The Lorentz Upshot of the Galilean Group's Fundamentals

Steven Kenneth Kauffmann*

Abstract

The fundamental properties of the (x, t) Galilean inertial transformations include their homogeneous linearity, their intrinsic velocity v, where setting v to zero produces the identity transformation and negation of v inverts the transformation, and their closure under composition. We show that stipulation of these three fundamental (x, t) Galilean inertial transformation properties yields all generic (x, t) Lorentz transformation groups, which are distinguished by their speed constant values that supplant c; the (x, t) Galilean group itself is the generic (x, t) Lorentz group with infinite speed constant.

Introduction

The (x, t) Galilean inertial transformations, which are given by,

$$
\begin{equation*}
x^{\prime}=x-v t, t^{\prime}=t \tag{1a}
\end{equation*}
$$

are obviously homogeneously linear, and they furthermore of course imply that,

$$
\begin{equation*}
d x^{\prime}=d x-v d t, d t^{\prime}=d t \tag{1b}
\end{equation*}
$$

so they in addition yield the corresponding $(d x / d t)$ Galilean inertial velocity transformations,

$$
\begin{equation*}
\left(d x^{\prime} / d t^{\prime}\right)=(d x / d t)-v \tag{1c}
\end{equation*}
$$

Since $\left(d x^{\prime} / d t^{\prime}\right)=-v$ when $(d x / d t)=0, v$ is a Galilean inertial transformation's intrinsic velocity. When its intrinsic velocity v vanishes, a Galilean inertial transformation reduces to the identity transformation, i.e.,

$$
\begin{equation*}
v=0 \text { implies that } x^{\prime}=x, t^{\prime}=t \text { and }\left(d x^{\prime} / d t^{\prime}\right)=(d x / d t) . \tag{1d}
\end{equation*}
$$

The inverse of a Galilean inertial transformation is easily worked out to be,

$$
\begin{equation*}
x=x^{\prime}+v t^{\prime}, t=t^{\prime} \text { and }(d x / d t)=\left(d x^{\prime} / d t^{\prime}\right)+v \tag{1e}
\end{equation*}
$$

so a Galilean inertial transformation's inversion is achieved simply by $v \rightarrow-v$.
The composition of a Galilean inertial transformation of intrinsic velocity v_{1} with another of intrinsic velocity v_{2} is as well a Galilean inertial transformation, namely one whose intrinsic velocity is $\left(v_{1}+v_{2}\right)$. That fact is readily demonstrated by writing Galilean inertial transformations in matrix notation, i.e., as,

$$
\binom{x^{\prime}}{t^{\prime}}=\binom{x-v t}{t}=\left(\begin{array}{cc}
1 & -v \tag{1f}\\
0 & 1
\end{array}\right)\binom{x}{t}
$$

and then calculating the composition of two Galilean inertial transformations by using matrix multiplication,

$$
\binom{x^{\prime \prime}}{t^{\prime \prime}}=\left(\begin{array}{cc}
1 & -v_{2} \tag{1~g}\\
0 & 1
\end{array}\right)\binom{x^{\prime}}{t^{\prime}}=\left(\begin{array}{cc}
1 & -v_{2} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -v_{1} \\
0 & 1
\end{array}\right)\binom{x}{t}=\left(\begin{array}{cc}
1 & -\left(v_{1}+v_{2}\right) \\
0 & 1
\end{array}\right)\binom{x}{t}
$$

The above discussion has highlighted three fundamental properties of the (x, t) Galilean inertial transformations: 1) their homogeneous linearity, 2) their intrinsic velocity v, where $v=0$ produces the identity transformation and $v \rightarrow-v$ inverts the transformation and 3) their closure under composition. In the next section we show that stipulation of these three fundamental (x, t) Galilean inertial transformation properties yields all generic (x, t) Lorentz transformation groups, which are distinguished by their speed constant values that supplant c; the (x, t) Galilean group is the generic (x, t) Lorentz group with infinite speed constant.

The three Galilean-group fundamentals which yield all generic Lorentz groups

The most general possible homogeneously linear (x, t) transformations have the form,

$$
\begin{equation*}
x^{\prime}=\alpha x-\beta(v t), t^{\prime}=\gamma t-\delta(x / v) \tag{2a}
\end{equation*}
$$

where α, β, γ and δ are dimensionless. These transformations of course imply that,

[^0]\[

$$
\begin{equation*}
d x^{\prime}=\alpha d x-\beta(v d t), d t^{\prime}=\gamma d t-\delta(d x / v) \tag{2b}
\end{equation*}
$$

\]

so they also imply the corresponding rational $(d x / d t)$ velocity transformations,

$$
\begin{equation*}
\left(d x^{\prime} / d t^{\prime}\right)=((\alpha / \gamma)(d x / d t)-(\beta / \gamma) v) /(1-(\delta /(\gamma v))(d x / d t)) \tag{2c}
\end{equation*}
$$

Since $\left(d x^{\prime} / d t^{\prime}\right)=-(\beta / \gamma) v$ when $(d x / d t)=0, v$ is the Eq. (2a) transformation's intrinsic velocity only if,

$$
\begin{equation*}
\beta=\gamma \tag{2d}
\end{equation*}
$$

With the Eq. (2d) constraint, the Eq. (2c) velocity transformation simplifies to,

$$
\begin{equation*}
\left(d x^{\prime} / d t^{\prime}\right)=((\alpha / \gamma)(d x / d t)-v) /(1-(\delta /(\gamma v))(d x / d t)) \tag{2e}
\end{equation*}
$$

The inverse of the Eq. (2e) velocity transformation is straightforwardly worked out to be,

$$
\begin{equation*}
(d x / d t)=\left(\left(d x^{\prime} / d t^{\prime}\right)+v\right) /\left((\alpha / \gamma)+(\delta /(\gamma v))\left(d x^{\prime} / d t^{\prime}\right)\right) . \tag{2f}
\end{equation*}
$$

Eqs. (2f) and (2e) only fulfill the condition that transformation inversion is achieved by $v \rightarrow-v$ if,

$$
\begin{equation*}
\alpha=\gamma \text { and }(\delta / \gamma) \text { is an even function of } v . \tag{2g}
\end{equation*}
$$

With the Eq. (2g) constraint, the Eq. (2e) velocity transformation simplifies to,

$$
\begin{equation*}
\left(d x^{\prime} / d t^{\prime}\right)=((d x / d t)-v) /(1-(\delta /(\gamma v))(d x / d t)), \text { where }(\delta / \gamma) \text { is an even function of } v . \tag{2h}
\end{equation*}
$$

With the constraints given by Eqs. (2d) and (2g), the Eq. (2a) (x, t) transformation simplifies to,

$$
\begin{equation*}
x^{\prime}=\gamma(x-v t), t^{\prime}=\gamma(t-(\delta /(\gamma v)) x), \tag{2i}
\end{equation*}
$$

which, when inverted, reads,

$$
\begin{equation*}
x=\left(x^{\prime}+v t^{\prime}\right) /(\gamma(1-(\delta / \gamma))), t=\left(t^{\prime}+(\delta /(\gamma v)) x^{\prime}\right) /(\gamma(1-(\delta / \gamma))) . \tag{2j}
\end{equation*}
$$

Eqs. (2j) and (2i) only fulfill the condition that transformation inversion is achieved by $v \rightarrow-v$ if,

$$
\begin{equation*}
(\delta / \gamma)=1-\gamma^{-2} \text { and } \gamma \text { is an even function of } v . \tag{2k}
\end{equation*}
$$

The constraints given by Eq. (2k) imply that the (x, t) transformation given by Eq. (2i) simplifies to,

$$
\begin{equation*}
x^{\prime}=\gamma(x-v t), t^{\prime}=\gamma\left(t-\left(1-\gamma^{-2}\right)(x / v)\right), \text { where } \gamma \text { is an even function of } v, \tag{2l}
\end{equation*}
$$

and the Eq. (2k) constraints of course as well imply that the Eq. (2h) velocity transformation simplifies to,

$$
\begin{equation*}
\left(d x^{\prime} / d t^{\prime}\right)=((d x / d t)-v) /\left(1-\left(1-\gamma^{-2}\right)((d x / d t) / v)\right) \text {, where } \gamma \text { is an even function of } v . \tag{2~m}
\end{equation*}
$$

Taking note at this point of the fact that the insertion of $v=0$ into Eqs. (2l) and (2m) must produce the respective identity transformations, it is clear that not only must γ be an even function of v, its asymptotic behavior for vanishingly small v also must be,

$$
\begin{equation*}
\gamma \sim 1+O\left(v^{2}\right) \text { as } v \rightarrow 0 \tag{2n}
\end{equation*}
$$

The weak constraints on the behavior of γ inherent in Eq. (2 n) and in the fact that γ must be an even function of v turn out to be greatly strengthened by the requirement that the composition of two (x, t) transformations of the form given by Eq. (2l) must itself be an (x, t) transformation of that Eq. (21) form. To enforce this composition closure requirement for the Eq. (21) transformations, we first write them in matrix notation, in analogy to what was done in Eq. (1f) for the specifically Galilean inertial transformations,

$$
\binom{x^{\prime}}{t^{\prime}}=\binom{\gamma(x-v t)}{\gamma\left(t-\left(1-\gamma^{-2}\right)(x / v)\right)}=\left(\begin{array}{cc}
\gamma & -\gamma v \tag{2o}\\
-\gamma\left(1-\gamma^{-2}\right) v^{-1} & \gamma
\end{array}\right)\binom{x}{t},
$$

and then calculate the composition of two such Eq. (20) matrix transformations by using matrix multiplication, which we follow by requiring that result to itself adhere to the specific Eq. (2o) matrix form,

$$
\begin{gather*}
\binom{x^{\prime \prime}}{t^{\prime \prime}}=\left(\begin{array}{cc}
\gamma_{2} & -\gamma_{2} v_{2} \\
-\gamma_{2}\left(1-\gamma_{2}^{-2}\right) v_{2}^{-1} & \gamma_{2}
\end{array}\right)\binom{x^{\prime}}{t^{\prime}}= \\
\left(\begin{array}{cc}
\gamma_{2} & -\gamma_{2} v_{2} \\
-\gamma_{2}\left(1-\gamma_{2}^{-2}\right) v_{2}^{-1} & \gamma_{2}
\end{array}\right)\left(\begin{array}{cc}
\gamma_{1} \\
-\gamma_{1}\left(1-\gamma_{1}^{-2}\right) v_{1}^{-1} & -\gamma_{1} v_{1} \\
\gamma_{1}
\end{array}\right)\binom{x}{t}= \\
\left(\begin{array}{cc}
\gamma_{1} \gamma_{2}\left(1+\left(1-\gamma_{1}^{-2}\right) v_{1}^{-1} v_{2}\right) & -\gamma_{1} \gamma_{2}\left(v_{1}+v_{2}\right) \\
-\gamma_{1} \gamma_{2}\left(\left(1-\gamma_{1}^{-2}\right) v_{1}^{-1}+\left(1-\gamma_{2}^{-2}\right) v_{2}^{-1}\right) & \gamma_{1} \gamma_{2}\left(1+\left(1-\gamma_{2}^{-2}\right) v_{2}^{-1} v_{1}\right)
\end{array}\right)\binom{x}{t}= \tag{2p}\\
\left(\begin{array}{cc}
\gamma_{12} & -\gamma_{12} v_{12} \\
-\gamma_{12}\left(1-\gamma_{12}^{-2}\right) v_{12}^{-1} & \gamma_{12}
\end{array}\right)\binom{x}{t} .
\end{gather*}
$$

The last Eq. (2p) equality constrains the composition of two Eq. (2o) matrix transformations to itself adhere to the specific Eq. (2o) matrix form. One crucial consequence of the last Eq. (2p) equality is that,

$$
\begin{equation*}
\gamma_{1} \gamma_{2}\left(1+\left(1-\gamma_{1}^{-2}\right) v_{1}^{-1} v_{2}\right)=\gamma_{12}=\gamma_{1} \gamma_{2}\left(1+\left(1-\gamma_{2}^{-2}\right) v_{2}^{-1} v_{1}\right) \tag{2q}
\end{equation*}
$$

which implies that,

$$
\begin{equation*}
\left(1-\gamma_{1}^{-2}\right) v_{1}^{-2}=\left(1-\gamma_{2}^{-2}\right) v_{2}^{-2} \tag{2r}
\end{equation*}
$$

Since the values of γ_{1} and v_{1} are entirely independent of the values of γ_{2} and v_{2}, it must be the case that,

$$
\begin{equation*}
\left(1-\gamma_{1}^{-2}\right) v_{1}^{-2}=\left(v_{0}\right)^{-2}=\left(1-\gamma_{2}^{-2}\right) v_{2}^{-2} \tag{2~s}
\end{equation*}
$$

where v_{0} is a constant with the dimension of speed, which we restrict to be either infinite or finite and positive. Eq. (2s) implies that the Eq. (2l) parameter γ is related to the Eq. (2l) intrinsic velocity v by,

$$
\begin{equation*}
\left(1-\gamma^{-2}\right)=\left(v / v_{0}\right)^{2} \tag{2t}
\end{equation*}
$$

which, when $|v|<v_{0}$, has the viable consequence that

$$
\begin{equation*}
\gamma=\left(1 / \sqrt{1-\left(v / v_{0}\right)^{2}}\right) \tag{2u}
\end{equation*}
$$

where Eq. (2n) requires the square root's positive sign. If v_{0} is infinite, Eq. (2u) fixes γ to unity, which causes Eq. (2l) to describe the (x, t) Galilean transformation group, but for finite positive v_{0}, the consequent γ of Eq. (2u) causes Eq. (2l) to describe the generic (x, t) Lorentz transformation group in which v_{0} supplants c.

Moreover, insertion of Eq. (2t) into Eq. (2q) yields that,

$$
\begin{equation*}
\gamma_{12}=\gamma_{1} \gamma_{2}\left(1+\left(v_{1} v_{2} / v_{0}^{2}\right)\right) \tag{2v}
\end{equation*}
$$

and, in addition to Eq. (2q), the last Eq. (2p) equality furthermore implies the equation,

$$
\begin{equation*}
\gamma_{12} v_{12}=\gamma_{1} \gamma_{2}\left(v_{1}+v_{2}\right) \tag{2w}
\end{equation*}
$$

which, when divided by Eq. $(2 \mathrm{v})$, yields the generic (x, t) Lorentz group intrinsic velocity composition rule,

$$
\begin{equation*}
v_{12}=\left(v_{1}+v_{2}\right) /\left(1+\left(v_{1} v_{2} / v_{0}^{2}\right)\right) \tag{2x}
\end{equation*}
$$

Eq. (2u) of course implies that γ_{12} is given by,

$$
\begin{equation*}
\gamma_{12}=\left(1 / \sqrt{1-\left(v_{12} / v_{0}\right)^{2}}\right) \tag{2y}
\end{equation*}
$$

which, by utilizing Eqs. (2x) and (2u), is readily shown to be consistent with Eq. (2v). In fact Eqs. (2x) and (2u) are equivalent to all four of the equations which follow from the last Eq. (2p) equality. As a consistency check, note that Eqs. $(2 \mathrm{x}),(2 \mathrm{y})$ and $(2 \mathrm{u})$ yield the correct Galilean results when $v_{0} \rightarrow+\infty$.

[^0]: *Retired, American Physical Society Senior Life Member, E-mail: SKKauffmann@gmail.com

