Classify Positive Integers to Prove Collatz Conjecture by the Mathematical Induction

Zhang Tianshu Zhanjiang city, Guangdong province, China Email: chinazhangtianshu@126.com china.zhangtianshu@tom.com

Abstract

In this article, the author uses the mathematical induction, classifies positive integers gradually, and passes necessary operations by the operational rule to achieve finally the purpose proving Collatz conjecture.

AMS subject classification: 11P32, 11A25 and 11Y55

Keywords: Collatz conjecture, the operational rule, the mathematical induction, classify positive integers, operational routes

1. Introduction

The Collatz conjecture also called the 3x+1 mapping, 3n+1 problem, Hasse's algorithm, Kakutani's problem, Syracuse algorithm, Syracuse problem, Thwaites conjecture and Ulam's problem, etc. Yet it is still both unproved and un-negated a conjecture ever since named after Lothar Collatz in 1937, [1].

2. A Few Bits of Basic Concepts

The Collatz conjecture states that take any positive integer *n*, if *n* is even, divide it by 2 to get n/2; if *n* is odd, multiply it by 3 and add 1 to get 3n+1. Repeat the process indefinitely, then, no matter what positive integer you start with, you will always eventually reach a result of *1*, [2] and [3].

Let us regard aforesaid operational stipulations as the operational rule. Begin with any positive integer or integer's expression to operate by the operational rule continuously, so form successive integers or integer's expressions. We regard such consecutive integers or integer's expressions plus synclastic arrowheads among them as an operational route.

If a positive integer's expression P_{ie} or integer P exists at an operational route, then may term the operational route "an operational route via P_{ie} or P". Generally speaking, integer's expressions at an operational route have a common variable or some variables which can transform into a variable. Two operational routes via P_{ie} branch from P_{ie} or an integer's expression after pass operations of P_{ie} .

3. Judging Criteria and the Classified Proof

27 Nov 2018 09:43:12 EST 2 Alg+NumTh Version 1 - Submitted to Trans. Amer. Math. Soc.

$$4 \rightarrow 2 \rightarrow 1$$
; $17 \rightarrow 52 \rightarrow 26 \rightarrow 13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$; $18 \rightarrow 9 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow 26 \rightarrow 13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$ and
 $19 \rightarrow 58 \rightarrow 29 \rightarrow 88 \rightarrow 44 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow 26 \rightarrow 13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$, get that every positive integer ≤ 19 suits the conjecture.

- (2) Suppose that *n* suits the conjecture, where *n* is an integer ≥ 19 .
- (3) Prove that positive integer n+1 suits the conjecture too.

Before make the proof, it is necessary to prepare judging criteria concerned.

Theorem 1 If an integer's expression at an operational route via integer's expression P_{ie} is smaller than P_{ie} , and that P_{ie} contains n+1, then n+1 suits the conjecture.

For example, if $P_{ie}=31+3^2\eta$, and P_{ie} contains n+1, where $\eta \ge 0$, then from $27+2^3\eta \rightarrow 82+3\times 2^3\eta \rightarrow 41+3\times 2^2\eta \rightarrow 124+3^2\times 2^2\eta \rightarrow 62+3^2\times 2\eta \rightarrow 31+3^2\eta > 27+2^3\eta$, conclude that n+1 suits the conjecture. For another example, if $P_{ie}=5+2^2\mu$, and P_{ie} contains n+1, where $\mu \ge 0$, then from $5+2^2\mu \rightarrow 16+3\times 2^2\mu \rightarrow 8+3\times 2\mu \rightarrow 4+3\mu < 5+2^2\mu$, conclude that n+1 suits the conjecture.

Proof · Suppose that there is an integer's expression C_{ie} at an operational route via P_{ie} , and $C_{ie} < P_{ie}$.

Since P_{ie} and C_{ie} exist at an operational route, and $C_{ie} < P_{ie}$, then, when their common variable equals some fixed value such that $P_{ie}=n+1$, let $C_{ie}=$ integer *m*, so it has m < n+1. Undoubtedly operations of n+1 can pass operations of *m* at the operational route via n+1 to reach 1, because each and every positive integer < n+1 was supposed to suit the conjecture. **Lemma 1'** If an integer's expression or an integer at an operational route suits the conjecture, then each and every integer's expression or each and every integer at the operational route suits the conjecture too.

Theorem 2. If an operational route via integer's expression Q_{ie} and an operational route via integer's expression P_{ie} intersect, and that an integer's expression at the operational route via Q_{ie} is smaller than P_{ie} , in addition P_{ie} contains n+1, then n+1 suits the conjecture, where $P_{ie} \neq Q_{ie}$.

For example, $P_{ie}=95+3^2\times 2^7\varphi$, and P_{ie} contains n+1, where $\varphi \ge 0$, then from $95+3^2\times 2^7\varphi \longrightarrow 286+3^3\times 2^7\varphi \longrightarrow 143+3^3\times 2^6\varphi \longrightarrow 430+3^4\times 2^6\varphi \longrightarrow 215+3^4\times 2^5\varphi \longrightarrow 646+3^5\times 2^5\varphi$ $\rightarrow 323+3^5\times 2^4\varphi \longrightarrow 970+3^6\times 2^4\varphi \longrightarrow 485+3^6\times 2^3\varphi \longrightarrow 1456+3^7\times 2^3\varphi \longrightarrow 728+3^7\times 2^2\varphi \longrightarrow$ $364+3^7\times 2\varphi \longrightarrow 182+3^7\varphi \longrightarrow \dots$

 $\uparrow 121+3^6 \times 2\varphi \leftarrow 242+3^6 \times 2^2\varphi \leftarrow 484+3^6 \times 2^3\varphi \leftarrow 161+3^5 \times 2^3\varphi \leftarrow 322+3^5 \times 2^4\varphi \leftarrow 107+3^4 \times 2^4\varphi \leftarrow 214+3^4 \times 2^5\varphi \leftarrow 71+3^3 \times 2^5\varphi < 95+3^2 \times 2^7\varphi, \text{ conclude that } n+1 \text{ suits the conjecture.}$

Proof · Suppose that there is an integer's expression D_{ie} at an operational route via Q_{ie} and $D_{ie} < P_{ie}$, in addition the operational route via Q_{ie} and an operational route via P_{ie} intersect at A_{ie} .

When their common variable equals some fixed value such that $P_{ie}=n+1$, let D_{ie} =integer μ , and A_{ie} =integer ξ , so it has $\mu < n+1$. Then, operations of ξ can pass operations of μ at the operational route via ξ to reach 1 according to Lemma 1. Like that, operations of n+1 can pass operations of ξ at the operational route via n+1 to reach 1.

Lemma 2. If an operational route via integer's expression Q_{ie} and an

operational route via integer's expression P_{ie} are at indirect connection, and that an integer's expression at the operational route via Q_{ie} is smaller than P_{ie} , in addition P_{ie} contains n+1, then n+1 suits the conjecture.

What is called the indirect connection? Such as an operational route via Q_{ie} intersects an operational route via R_{ie} , and the operational route via R_{ie} intersects an operational route via P_{ie} , yet the operational route via Q_{ie} intersects not the operational route via P_{ie} , then the operational route via Q_{ie} and the operational route via P_{ie} are at the indirect connection.

Lemma 3 \cdot If an integer's expression at an operational route suits the conjecture, then each and every integer's expression at every operational route that intersects directly the operational route and connects indirectly with the operational route suits the conjecture.

For example, on the supposition that integer's expression C_{ie} at an operational route via integer's expression A_{ie} suits the conjecture, if the operational route via A_{ie} and an operational route via integer's expression B_{ie} intersect on integer's expression X_{ie} , then X_{ie} suits the conjecture according to Lemma 1; like the reason, each and every integer's expression at the operational route via B_{ie} suits the conjecture.

If the operational route via A_{ie} and an operational route via integer's expression P_{ie} are at indirect connection, then each and every integer's expression at the operational route via P_{ie} suits the conjecture, as long as apply continuously aforementioned way of doing the thing, in line for.

By now, let us set to prove the Collatz conjecture progressively, ut infra.

Proof · According to fore-prepared theorems and lemmas, on balance, must classify positive integers, then find out a relation between each class which possibly contains n+1 and another class which is smaller than the former, to prove that n+1 suits the conjecture.

It is well known that positive integers are divided into positive even numbers and positive odd numbers.

For even numbers 2k with $k \ge l$, from $2k \rightarrow k < 2k$, conclude that if $n+l \in 2k$, then n+l suits the conjecture according to Theorem 1.

Secondly, for all unproved positive odd numbers, divide them into two genera, i.e. 5+4k and 7+4k, where $k \ge 4$.

For 5+4k, from $5+4k \rightarrow 16+12k \rightarrow 8+6k \rightarrow 4+3k < 5+4k$, conclude that if $n+1 \in 5+4k$, then n+1 suits the conjecture according to Theorem 1.

Also divide 7+4k into 3 sorts, i.e. 15+12c, 19+12c and 23+12c, where $c \ge 0$.

For 23+12c, from $15+8c \rightarrow 46+24c \rightarrow 23+12c < 15+8c$, conclude that if $n+1 \in 23+12c$, then n+1 suits the conjecture according to Theorem 1.

For 15+12c and 19+12c when c=0, they were proved to suit the conjecture fore. So only need us to prove 15+12c and 19+12c where $c\geq 1$. For 15+12c and 19+12c where $c\geq 1$, we will operate them right along, so that expound the relation that they act in accordance with fore-prepared several judging criteria.

Firstly, operate 15+12c by the operational rule successively, as follows.

d=2e+1: 29+27e (1) e=2f: 142+486f→71+243f ♥ $A35+27c\downarrow \rightarrow c=2d+1: 31+27d\uparrow \rightarrow d=2e: 94+162e\rightarrow 47+81e\uparrow \rightarrow e=2f+1:64+81f(2)$ $c=2d: 106+162d \rightarrow 53+81d \downarrow \rightarrow d=2e+1:67+81e \downarrow \rightarrow e=2f+1:74+81f(3)$ d=2e:160+486e♦ e=2f: 202+486f→101+243f ♠ g=2h+1:200+243h(4)♥ 71+243f↓→f=2g+1:157+243g↑→g=2h: 472+1458h→236+729h↑→ ... $f=2g: 214+1458g \rightarrow 107+729g \downarrow \rightarrow g=2h+1: 418+729h \downarrow \rightarrow \dots$ g=2h: 322+4374h→.... g=2h: 86+243h(5) \bullet 101+243f↓→f=2g+1:172+243g↑→g=2h+1:1246+1458h→... f=2g: 304+1458g→152+729g ↓→... $160+486e \rightarrow 80+243e \downarrow \rightarrow e=2f+1:970+1458f \rightarrow 485+729f^{\uparrow} \rightarrow ...$ ••• $e=2f:40+243f\downarrow \rightarrow f=2g+1:850+1458g \rightarrow 425+729g\uparrow \rightarrow \dots$ $f=2g: 20+243g \rightarrow g=2h: 10+243h$ (6) ••• $g=2h+1:790+1458h \rightarrow 395+729h^{\uparrow} \rightarrow ...$

Annotation:

(1) Each of letters c, d, e, f, g, h ... etc at listed above operational routes expresses each of natural numbers plus 0.

(2) Also, there are $\clubsuit \leftrightarrow \clubsuit$, $\lor \leftrightarrow \lor$, $\clubsuit \leftrightarrow \clubsuit$, and $\blacklozenge \leftrightarrow \blacklozenge$.

(3) Aforesaid two points are suitable to latter operational routes of 19+12c similarly.

In the course of operation for 15+12c/19+12c by the operational rule, if

an operational result is smaller than a kind of 15+12c/19+12c, and that it

first appears at an operational route of 15+12c/19+12c, then let us term

the operational result "No1 satisfactory operational result".

Hereupon conclude six kinds of 15+12c derived monogamously from No1

satisfactory operational results at the bunch of operational routes of 15+12c.

If $n+1 \in$ a kind in them, then n+1 suits the conjecture, as listed below.

From c=2d+1 and d=2e+1, get c=2d+1=2(2e+1)+1=4e+3, then 15+12c=51+48e

 $=51+3\times2^{4}e \rightarrow 154+3^{2}\times2^{4}e \rightarrow 77+3^{2}\times2^{3}e \rightarrow 232+3^{3}\times2^{3}e \rightarrow 116+3^{3}\times2^{2}e \rightarrow 58+3^{3}\times2e \rightarrow 58+3^{3}$

29+27e where mark (1), and 29+27e < 51+48e, so if $n+1 \in 51+48e$, then n+1

suits the conjecture according to Theorem 1.

From c=2d+1, d=2e and e=2f+1, get c=2d+1=4e+1=4(2f+1)+1=8f+5, then 15+12c= 75+96f=75+3×2⁵f \rightarrow 226+3²×2⁵f \rightarrow 113+3²×2⁴f \rightarrow 340+3³×2⁴f \rightarrow 170+3³×2³f \rightarrow 85+3³×2²f \rightarrow 256+3⁴×2²f \rightarrow 128+3⁴×2¹f \rightarrow 64+81f where mark (**2**), and 64+81f < 75+96f, so if

 $n+1 \in 75+96f$, then n+1 suits the conjecture according to Theorem 1.

From c=2d, d=2e+1 and e=2f+1, get c=2d=4e+2=4(2f+1)+2=8f+6, then 15+12c= 87+96f=87+3×2⁵f→262+3²×2⁵f→131+3²×2⁴f→394+3³×2⁴f→197+3³×2³f→592+3⁴ ×2³f→296+3⁴×2²f→148+3⁴×2¹f→74+81f where mark (**3**), and 74+81f < 87+96f, so if $n+1 \in 87+96f$, then n+1 suits the conjecture according to Theorem *1*. From c=2d+1, d=2e, e=2f, f=2g+1 and g=2h+1, get c=2d+1=4e+1=8f+1=8(2g+1)+1 =16g+9=16(2h+1)+9=32h+25, then 15+12c=315+384h=315+3×2⁷h→946+3²×2⁷h→ 473+3²×2⁶h→1420+3³×2⁶h→710+3³×2⁵h→355+3³×2⁴h→1066+3⁴×2⁴h→533+3⁴×2³h →1600+3⁵×2³h→800+3⁵×2²h→400+3⁵×2¹h→200+243h where mark (**4**), and 200+243h<315+384h, so if $n+1 \in 315+384h$, then n+1 suits the conjecture according to Theorem *1*.

From c=2d, d=2e+1, e=2f, f=2g+1 and g=2h, get c=2d=2(2e+1)=4e+2=8f+2= 8(2g+1)+2=16g+10=32h+10, then 15+12c=135+384h=135+3×2⁷h→406+3²×2⁷h→ 203+3²×2⁶h→610+3³×2⁶h→305+3³×2⁵h→916+3⁴×2⁵h→458+3⁴×2⁴h→229+3⁴×2³h→ 688+3⁵×2³h→344+3⁵×2²h→86+243h where mark (**5**), and 86+243h<135+384h, so if $n+1 \in 135+384h$, then n+1 suits the conjecture according to Theorem 1. From c=2d, d=2e, e=2f, f=2g and g=2h, get c=2d=32h, then 15+12c=15+384h= 15+3×2⁷h→46+3²×2⁷h→23+3²×2⁶h→70+3³×2⁶h→35+3³×2⁵h→106+3⁴×2⁵h→53+3⁴×2⁴h →60+3⁵×2⁴h→80+3⁵×2³h→40+3⁵×2²h→10+243h where mark (**6**), and 10+243h<15+384h, so if $n+1 \in 15+384h$, then n+1 suits the conjecture

according to Theorem 1.

Secondly, operate 19+12c by the operational rule successively, as follows. $19+12c \rightarrow 58+36c \rightarrow 29+18c \rightarrow 88+54c \rightarrow 44+27c \clubsuit$ $e=2f:37+81f(\beta)$ $d=2e: 11+27e(\alpha)$ **◆** 44+27c↓→c=2d: 22+27d↑→d=2e+1:148+162e→74+81e↑→e=2f+1:466+486f ♥ c=2d+1: 214+162d→107+81d↓→d=2e:322+486e \bigstar $d=2e+1:94+81e \downarrow \rightarrow e=2f:47+81f(\gamma)$ e=2f+1.526+486f ♦ $g=2h: 119+243h(\delta)$ $f=2g+1:238+243g\uparrow \rightarrow g=2h+1:1444+1458h \rightarrow 722+729h\uparrow \rightarrow ...$ $\texttt{466} + \texttt{486f} \rightarrow \texttt{233} + \texttt{243f} \uparrow \rightarrow \texttt{f} = \texttt{2g}: \texttt{700} + \texttt{1458g} \rightarrow \texttt{350} + \texttt{729g} \downarrow \rightarrow \texttt{g} = \texttt{2h} + \texttt{1}: \texttt{3238} + \texttt{4374h} \downarrow \texttt{f} = \texttt{466} + \texttt{486f} \rightarrow \texttt{233} + \texttt{243f} \uparrow \rightarrow \texttt{f} = \texttt{2g}: \texttt{700} + \texttt{1458g} \rightarrow \texttt{350} + \texttt{729g} \downarrow \rightarrow \texttt{g} = \texttt{2h} + \texttt{1}: \texttt{3238} + \texttt{4374h} \downarrow \texttt{f} = \texttt{466} + \texttt{486f} \rightarrow \texttt{486f$ $g=2h: 175+729h\downarrow \rightarrow \dots$ $g=2h+1:172+243h(\epsilon)$ $f=2g: 101+243g \rightarrow g=2h: 304+1458h \rightarrow ...$ $e=2f+1:202+243f \rightarrow f=2g+1:1336+1458g \rightarrow ...$ $▲322+486e\rightarrow161+243e\uparrow\rightarrow e=2f:484+1458f\rightarrow...$ ♦526+486f→263+243f↓→f=2g: 790+1458g→... $f=2g+1: 253+243g \downarrow \rightarrow g=2h+1: 248+243h (\zeta)$ g=2h: 760+1458h→...

Like that, conclude six kinds of 19+12c derived monogamously from No1 satisfactory operational results at the bunch of operational routes of 19+12c. If $n+1 \in a$ kind in them, then n+1 suits the conjecture, as listed below. From c=2d and d=2e, get c=2d=4e, then $19+12c=19+48e=19+3\times2^4e \rightarrow 58+3^2\times2^4e$ $\rightarrow 29+3^2\times2^3e \rightarrow 88+3^3\times2^3e \rightarrow 44+3^3\times2^2e \rightarrow 22+3^3\times2e \rightarrow 11+27e$ where mark (a), and 11+27e<19+48e, so if $n+1 \in 19+48e$, then n+1 suits the conjecture according to Theorem 1.

From c=2d, d=2e+1 and e=2f, get c=2d=2(2e+1)=4e+2=8f+2, then 19+12c= 43+96f=43+3×2⁵f \rightarrow 130+3²×2⁵f \rightarrow 65+3²×2⁴f \rightarrow 196+3³×2⁴f \rightarrow 98+3³×2³f \rightarrow 49+3³×2²f \rightarrow 148+3⁴×2²f \rightarrow 74+3⁴×2¹f \rightarrow 37+81f where mark (β), and 37+81f < 43+96f, so if $n+1 \in 43+96f$, then n+1 suits the conjecture according to Theorem 1.

From c=2d+1, d=2e+1 and e=2f, get c=2d+1=4e+3=8f+3, then 19+12c=55+96f =55+3×2⁵f→166+3²×2⁵f→83+3²×2⁴f→250+3³×2⁴f→125+3³×2³f→376+3⁴×2³f→ 188+3⁴×2²f→ 94+3⁴×2¹f→47+81f where mark (γ), and 47+81f < 55+96f, so if $n+1 \in 55+96f$, then n+1 suits the conjecture according to Theorem 1. From c=2d, d=2e+1, e=2f+1, f=2g+1 and g=2h, get c=2d=2(2e+1)=4e+2=4(2f+1)+2 =8f+6=8(2g+1)+6=16g+14=32h+14, then 19+12c=187+384h=187+3×2⁷h→562+ 3²×2⁷h→281+3²×2⁶h→844+3³×2⁶h→422+3³×2⁵h→211+3³×2⁴h→634+3⁴×2⁴h→317+ 3⁴×2³h→952+3⁵×2³h→476+3⁵×2²h→238+3⁵×2¹h→119+243h where mark (δ), and 119+243h<187+384h, so if $n+1 \in 187+384h$, then n+1 suits the conjecture according to Theorem 1.

From c=2d+1, d=2e, e=2f+1, f=2g and g=2h+1, get c=2d+1=4e+1=4(2f+1)+1=8f+5 =16g+5=16(2h+1)+5=32h+21, then 19+12c=271+384h=271+3×2⁷h→814+3²×2⁷h→ $407+3^2×2^6h\rightarrow1222+3^3×2^6h\rightarrow611+3^3×2^5h\rightarrow1834+3^4×2^5h\rightarrow917+3^4×2^4h\rightarrow2752+3^5×2^4h$ $\rightarrow1376+3^5×2^3h\rightarrow688+3^5×2^2h\rightarrow344+3^5×2^1h\rightarrow172+243h$ where mark (ε), and 172+243h<271+384h, so if $n+1 \in 271+384h$, then n+1 suits the conjecture according to Theorem 1.

From c=2d+1, d=2e+1, e=2f+1, f=2g+1 and g=2h+1, get c=2d+1= 2(2e+1)+1= 4e+3=4(2f+1)+3=8f+7=8(2g+1)+7=16(2h+1)+15=32h+31, then 19+12c=391+384h =391+3×2⁷h→1174+3²×2⁷h→587+3²×2⁶h→1762+3³×2⁶h→881+3³×2⁵h→2644+ 3⁴×2⁵h→1322+3⁴×2⁴h→661+3⁴×2³h→1984+3⁵×2³h→992+3⁵×2²h→496+3⁵×2¹h→ 248+243h where mark (ζ), and 248+243h < 391+384h, so if $n+1 \in 391+384h$, then n+1 suits the conjecture according to Theorem 1.

It is obvious that if n+1 belongs within a kind of 15+12c/19+12c derived from a No1 satisfactory operational result, then n+1 suits the conjecture. It is observed that variables d, e, f, g, h ... etc. of integer's expressions appear at two bunches of operational routes of 15+12c and 19+12c, in fact, the purpose which substitutes c by them is that in order to avoid the confusion and for convenience. On the contrary, let χ represent variables d, e, f, g, h, etc. intensively, but χ can not represent the variable c directly. After substitute variables d, e, f, g, h and otherwise by variable χ , the odevity of part integer's expressions that contain the variable χ at operational routes of 15+12c/19+12c is still indeterminate. Or rather, for every such integer's expression, both regard it as an odd number to operate, and regard it as an even number to operate. We thus label such

integer's expressions "odd-even expressions".

For any odd-even expression at the bunch of operational routes of 15+12c/19+12c, two kinds of operations synchronize at itself.

After regard an odd-even expression as an odd number to operate, get a greater operational result > itself. Yet after regard it as an even number to operate, get a smaller operational result < itself.

Moreover, pass operations for each odd-even expression, the bunch of operational routes of 15+12c/19+12c adds an operational route inevitably. Begin with an integer's expression to operate by the operational rule continuously, every operational route via consecutive greater operational results will be getting longer and longer, and that the sum of constant term plus coefficient of χ of integer's expression appeared thereon is getting greater and greater on the whole, along continuation of operations. On the other, for a smaller operational result in synchronism with a greater operational result, if it can be divided by 2^{μ} with $\mu \ge 2$ to get an even smaller integer's expression, and that once the even smaller integer's expression is first smaller than a kind of 15+12c/19+12c, then the even smaller integer's expression is the very a Ne1 satisfactory operational result, accordingly can derive the kind of 15+12c/19+12c from it, so operations at the operational route may stop at here.

If the even smaller integer's expression is still greater than any kind of 15+12c/19+12c, or the smaller operational result is still an odd-even expression, then this needs us continue to operate by the operational rule. By this token, on the one hand, operational routes at the bunch of operational routes of 15+12c/19+12c increase continually always; on the other hand, operational routes at the bunch of operational routes of 15+12c/19+12c reduce continually always.

Begin with any kind of 15+12c/19+12c to operate successively by the operational rule, certainly can educe or discover a No1 satisfactory operational result about itself, so long as the operational route proceed along consecutive smaller operational results.

Can derive at least a kind of 15+12c/19+12c from a No1 satisfactory operational result, for examples, $15+12(1+2^{57}y)$ derives itself from $23+3^{38}y$, yet $15+12(4+2^{55}\times 3^2y)$ and $15+12(8+2^{32}\times 3^{17}y)$ derive themselves from $61+2^3\times 3^{37}y$, please, see also their operational routes, as listed below.

(1) From $15+12(1+2^{57}y)=27+2^{59}\times 3y \rightarrow 82+2^{59}\times 3^2y \rightarrow 41+2^{58}\times 3^2y \rightarrow 124+2^{58}\times 3^3y \rightarrow 3^{59}y \rightarrow 124+2^{58}\times 3^{59}y \rightarrow 124+2^{59}y \rightarrow 124+2^{59$ $62+2^{57}\times3^{3}v \rightarrow 31+2^{56}\times3^{3}v \rightarrow 94+2^{56}\times3^{4}v \rightarrow 47+2^{55}\times3^{4}v \rightarrow 142+2^{55}\times3^{5}v \rightarrow 71+2^{54}\times3^{5}v$ $\rightarrow 214 + 2^{54} \times 3^{6} \mathrm{v} \rightarrow 107 + 2^{53} \times 3^{6} \mathrm{v} \rightarrow 322 + 2^{53} \times 3^{7} \mathrm{v} \rightarrow 161 + 2^{52} \times 3^{7} \mathrm{v} \rightarrow 484 + 2^{52} \times 3^{8} \mathrm{v} \rightarrow 322 + 2^{53} \times 3^{7} \mathrm{v} \rightarrow 161 + 2^{52} \times 3^{7} \mathrm{v} \rightarrow 484 + 2^{52} \times 3^{8} \mathrm{v} \rightarrow 322 + 2^{53} \times 3^{7} \mathrm{v} \rightarrow 161 + 2^{52} \times 3^{7} \mathrm{v} \rightarrow 484 + 2^{52} \times 3^{8} \mathrm{v} \rightarrow 322 + 2^{53} \times 3^{7} \mathrm{v} \rightarrow 161 + 2^{52} \times 3^{7} \mathrm{v} \rightarrow 484 + 2^{52} \times 3^{8} \mathrm{v} \rightarrow 322 + 2^{53} \times 3^{7} \mathrm{v} \rightarrow 161 + 2^{52} \times 3^{7} \mathrm{v} \rightarrow 322 + 2^{53} \times 3^{7} \mathrm{v} \rightarrow 161 + 2^{52} \times 3^{7} \mathrm{v} \rightarrow 322 + 2^{53} \times 3^{5} \mathrm{v} \rightarrow 322 + 2^{5} \times 3^{5} \times 3^{5} \mathrm{v} \rightarrow 322 + 2^{5} \times 3^{5} \times 3^{5$ $242+2^{51}\times 3^8 v \rightarrow 121+2^{50}\times 3^8 v \rightarrow 364+2^{50}\times 3^9 v^* \rightarrow 182+2^{49}\times 3^9 v \rightarrow 91+2^{48}\times 3^9 v \rightarrow 364+2^{50}\times 3^9 v^* \rightarrow 182+2^{49}\times 3^9 v \rightarrow 91+2^{48}\times 3^{48}\times 3^{48}\times 3^{48}\times 3^{48}\times 3^{48}\times 3^{48}\times$ $274+2^{48}\times3^{10}v \rightarrow 137+2^{47}\times3^{10}v \rightarrow 412+2^{47}\times3^{11}v \rightarrow 206+2^{46}\times3^{11}v \rightarrow 103+2^{45}\times3^{11}v \rightarrow 103+2^{$ $310+2^{45}\times3^{12}v \rightarrow 155+2^{44}\times3^{12}v \rightarrow 466+2^{44}\times3^{13}v \rightarrow 233+2^{43}\times3^{13}v \rightarrow 700+2^{43}\times3^{14}v \rightarrow 700+2^{$ $350+2^{42}\times3^{14}v \rightarrow 175+2^{41}\times3^{14}v \rightarrow 526+2^{41}\times3^{15}v \rightarrow 263+2^{40}\times3^{15}v \rightarrow 790+2^{40}\times3^{16}v \rightarrow 790+2^{$ $395 + 2^{39} \times 3^{16} \text{v} \rightarrow 1186 + 2^{39} \times 3^{17} \text{v} \rightarrow 593 + 2^{38} \times 3^{17} \text{v} \rightarrow 1780 + 2^{38} \times 3^{18} \text{v} \rightarrow 890 + 2^{37} \times 3^{18} \text{v} \rightarrow 800 + 2^{37} \times 3^{37} \times 3^{3$ $445 + 2^{36} \times 3^{18} \text{v} \rightarrow 1336 + 2^{36} \times 3^{19} \text{v} \rightarrow 668 + 2^{35} \times 3^{19} \text{v} \rightarrow 334 + 2^{34} \times 3^{19} \text{v}^{\ast \ast} \rightarrow 167 + 2^{33} \times 3^{19} \text{v} \rightarrow 334 + 2^{34} \times 3^{19} \text{v}^{\ast \ast} \rightarrow 167 + 2^{33} \times 3^{19} \text{v} \rightarrow 334 + 2^{34} \times 3^{19} \text{v}^{\ast \ast} \rightarrow 167 + 2^{33} \times 3^{19} \text{v} \rightarrow 334 + 2^{34} \times 3^{19} \text{v}^{\ast \ast} \rightarrow 167 + 2^{33} \times 3^{19} \text{v} \rightarrow 334 + 2^{34} \times 3^{19} \text{v}^{\ast \ast} \rightarrow 167 + 2^{33} \times 3^{19} \text{v} \rightarrow 334 + 2^{34} \times 3^{19} \text{v}^{\ast \ast} \rightarrow 167 + 2^{33} \times 3^{19} \text{v} \rightarrow 334 + 2^{34} \times 3^{19} \text{v}^{\ast \ast} \rightarrow 167 + 2^{33} \times 3^{19} \text{v} \rightarrow 334 + 2^{34} \times 3^{19} \text{v}^{\ast \ast} \rightarrow 167 + 2^{33} \times 3^{19} \text{v}^{\ast} \rightarrow 167 + 2^{33} \times 3^{19} \times 3^{$ $502+2^{33}\times3^{20}v \rightarrow 251+2^{32}\times3^{20}v \rightarrow 754+2^{32}\times3^{21}v \rightarrow 377+2^{31}\times3^{21}v \rightarrow 1132+2^{31}\times3^{22}v \rightarrow 1132+2^{31}\times3^{32}v \rightarrow 112+2^{32}v \rightarrow 112+2^{32}v \rightarrow 112+2^{32}v \rightarrow 112+$ $566+2^{30}\times3^{22}v \rightarrow 283+2^{29}\times3^{22}v \rightarrow 850+2^{29}\times3^{23}v \rightarrow 425+2^{28}\times3^{23}v \rightarrow 1276+2^{28}\times3^{24}v \rightarrow 328+2^{29}\times3^{22}v \rightarrow 850+2^{29}\times3^{22}v \rightarrow 850+2^$ $638+2^{27}\times3^{24}v \rightarrow 319+2^{26}\times3^{24}v \rightarrow 958+2^{26}\times3^{25}v \rightarrow 479+2^{25}\times3^{25}v \rightarrow 1438+2^{25}\times3^{26}v \rightarrow 958+2^{26}\times3^{26}v \rightarrow 958+2^{26}v \rightarrow 958+2^$ $719+2^{24}\times3^{26}v \rightarrow 2158+2^{24}\times3^{27}v \rightarrow 1079+2^{23}\times3^{27}v \rightarrow 3238+2^{23}\times3^{28}v \rightarrow 1619+2^{22}\times3^{28}v \rightarrow 1610+2^{22}\times3^{28}v \rightarrow 1610+2^{22}\times3^{28}v \rightarrow 1610+2^{22}\times3^{28}v \rightarrow 1610+2^{28}v \rightarrow 1$ $4858 + 2^{22} \times 3^{29} \text{v} \rightarrow 2429 + 2^{21} \times 3^{29} \text{v} \rightarrow 7288 + 2^{21} \times 3^{30} \text{v} \rightarrow 3644 + 2^{20} \times 3^{30} \text{v} \rightarrow 1822 + 2^{19} \times 3^{30} \text{v}$ $\rightarrow 911 + 2^{18} \times 3^{30} y \rightarrow 2734 + 2^{18} \times 3^{31} y \rightarrow 1367 + 2^{17} \times 3^{31} y \rightarrow 4102 + 2^{17} \times 3^{32} v \rightarrow 2051 + 2^{16} \times 3^{32} v \rightarrow 2051 + 2^{16} \times 3^{10} v \rightarrow 1367 + 2^{10} \times 3^$ $\rightarrow 6154 + 2^{16} \times 3^{33} \text{v} \rightarrow 3077 + 2^{15} \times 3^{33} \text{v} \rightarrow 9232 + 2^{15} \times 3^{34} \text{v} \rightarrow 4616 + 2^{14} \times 3^{34} \text{v} \rightarrow 2308 + 2^{13} \times 3^{34} \text{v}$ $\rightarrow 1154 + 2^{12} \times 3^{34} \text{v} \rightarrow 577 + 2^{11} \times 3^{34} \text{v} \rightarrow 1732 + 2^{11} \times 3^{35} \text{v} \rightarrow 866 + 2^{10} \times 3^{35} \text{v} \rightarrow 433 + 2^{9} \times 3^{35} \text{v} \rightarrow 577 + 2^{11} \times 3^{10} \text{v} \rightarrow 1732 +$ $1300+2^9\times3^{36}v \longrightarrow 650+2^8\times3^{36}v \longrightarrow 325+2^7\times3^{36}v \longrightarrow 976+2^7\times3^{37}v \longrightarrow 488+2^6\times3^{37}v \longrightarrow 325+2^7\times3^{36}v \longrightarrow 976+2^7\times3^{37}v \longrightarrow 976+2^7v \longrightarrow 976+2^7$ v \longrightarrow 976+2^7v \longrightarrow 976+2^7v \longrightarrow 976+2^7v \longrightarrow 976+2^7 $244+2^5\times 3^{37}y \rightarrow 122+2^4\times 3^{37}y \rightarrow 61+2^3\times 3^{37}y \rightarrow 184+2^3\times 3^{38}y \rightarrow 92+2^2\times 3^{38}y \rightarrow 46+2^1\times 3^{38}y \rightarrow 23+3^{38}y$, get No1 satisfactory operational result $23+3^{38}y$ about the kind of $27+2^{59}\times 3y$.

(2) From $15+12(4+2^{55}\times3^2y)=63+2^{57}\times3^3y\rightarrow190+2^{57}\times3^4y\rightarrow95+2^{56}\times3^4y\rightarrow286+2^{56}\times3^5y$ $\rightarrow 143+2^{55}\times3^5y\rightarrow 430+2^{55}\times3^6y\rightarrow 215+2^{54}\times3^6y\rightarrow 646+2^{54}\times3^7y\rightarrow 323+2^{53}\times3^7y\rightarrow$ $970+2^{53}\times3^8y\rightarrow 485+2^{52}\times3^8y\rightarrow 1456+2^{52}\times3^9y\rightarrow 728+2^{51}\times3^9y\rightarrow 364+2^{50}\times3^9y^*$ at operational route $27+2^{59}\times3y...\rightarrow61+2^3\times3^{37}y$, get No1 satisfactory operational result $61+2^3\times3^{37}y$ about the kind of $63+2^{57}\times3^3y$.

(3) From $15+12(8+2^{32}\times3^{17}y) = 111+2^{34}\times3^{18}y \rightarrow 334+2^{34}\times3^{19}y^{**}$ at operational route $27+2^{59}\times3y...\rightarrow61+2^{3}\times3^{37}y$, get the same No1 satisfactory operational result $61+2^{3}\times3^{37}y$ about the kind of $111+2^{34}\times3^{18}y$ too.

In some cases, an operational route of 15+12c and an operational route of 19+12c can intersect, such as when operate $15+12(1+2^{57}y)$ to fifth step, the integer's expression got is exactly $19+12(1+2^{54}\times 3^2y)$ in example (1).

Due to $c \ge 1$, there are infinitely many odd numbers of 15+12c/19+12c, whether they belong to infinite many kinds or finite many kinds.

Since there is an operational route between each kind of 15+12c/19+12cand No1 satisfactory operational result about the kind itself, so 15+12c/19+12c19+12c has how many kinds of 15+12c/19+12c, then there are how many operational routes of 15+12c/19+12c, yet for each line segment coincided from one another, either it is regarded as component part of some operational routes, or it is irrespective for the others. Therefore, all operational routes at the bunch of operational routes of 15+12c/19+12c are formally similar to networking status. That is to say, between each operational route and each of operational routes except for the former, either both intersect directly, or both connect indirectly.

Since setting up the variable *c*, such that all kinds of 15+12c/19+12c collect at the bunch of operational routes of 15+12c/19+12c; but then, due to the odevity of χ , such that the bunch of operational routes of 15+12c/19+12c has infinitely many branches.

Now that No1 satisfactory operational results determine all kinds of 15+12c/19+12c, so begin with any kind of 15+12c/19+12c to operate by the operational rule continuously, then a No1 satisfactory operational result about the kind can only first appear under one in following 3 cases. (1) No1 satisfactory operational result about a kind of 15+12c/19+12c first appears at an operational route via the kind of 15+12c/19+12c itself; (2) An operational route via a kind of 15+12c/19+12c intersects another

operational route that has No1 satisfactory operational result about the kind of 15+12c/19+12c;

(3) An operational route via a kind of 15+12c/19+12c indirectly connects with another operational route that has No1 satisfactory operational result about the kind of 15+12c/19+12c.

In any case, all kind of 15+12c/19+12c and every No1 satisfactory operational result must coexist at the bunch of operational routes of 15+12c

/19+12c, otherwise, no matter what integer's expression, it belongs not to the type of 15+12c/19+12c or No1 satisfactory operational result either. Operations by the operational rule from any concrete integer within a kind of 15+12c/19+12c to No1 satisfactory operational result about the concrete integer can only pass finitely more steps.

Because even if an operational route via the kind of 15+12c/19+12c pass consecutive greater operational results to elongate infinitely, while there is a smaller operational result in synchronism with each such greater operational result, and that operational routes via the smaller operational result will continue to operate along consecutive smaller operational results, up to educe or discover the Ne1 satisfactory operational result about the kind of 15+12c/19+12c after pass operations of finite steps.

Accordingly, when their common variable equals some fixed value such that the kind of 15+12c/19+12c equals the concrete integer, let the No1 satisfactory operational result equals another integer, then from the concrete integer to appearing another integer can only pass finite more steps too.

Now that operational routes of every kind of 15+12c can only exist at the bunch of operational routes of 15+12c and operational routes of every kind of 19+12c can only exist at the bunch of operational routes of 19+12c, then either any operational route of any kind of 15+12c/19+12c intersects directly an operational route of any of above-listed six kinds of 15+12c/

19+12c derived monogamously from №1 satisfactory operational results according to the bunch of operational routes of 15+12c/19+12c, or any operational route of any kind of 15+12c/19+12c connects indirectly with an operational route of any of the above-listed six kinds of 15+12c/19+12c. Yet the six №1 satisfactory operational results and the six kinds of 15+12c/19+12c have been proven to suit the conjecture. By this token, for each operational route via a smaller operational result, whether it has the termination, this is absolutely unnecessary worry.

Therefore any kind of 15+12c/19+12c is proven to suit the conjecture according to Lemma 1, or Lemma 3.

Consequently, if n+1 belongs within any kind of 15+12c/19+12c, then n+1 suits the conjecture according to Theorem 1, Theorem 2, or Lemma 2. To sum up, n+1 has been proved to suit the conjecture, whether n+1 belongs within which genus, which sort or which kind of odd numbers, or it is exactly an even number.

Likewise, we can too prove positive integers n+2, n+3, n+4 etc. up to every positive integer to suit the conjecture in the light of the old way of preceding doing things.

The proof was thus brought to a close. As a consequence, the Collatz conjecture is tenable.

References

[1] WolframMathworld, Collatz Problem, URL: http://mathworld.wolfram.com/CollatzProblem.html

[2] WIKIPEDIA, Collatz conjecture, URL: https://en.wikipedia.org/wiki/Collatz_conjecture

[3] MATHEMATICS, What is the importance of the Collatz conjecture? URL: https://math.stackexchange.com/questions/2694/what-is-the-importance-of-the-collatz-conjecture

[4] Encyclopedia of Mathematics, Mathematical induction, URL:

https://www.encyclopediaofmath.org/index.php/Mathematical_induction