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Abstract

This is a short note on a new way to describe Haug’s newly introduced maximum velocity for matter
in relation to the Schwarzschild radius. This leads to a probabilistic Schwarzschild radius for elementary
particles with mass smaller than the Planck mass. In addition, our maximum velocity, when linked to the
Schwarzschild radius, seems to predict that particles just at that radius cannot move. This implies that
radiation from the Schwarzschild radius not can undergo velocity time dilation. Our maximum velocity
of matter, therefore, seems to predict no time dilation, even in high Z quasars, as has surprisingly been
observed recently.
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1 Haug’s Maximum Velocity for Matter

Haug’s newly introduced maximum velocity for matter has been published in a series of papers and
working papers; see, for example [1, 2, 3]. It is given by

vmax = c

√
1−

l2p

λ̄2
(1)

where lp is the Planck length; see also [4, 5]. This formula can be derived simply by putting a
Planck length limit on length contraction, or one can set the maximum relativistic mass (energy) for an
elementary particle to the Planck mass (energy), for example. Alternatively, one can even derive this
formula from Heisenberg’s uncertainty principle, if one assumes that the minimum uncertainty in position
is the Planck length, see [7].

Haug has also recently shown that the Planck length is given by

lp =

√
1

2
Rsλ̄ (2)

where Rs is the Schwarzschild radius and λ̄ is the reduced Compton wavelength of the same mass.
An important point is that the Schwarzschild radius and the reduced Compton wavelength can be found
independent of any knowledge of Newton’s gravitational constant or any knowledge of the Planck constant
as shown by [6]. This means the maximum velocity is given by

vmax = c

√
1−

l2p

λ̄2
= c

√√√√
1−

√
1
2
Rsλ̄

2

λ̄2
= c

√
1− Rs

2λ̄
(3)

We think this formula only gives meaning for elementary particles; we have suggested in other working
papers that all elementary particles have a probabilistic Schwarzschild radius. More precisely, they have
a Schwarzschild radius equal to the Planck length with a frequency (probability) of only

lp
λ̄

. That is to
say, the probabilistic Schwarzschild radius for an elementary particle is

Rs = 2lp
lp

λ̄
(4)
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This version of the Schwarzschild radius formula also holds for masses larger than the Planck mass,
but then the interpretation is no longer simply probabilistic, as the probabilistic factor (frequency):

lp
λ̄

will be higher than one. Integer numbers above one indicate the number of Planck masses, and there is
certainty for Planck masses. The fraction above one indicates an additional probabilistic factor for the
remaining mass. This means that probabilistic effects dominate below the Planck mass and determinism
dominates above; see [7].

Be aware that the Schwarzschild radius of any mass, including the probabilistic Schwarzschild radius
of elementary particles such as electrons, can be found independent of any knowledge of G. The Planck
length can also be found independent of G and h̄; see Haug’s recent working papers [8].

Even if the maximum velocity formula only holds for elementary particles, it can give a good indication
of the maximum velocity of composite masses (e.g. particles such as protons). As suggested by [2, 7],
the maximum velocity of the composite object will be limited by the heaviest elementary particle in the
object. Our theory predicts that the heaviest particle will start to dissolve into energy when it reaches
the maximum velocity. Any elementary particle is then a Planck mass

2 Gravitational Time Dilation Plus Velocity Time Dilation
at the Schwarzschild Radius For a Planck Mass Gravitational
Object

If we take into account gravitational time dilation plus velocity time dilation from general relativity
utilizing the Schwarzschild metric, we have (see [9] for an excellent introduction to this1)

dτ = dt

√
1− Rs

r
− v2

c2
(5)

where Rs is the Schwarzschild radius, and r = R+h where h is the height (distance) from R. Further,
v is the orbital velocity of the object traveling around the gravitational object. Assume we now want to
look at the special case of a Planck mass particle. This is the smallest known mass with a Schwarzschild
radius. A particle with a smaller mass will have a Schwarzschild radius less than the Planck length
according to the standard formula of

Rs =
2Gm

c2
(6)

that again is equivalent to Rs = 2lp
lp
λ̄

. We could get into a lengthy discussion over whether the 2
factor actually should be 1 instead of 2 in a very strong gravitational field, but that is beyond the scope of
this short paper. Instead, let us assume a gravitational object with Planck mass mp and that something
is moving just at the Schwarzschild radius. In other words, we assume h = 0 and r = Rs + 0 this leads to

dτ = dt

√
1− Rs

Rs
− v2

c2
(7)

As Rs
Rs

= 1, this leads to the square root of a negative number for any v > 0. Does this mean that
the time dilation at the Schwarzschild radius is imaginary? We don’t think so. However, the maximum
velocity, as given by Haug’s maximum velocity formula for a Planck mass particle, is

vmax = c

√
1−

l2p

λ̄2
= c

√
1−

l2p

λ̄2
= c

√
1−

l2p
l2p

= 0 (8)

where λ̄ is the reduced Compton wavelength of the particle in question. For any observed elementary
particle, such as an electron, this velocity is very close to c, but far above what has been accomplished
by the Large Hadron Collider. In the special case of a Planck mass particle, we have λ̄ = lp; this means
the maximum velocity for a Planck mass particle is zero. Thus, for a Planck mass particle we must have
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dτ = dt

√
1− Rs

Rs
− v2

max

c2

dτ = dt

√√√√√
1− Rs

Rs
−

(
c

√
1− l2p

l2p

)2

c2

dτ = dt

√√√√
1− 1−

c2(1− l2p
l2p

)

c2

dτ = dt

√
−1 +

l2p
l2p

= 0 (9)

That is to say, we have zero time dilation at the Schwarzschild radius for a Planck mass. It is not
a new concept that time must stand still at the Schwarzschild radius. However, what we have not seen
discussed before is that any object (with mass) at the Schwarzschild radius must itself stand still in order
for this to happen. This is consistent with Haug’s predictions where he has claimed that the Planck mass
particle must stand absolutely still, see [2, 7]. However, it only stands still for one Planck second before
it bursts into energy. We can think of standard elementary particles moving at very close to the speed of
light towards the Schwarzschild radius. They are getting dramatically compressed, due to the very strong
gravitational field. Just at the Schwarzschild radius, they are compressed to Planck mass particles

m√
1− v2

max
c2

=
h̄
λ̄

1
c√

1−

(
c

√
1−

l2p

λ̄2

)2

c2

=
h̄

lp

1

c
= mp (10)

The Planck mass particle then suddenly stand still for one Planck second before they burst into energy.
One could imagine some of this energy leaving the Schwarzschild radius in sudden bursts of energy. This
leads to a breakdown of Lorentz symmetry at the Planck scale. A breakdown in Lorentz symmetry
is not that controversial, as it is also predicted by several quantum gravity theories; see [10, 11, 12].
Alternatively, one needs to introduce imaginary time dilation (the square root of negative one), but this
does not seem to be very logical.

In modern cosmology, it is commonly assumed that a quasar is supermassive object, often called a
“black hole.” Further, it is assumed that the radiation from the quasar likely comes from a layer of matter
close to the black hole. If quasars are radiating black holes, then even high Z quasars will likely not have
any time dilation. This because it is just at the Schwarzschild radius that the particles burst into energy
after standing still for one Planck second.

This prediction of no velocity time dilation in quasars (black holes) is exactly what modern obser-
vational physics has shown [13, 14]. Hawking studied a series of high red-shift (high Z) quasars and
surprisingly did not find the expected time dilation predicted by standard physics. His observational
study is a great achievement, but we are still critical towards postulates associated with the growth of the
central supermassive black hole in quasars/active galactic nucleus (AGN) to offset the missing expected
time dilation in the standard theory. Could this also mean there is a very different explanation for cos-
mological red-shift than today’s theory claims? At a minimum, it suggests that we should, once again,
study other alternative theories in more detail. One could even suggest that the lack of time dilation in
quasars is one of the first observations possibly is confirming that Lorentz symmetry breaks at the Planck
scale, the Schwarzschild radius is the Planck scale.

Our newly introduced maximum velocity also indicates so called black holes are possibly a misnomer.
All elementary particles must be compressed to Planck mass particles at Schwarzschild radius as they

then reaches the velocity of vmax = c
√

1− Rs
2λ̄

= c

√
1− l2p

λ̄2 , they then stand still and then burst into

energy. So they go from a velocity just below the speed of light to standing still for one Planck second
and then bursting into energy and moving at speed c. Some of this energy likely goes inward into the
so-called black hole, so in this sense it is black, but some of it likely also bursts out. Remember this is
at the very boundary of the black hole. This indicates the Schwarzschild radius is a radiation horizon
where matter is compressed and then bursts into energy. Black holes are, for this reason, likely white
holes (with this we simply mean bright), and one will not observe any time dilation from the radiation
coming from the Schwarzschild radius itself, and very little time dilation from particles at a distance of
a few Planck lengths away from the the Schwarzschild radius.
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3 Heisenberg Uncertainty Principle Extended to the Schwarzschild
Radius

In 1927, Heisenberg [15] published what today is known as the Heisenberg Schwarzschild principle; (see
also [16])

∆p∆x ≥ h̄ (11)

In 1932, during his Nobel lecture Heisenberg himself suggested the existence of a universal least length.
Later on (in 1958), he assumed that the least length was the atom nuclei diameter 10−15 m; see also [17].
A series of researchers have argued that the Planck length is indeed the shortest length that gives any
meaning; see [18, 19], for example. Modern quantum gravity theories are also returning to the idea that
the Planck length is the universal least length, even though there is still considerable scientific debate on
this.

Here we will assume that the smaller possible uncertainty in the position is the Planck length. We

can then replace our expression for the Planck length with lp =
√

1
2
Rsλ̄ and see what we get. Further,

we will assume that elementary particles must have a momentum smaller than or equal to the Planck
mass momentum; the maximum momentum is then mpc = h̄

lp
. If this is the maximum momentum of an

elementary particle (including the Planck mass particle), then this must also be the maximum uncertainty
in the momentum for an elementary particle. Based on this we get

∆p∆x ≥ h̄

∆plp ≥ h̄

∆p

√
1

2
Rsλ̄ ≥ h̄√
1

2
Rs ≥ h̄

∆p
√
λ̄√

1

2
Rs ≥ h̄

∆mpc
√
λ̄√

1

2
Rs ≥ h̄

h̄
lp

1
c
c
√
λ̄√

1

2
Rs ≥ lp√

λ̄

Rs ≥ 2
l2p

λ̄
= 2lp

lp

λ̄
(12)

The correct interpretation of this is likely that the Schwarzschild radius is probabilistic for elementary
particles. All elementary particles have a Schwarzschild radius equal to the Planck length, but they only
have this at the Compton periodicity, and the Schwarzschild radius only lasts for one Planck second for
each unit of Compton time. That is the Schwarzschild radius is the reduced Compton frequency over
the shortest possible time interval multiplied by the shortest possible length. This means the probability
inside a Planck second for observing the Schwarzschild radius is

lp
λ̄

. For the Planck mass particle (also
known by modern physics as a micro black hole), this probability is one, because we then have λ̄ = lp.
That is why the Planck mass particle is the smallest mass that has a Schwarzschild radius. Smaller
particles still have a Schwarzschild radius, but it is then probabilistic.

4 The Planck Constant

A small side note is that we can rewrite the Planck constant as

h̄ =
Rsλ̄c

3

2G
(13)

This is simply because the Planck constant is embedded in Newton’s gravitational constant, as the

gravitational constant is simply G =
l2pc

3

h̄
; see [1], that is
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h̄ =
Rsλ̄c

3

2G
=
lp
lp
λ̄
λ̄c3

G
=
l2pc

3

G
=
l2pc

3

l2pc
3

h̄

(14)

5 Conclusion

In this paper, we have shown that there is a link between the Schwarzschild radius and our maximum
velocity of matter. An important point is that the Schwarzschild radius can be found independent of
any knowledge of Newton’s gravitational constant or any knowledge of the Planck constant. This again
leads to the idea that we can derive a probabilistic Schwarzschild radius for elementary particles using
the Heisenberg uncertainty principle.

Our maximum velocity of matter, when linked to the Schwarzschild radius, also seems to predict that
even high Z quasars cannot have time dilation, something that has been confirmed by experiments.
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