoi region. We
average the results over 200 independent runs.
Experiments. We set L = 10. The losses of BS (triangles) and
C-MC (circles) for different values of M` and N` are depicted
in Figures 4 (a)-(b)-(c). More specifically, in Figure 4-(a) we
set N` = 1000 and vary M`. In Figure 4-(b), we vary M
keeping fixed the compression rate η = N`

M`
= 100, i.e., when

M` grows also N` is increased. Finally, in Figure 4-(c), we
set M` = 10, and vary N`.
Discussion. First of all, we can observe that C-MC always
outperforms BS providing the small loss in any scenario.
The increase of M` has always a positive impact as shown
in Figures 4-(a)-(b). In Figure 4-(c), the compression rate
η = N`

M`
is increasing since M` is fixed and N` grows, so that

we expect that the performance should become worse as N`
grows. However, in a first moment, the increase of N` helps
both schemes, C-MC and BS, since a better partition can be
build with a greater N` in C-MC by clustering, and the resam-
pling steps used in bootstrap improves its performance with a
greater N` in BS. Moreover, in this scenario, the increase of
N` seems to have more positive impact in the BS technique.
However, Figure 4-(b) shows that, if the compression rate
η = N`

M`
is maintained fixed, then C-MC obtains a better

improvement. Figure 4-(d) depicts the wireless sensor network
and the contour plot of the posterior pdf. Additionally, one run
of C-MC with M` = 15 is shown with circles. The size of the
circles is proportional to the corresponding summary weight.

VII. CONCLUSIONS

In this work, we have introduced a novel efficient scheme
for summarizing the information provided by Monte Carlo
sampling algorithms. This problem is related to the moment
matching approach used in different filtering methods but
applicable only for certain target pdfs. The proposed technique
is particularly useful in a distributed Bayesian inference frame-
work. Furthermore, the proposed C-MC methodology can be
applied within advanced filtering schemes and adaptive Monte
Carlo methods, for designing efficient proposal pdfs or used it
as an alternative resampling procedure. An analysis of C-MC
and different variants have been discussed and derived.
The C-MC proposed schemes have been tested in two numer-

ical experiments. In the first example, we have considered two
different target densities. In the second numerical analysis, we
have considered a localization problem in a wireless sensor
network. The inference is performed by using a distributed
framework with L local processors. The results have shown
that C-MC techniques always outperform the corresponding
benchmark methods. The deterministic C-MC scheme appears
particularly efficient. Note that it can be also interpreted as an
approximate sigma-point approach. We plan to study further
and exploit this connection as future research line.

REFERENCES

[1] I. Arasaratnam and S. Haykin. Cubature Kalman filters.
IEEE Transactions on Automatic Control, 54(6):1254–
1269, 2009.

[2] M. S. Arulumpalam, S. Maskell, N. Gordon, and
T. Klapp. A tutorial on particle filters for on-
line nonlinear/non-Gaussian Bayesian tracking. IEEE
Transactions Signal Processing, 50(2):174–188, Febru-
ary 2002.

[3] M. Bolić, P. M. Djurić, and S. Hong. Resampling al-
gorithms and architectures for distributed particle filters.
IEEE Transactions Signal Processing, 53(7):2442–2450,
2005.

[4] C. J. Bordin and M. G. S. Bruno. Consensus-based dis-
tributed particle filtering algorithms for cooperative blind
equalization in receiver networks. IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 3968–3971, 2011.

[5] M. F. Bugallo, V. Elvira, L. Martino, D. Luengo,
J. Miguez, and P. M. Djuric. Adaptive importance
sampling: The past, the present, and the future. IEEE
Signal Processing Magazine, 34(4):60–79, 2017.

[6] O. Cappé, R. Douc, A. Guillin, J. M. Marin, and C. P.
Robert. Adaptive importance sampling in general mixture
classes. Statistics and Computing, 18:447–459, 2008.

[7] O. Cappé, A. Guillin, J. M. Marin, and C. P. Robert.
Population Monte Carlo. Journal of Computational and
Graphical Statistics, 13(4):907–929, 2004.

[8] M. Cetin, L. Chen, J. W. Fisher III, A. T. Ihler, R. L.
Moses, M. J. Wainwright, and A. S. Willsky. Distributed
fusion in sensor networks. IEEE Signal Processing
Magazine, 23(4):56–69, July 2006.

[9] W. Ye Chen, L. Mackey, J. Gorham, F. X. Briol, and
C. J. Oates. Stein Points. arXiv:1803.10161, pages 1–
31, 2018.

[10] Y. Chen, M. Welling, and A. Smola. Super-samples from
kernel herding. In Proceedings of the 26th Conference on
Uncertainty in Artificial Intelligence, pages 1–8, 2010.

[11] P. M. Djuric, T. Lu, and M. F. Bugallo. Multiple particle
filtering. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 1181–
1184, 2007.

[12] P. Fearnhead. Using random Quasi-Monte Carlo within
particle filters, with application to financial time se-
ries. Journal of Computational and Graphical Statistics,
14(4):751–769, 2005.

11

0 50 100 150 200
10-3

10-2

10-1

100

101

(a)

5 10 15 20 25 30 35 40 45 50
10-3

10-2

10-1

100

101

(b)

0 200 400 600 800 1000
10-2

10-1

100

101

(c)

-4 -2 0 2 4 6 8 10 12
x1

-10

-5

0

5

10

x 2

Sensor-1

Sensor-2

Sensor-3

(d)

Figure 4. (a)-(b)-(c) Results in terms of information loss for the localization problem in wireless sensor network: C-MC is shown with circles and the
bootstrap strategy with triangles. (d) The wireless sensor network and the contour plot of the posterior target pdf. One run of C-MC is shown with circles,
M` = 15. The size of the circles is proportional to the corresponding summary weight.

[13] M. Gerber and N. Chopin. Sequential quasi Monte
Carlo. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 77(3):509–579, 2015.

[14] R. P. Guan, B. Ristic, L. Wang, and R. Evans. Monte
Carlo localisation of a mobile robot using a Doppler-
Azimuth radar. Automatica, 97:161 – 166, 2018.

[15] P. Hennig and R. Garnett. Exact sampling from deter-
minantal point processes. arXiv:1609.06840, pages 1–9,
2016.

[16] F. Huszár and D. Duvenaud. Optimally-weighted herding
is Bayesian quadrature. Proceedings of the Twenty-
Eighth Conference on Uncertainty in Artificial Intelli-
gence (UAI-12), pages 377–386, 2012.

[17] A. T. Ihler, J. W. Fisher, R. L. Moses, and A. S. Willsky.
Nonparametric belief propagation for self-localization of
sensor networks. IEEE Transactions on Selected Areas
in Communications, 23(4):809–819, April 2005.

[18] A. T. Ihler, E. B. Sudderth, W. T. Freeman, and A. S.
Willsky. Efficient multiscale sampling from products
of Gaussian Mixtures. Advances in Neural Information
Processing Systems (NIPS), pages 1–8, 2004.

[19] M. E. Johnson, L. M. Moore, and D. Ylvisaker. Minimax

and maximin distance design. Journal of Statistical
Planning and Inference, 26(2):131–148, 1990.

[20] S. J. Julier and J. Uhlmann. Unscented filtering and non-
linear estimation. Proceedings of the IEEE, 92(2):401–
422, March 2004.

[21] J. Kotecha and Petar M. Djurić. Gaussian sum par-
ticle filtering. IEEE Transactions Signal Processing,
51(10):2602–2612, October 2003.

[22] S. Lacoste-Julien, F. Lindsten, and F. Bach. Sequential
kernel herding: Frank-Wolfe optimization for particle
filtering. In Proceedings of the 26th Conference on
Uncertainty in Artificial Intelligence, page 544552, 2015.

[23] S. H. Lee and M. West. Convergence of the markov chain
distributed particle filter (mcdpf). IEEE Transactions on
Signal Processing, 61(4):801–812, 2013.

[24] T. Li, T. P. Sattar, and S. Sun. Deterministic resampling:
Unbiased sampling to avoid sample impoverishment in
particle filters. Signal Processing, 92(7):1637–1645,
2012.

[25] J. S. Liu. Monte Carlo Strategies in Scientific Computing.
Springer, 2004.

[26] D. Luengo and L. Martino. Fully adaptive Gaussian

12

mixture Metropolis-Hastings algorithm. Proceedings of
IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), 2013.

[27] P. LEcuyer. Efficiency improvement and variance re-
duction. In Proceedings of the 1994 Winter Simulation
Conference, pages 122–132, 1994.

[28] S. Mak and V. R. Joseph. Projected support points:
a new method for high-dimensional data reduction.
arXiv:1708.06897, pages 1–48, 2018.

[29] S. Mak and V. R. Joseph. Support points. (to appear) An-
nals of Statistics, arXiv:1609.01811, pages 1–55, 2018.

[30] L. Martino, V. Elvira, and G. Camps-Valls. Group
Importance Sampling for Particle Filtering and MCMC.
Digital Signal Processing, 82:133–151, 2018.

[31] L. Martino, V. Elvira, and F. Louzada. Weighting a
resampled particle in Sequential Monte Carlo. IEEE
Statistical Signal Processing Workshop, (SSP), 122:1–5,
2016.

[32] L. Martino, V. Elvira, D. Luengo, and J. Corander. An
adaptive population importance sampler: Learning from
the uncertanity. IEEE Transactions on Signal Processing,
63(16):4422–4437, 2015.

[33] L. Martino, J. Read, V. Elvira, and F. Louzada. Cooper-
ative parallel particle filters for on-line model selection
and applications to urban mobility. Digital Signal Pro-
cessing, 60:172–185, 2017.

[34] L. A. Úbeda Medina. Robust techniques for multiple
target tracking and fully adaptive radar. Phd Thesis,
Universidad Politecnica de Madrid (UPM), pages 1 –
254, 2018.

[35] J. Mı́guez and M. A. Vázquez. A proof of uniform
convergence over time for a distributed particle filter.
Signal Processing, 122:152–163, 2016.

[36] A. Mohammadi and A. Asif. Distributed particle fil-
ter implementation with intermittent/irregular consensus
convergence. IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 61:2572–
2587, 2013.

[37] A. Mohammadi and A. Asif. Diffusive particle filtering
for distributed multisensor estimation. IEEE Interna-
tional Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pages 3801–3805, 2016.

[38] W. Neiswanger, C. Wang, and E. Xing. Asymptotically
exact, embarrassingly parallel MCMC. arXiv:1311.4780,
2013.

[39] H. Niederreiter. Random Number Generation and Quasi-
Monte Carlo Methods. Society for Industrial Mathemat-
ics, 1992.

[40] A. Owen. Monte Carlo theory, methods and examples.
http://statweb.stanford.edu/∼owen/mc/, 2013.

[41] Luc Pronzato. Minimax and maximin space-filling de-
signs: some properties and methods for construction.
Journal de la Societe Franaise de Statistique, Societe
Franaise de Statistique et Societe Mathematique de
France, 158(1):7–36, 2017.

[42] J. Read, K. Achutegui, and J. Mı́guez. A distributed
particle filter for nonlinear tracking in wireless sensor
networks. Signal Processing, 98:121 – 134, 2014.

[43] C. P. Robert and G. Casella. Monte Carlo Statistical
Methods. Springer, 2004.

[44] S. Särkkä. Bayesian Filtering and Smoothing. Cambridge
University Press, 2013.

[45] Steven L. Scott, Alexander W. Blocker, Fernando V.
Bonassi, Hugh A. Chipman, Edward I. George, and
Robert E. McCulloch. Bayes and big data: The con-
sensus Monte Carlo algorithm. International Journal
of Management Science and Engineering Management,
11(2):78–88, 2016.

[46] I. Urteaga, M. F. Bugallo, and P. M. Djurić. Sequential
Monte Carlo methods under model uncertainty. In
2016 IEEE Statistical Signal Processing Workshop (SSP),
pages 1–5, 2016.

[47] C. Verg, C. Dubarry, P. Del Moral, and E. Moulines. On
parallel implementation of sequential Monte Carlo meth-
ods: the island particle model. Statistics and Computing,
25(2):243–260, 2015.

[48] J. R. Wilson. Variance reduction techniques for digital
simulation. American Journal of Mathematical and
Management Sciences, 4(3):277–312, 1984.

[49] Y. Wu, D. Hu, M. Wu, and X. Hu. A numerical-
integration perspective on Gaussian filters. IEEE Trans-
actions on Signal Processing, 54(8):2910–2921, 2006.

APPENDIX A
ZERO-LOSS COMPRESSION FOR A SPECIFIC INTEGRAL I

We have stated in Theorem 1 that, with the choice sm =∑Jm

j=1 γ̄m,jh(x̃m,j) in (34), we have ĨM ≡ ÎN , for a specific
h(x). It is straightforward to see it, for the special case in Eq.
(31), when h(x) is a linear function. In the case of CUS, we
have

ĨM =
M∑
m=1

âmsm =
M∑
m=1

Jm
N
sm (48)

=
1
N

M∑
m=1

Jm

 Jm∑
j=1

γ̄m,jh(x̃m,j)

 (49)

=
1
N

M∑
m=1

Jm

 Jm∑
j=1

1
Jm

h(x̃m,j)

 = ÎN . (50)

Whereas, for CIS, we have

ĨM =
M∑
m=1

âmsm =
M∑
m=1

JmẐm

NẐ
sm (51)

=
M∑
m=1

JmẐm

NẐ

 Jm∑
j=1

γ̄m,jh(x̃m,j)

 (52)

=
M∑
m=1

JmẐm

NẐ

 Jm∑
j=1

1

JmẐm

π(x̃m,j)
q(x̃m,j)

h(x̃m,j)

=

1

NẐ

M∑
m=1

Jm∑
j=1

π(x̃m,j)
q(x̃m,j)

h(x̃m,j) (53)

=
1

NẐ

N∑
n=1

π(xn)
q(xn)

h(xn) = ÎN . (54)

13

Table I
MAIN NOTATION OF THE WORK.

x = [x1, . . . , xdX
] Variable of interest, x ∈ D ⊆ RdX

Xm sub-region of the domain, Xm ⊂ D
P partition of D, P = {Xm}Mm=1, with X1 ∪ X2 ∪ ... ∪ XM = D.
π̄(x) Normalized posterior pdf, π̄(x) = p(x|y)
π(x) Unnormalized posterior function, π(x) = Zπ̄(x) ∝ π̄(x)

π̂(N)(x), π̃(N)(x) Particle approximation of the measure of π̄(x) with N samples
xn n-th Monte Carlo sample according to the pdf π̄(x)

x̃m,j j-th Monte Carlo sample within Xm
N Number of Monte Carlo samples
M Number of sub-regions {Xm}Mm=1

Jm Number of Monte Carlo samples within Xm
ÎL, ĨL Estimators of the integral I = Eπ[h(X)], using L samples
Z Normalizing constant of π(x) (marginal likelihood)
Ẑ Estimator of the normalizing constant Z

wn, w̄n Unnormalized and normalized IS weight of n-th sample
β̄n β̄n = 1

N for equally-weighted samples, and β̄n = w̄n for the IS scenario
ām P(X ∈ Xm) =

∫
Xm

π̄(x)dx
sm Summary particle, sm ∈ Xm, of the m-th sub-region Xm
âm Summary weight of m-th summary particle, estimator of ām
W Aggregate weight, associated to the discrete measure {sm, âm}Mm=1

Table II
SUMMARY OF DIFFERENT WEIGHTS AND THEIR RELATIONSHIPS.

Weights CUS CIS Property Description

β̄n
1
N w̄n = 1

N bZ π(xn)
q(xn)

∑N
n=1 β̄n = 1 MC weights

β̄m,j
1
N w̄m,j = 1

N bZ π(exm,j)
q(exm,j)

∑M
m=1

∑Jm

j=1 β̄m,j = 1 MC weights

âm
Jm

N
Jm

bZm

N bZ ∑M
m=1 âm = 1 C-MC weights

am Jm JmẐm
∑M
m=1 am = W unnormalized C-MC weights

γ̄m,j
1
Jm

1

Jm
bZm

π(exm,j)
q(exm,j)

∑Jm

j=1 γ̄m,j = 1 MC weights in Xm

W N NẐ — C-MC aggregated weight

β̄n equiv. to β̄m,j , and β̄m,j = âmγ̄m,j .
âm is an estimator of ām = P(X ∈ Xm).

1

Supplementary Material of
“Compressed Monte Carlo for

Distributed Bayesian Inference”
Luca Martino>, Vı́ctor Elvira∗

> Dep. of Signal Processing, Universidad Rey Juan Carlos (URJC) and Universidad Carlos III de Madrid (UC3M)
∗ IMT Lille Douai, Cité Scientifique, Rue Guglielmo Marconi, 20145, Villeneuve dAscq 59653, (France)

I. BIAS AND VARIANCE OF STRATIFIED ESTIMATORS

Let us consider that Km samples have been drawn from
each sub-region of generic partition of the state space, i.e.,
{sm,k}Km

k=1 ∼ π̄m(x), for m = 1, ...,M . Then, the stratified
estimator and the corresponding approximation are, respec-
tively,

ĨV =
M∑
m=1

ām

[
1
Km

Km∑
i=1

h(sm,i)

]
,

π̃(V)(x) =
M∑
m=1

Km∑
i=1

ām
Km

δ(x− sm,i),

where ām =
∫
Xm

π̄(x)dx = Zm

Z , V =
∑M
m=1Km is the

total number of generated samples. The stratified estimator is
unbiased,

Eπ̄[ĨV] =
M∑
m=1

ām

[∫
Xm

h(x)π̄m(x)dx
]
, (1)

=
M∑
m=1

āmIm = I, (2)

with variance

Varπ̄
[
ĨV

]
=

M∑
m=1

1
Km

ā2
mσ

2
m, (3)

where we have donoted

Im = Eπ̄m
[h(X)] =

∫
Xm

h(x)π̄m(x)dx,

and

σ2
m = varπ̄m

[h(X)] =
∫
Xm

(h(x)− Im)2π̄m(x)dx.

Namely, Im and σ2
m represent respectively the mean and the

variance of the random variable h(X) when X is restricted
within Xm [2, 1, 3]. Note that if Km = K for all m, hence
V = MK, then

Varπ̄
[
ĨV

]
=

1
K

M∑
m=1

ā2
mσ

2
m. (4)

Let us consider a proper partition as defined in the main body
of this work. In this case clearly, if K grows the variance of
ĨV decreases since also the area ām corresponding to each
becomes smaller and smaller.

II. VARIANCE OF THE RANDOM VARIABLE h(X)
Let us recall the definition of the restricted target pdf,

π̄m(x) = 1
ām
π̄(x)IXm(x) = 1

Zm
π(x)IXm(x). An interesting

expression of the variance of the random variable h(X) can
be found, as shown below. Indeed, the variance

σ2 = varπ̄[h(X)] =
∫
D

(h(x)− I)2π̄(x)dx, (5)

can expressed as sum of two terms: the first term considers of
the variances within each the sub-regions,

σ2
m = varπ̄m

[h(X)] =
∫
Xm

(h(x)− Im)2π̄m(x)dx,

Im = Eπ̄m [h(X)] =
∫
Xm

h(x)π̄m(x)dx,
(6)

and the second term considers the variance between the sub-
regions, that is

∑M
m=1 ām(Im − I)2. Namely, we have

σ2 =
M∑
m=1

āmσ
2
m +

M∑
m=1

ām(Im − I)2, (7)

where we have used the equality varπ̄[h(X)] =
Eπ̄[varπ̄m [h(X)]] + varπ̄[Eπ̄m [h(X)]] (e.g., see [2, 3]).
As a consequence, we can also write

σ2 ≥
M∑
m=1

āmσ
2
m. (8)

The result above is valid for any kind of partition.

REFERENCES

[1] J. S. Liu. Monte Carlo Strategies in Scientific Computing.
Springer, 2004.

[2] A. Owen. Monte Carlo theory, methods and examples.
http://statweb.stanford.edu/∼owen/mc/, 2013.

[3] C. P. Robert and G. Casella. Monte Carlo Statistical
Methods. Springer, 2004.

