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Abstract

The energy spectrum of graviton emitted by the black hole binary is calculated in the first
part of the chapter. Then, the total quantum loss of energy, is calculated in the Schwinger
theory of gravity.

In the next part we determine the electromagnetic shift of energy levels of H-atom elec-
trons by calculating an electron coupling to the black hole thermal bath. Energy shift of
electrons in H-atom is determined in the framework of nonrelativistic quantum mechanics.

In the last section we determine the velocity of sound in the black hole atmosphere, which
is here considered as the black hole photon sea. Derivation is based on the thermodynamic
theory of the black hole photon gas.

Keywords Graviton, Schwinger source theory, spectrum of H-Atom, Coulomb potential,
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1 The graviton spectrum of the black hole binary

In 1916, Schwarzschild published the solution of the Einstein field equations [1] that was later

understood to describe a black hole [2,3] and in 1963 Kerr generalized the solution to rotating

black holes [4]. The year 1970 was the starting point of the theoretical work leading to the under-

standing of black hole quasinormal modes [5, 6, 7], and in the 1990 higher-order post-Newtonian

calculations [8] was performed and later the extensive analytical studies of relativistic two-body

dynamics realized [9,10]. These advances, together with numerical relativity breakthroughs in

the past decade [11, 12, 13], have enabled modeling of binary black hole mergers and accurate

predictions of their gravitational waveforms. While numerous black hole candidates have now

been identified through electromagnetic observations [14,15,16], black hole binary mergers have

not been still observed. Nevertheles, the black hole binary and their rotation and mergers is

open problem of the astrophysics and is is the integral part of the binary black hole and binary

pulsar physics.
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The binary pulsar system PSR B1913+16 (also known as PSR J1915+1606) discovered by

Hulse and Taylor [17] and subsequent observations of its energy loss by Taylor and Weisberg

[18] demonstrated the existence of gravitational waves [19].

By the early 2000s, a set of initial detectors was completed, including TAMA 300 in Japan,

GEO 600 in Germany, the Laser Interferometer Gravitational-Wave Observatory (LIGO) in the

United States, and Virgo in Italy. In 2015, Advanced LIGO became the first of a significantly

more sensitive network of advanced detectors (a second-generation interferometric gravitational

wave detector) to begin observations [20].

Taylor and Hulse, working at the Arecibo radiotelescope, discovered the radiopulsar PSR

B1913+16 in a binary, in 1974, and this is now considered as the best general relativistic

laboratory [21].

Pulsar PSR B1913+16 is the massive body of the binary system where each of the rotating

pairs is 1.4 times the mass of the Sun. These neutron stars rotate around each other in an orbit

not much larger than the Sun’s diameter, with a period 7.8 hours. Every 59 ms, the pulsar emits

a short signal that is so clear that the arrival time of a 5-min string of a set of such signals can

be resolved within 15 µs.

A pulsar model based on strongly magnetized, rapidly spinning neutron stars was soon

established as consistent with most of the known facts [22] its electrodynamical properties were

studied theoretically [23] and shown to be plausibly capable of generating broadband radio noise

detectable over interstellar distances. The binary pulsar PSR B1913+16 is now recognized

as the harbinger of a new class of unusually short-period pulsars, with numerous important

applications.

Because the velocities and gravitational energies in a high-mass binary pulsar system can

be significantly relativistic, strong-field and radiative effects come into play. The binary pulsar

PSR B1913+16 provides significant tests of gravitation beyond the weak-field, slow-motion

limit [24; 25].

We do not here repeat the derivation of the Einstein quadrupole formula in the Schwinger

gravity theory [26]. We show that just in the framework of the Schwinger gravity theory it

is easy to determine the spectral formula for emitted gravitons and the quantum energy-loss

formula of the binary system. The energy-loss formula is general, including black hole binary

and it involves arbitrarily strong gravity.

Since the measurement of the motion of the black hole binaries goes on, we hope that sooner

or later the confirmation of our formula will be established.

1.1 The Schwinger approach the problem

Source methods by Schwinger are adequate for the solution of the calculation of the spectral

formula of gravitons and energy loss of binary. Source theory [27–28] was initially constructed to

describe the particle physics situations occurring in high-energy physics experiments. However,

it was found that the original formulation simplifies the calculations in the electrodynamics and

gravity, where the interactions are mediated by photon and graviton respectively. The source
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theory of gravity forms the analogue of quantum electrodynamics because, while in QED the

interaction is mediated by the photon, the gravitational interaction is mediated by the graviton

[29]. The basic formula in the source theory is the vacuum-to-vacuum amplitude [30]:

⟨0+|0−⟩ = e
i
h̄
W (S), (1)

where the minus and plus tags on the vacuum symbol are causal labels, referring to any time

before and after region of space-time, where sources are manipulated. The exponential form

is introduced with regard to the existence of the physically independent experimental arrange-

ments, which has the simple consequence that the associated probability amplitudes multiply

and the corresponding W expressions add [27; 28].

In the flat space-time, the field of gravitons is described by the amplitude (1) with the action

(c = 1 in the following text) [31]:

W (T ) = 4πG

∫
(dx)(dx′)

[
Tµν(x)D+(x− x′)Tµν(x

′)− 1

2
T (x)D+(x− x′)T (x′)

]
, (2)

where the dimensionality of W (T ) is the same as the dimensionality of the Planck constant

h̄; Tµν is the tensor of momentum and energy that, for a particle moving along the trajectory

x = x(t), is defined by the equation [32]:

Tµν(x) =
pµpν

E
δ(x− x(t)), (3)

where pµ is the relativistic four-momentum of a particle with a rest mass m and

pµ = (E,p) (4)

pµpµ = −m2, (5)

and the relativistic energy is defined by the known relation

E =
m√

1− v2
, (6)

where v is the three-velocity of the moving particle.

Symbol T (x) in formula (2) is defined as T = gµνT
µν , and D+(x − x′) is the graviton

propagator whose explicit form will be determined later.

1.2 The power spectral formula in general

It may be easy to show that the probability of the persistence of vacuum is given by the following

formula [27]:

|⟨0+|0−⟩|2 = exp

{
−2

h̄
ImW

}
d
= exp

{
−
∫
dtdω

1

h̄ω
P (ω, t)

}
, (7)
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where the so-called power spectral function P (ω, t) has been introduced [27]. In order to extract

this spectral function from Im W , it is necessary to know the explicit form of the graviton

propagator D+(x − x′). The physical contents of this propagator is analogous to the contents

of the photon propagator. It involves the graviton property of spreading with velocity c. It

means that its explicit form is just the same as that of the photon propagator. With regard to

Schwinger et al. [33] the x-representation of D(k) in eq. (2) is as follows:

D+(x− x′) =

∫
(dk)

(2π)4
eik(x−x′)D(k), (8)

where

D(k) =
1

|k2| − (k0)2 − iϵ
, (9)

which gives

D+(x− x′) =
i

4π2

∫ ∞

0
dω

sinω|x− x′|
|x− x′|

e−iω|t−t′|. (10)

Now, using formulae (2), (7) and (10), we get the power spectral formula in the following

form:

P (ω, t) = 4πGω

∫
(dx)(dx′)dt′

sinω|x− x′|
|x− x′|

cosω(t− t′)×

[
Tµν(x, t)Tµν(x

′, t′)− 1

2
gµνT

µν(x, t)gαβT
αβ(x′, t′)

]
. (11)

1.3 The power spectral formula for the binary system

In the case of the binary system with massesm1 andm2, we suppose that they move in a uniform

circular motion around their centre of gravity in the xy plane, with corresponding kinematical

coordinates:

x1(t) = r1(i cos(ω0t) + j sin(ω0t)) (12)

x2(t) = r2(i cos(ω0t+ π) + j sin(ω0t+ π)) (13)

with

vi(t) = dxi/dt, ω0 = vi/ri, vi = |vi| (i = 1, 2). (14)

For the tensor of energy and momentum of the binary we have:

Tµν(x) =
pµ1p

ν
1

E1
δ(x− x1(t)) +

pµ2p
ν
2

E2
δ(x− x2(t)), (15)

where we have omitted the tensor tGµν , which is associated with the massless, gravitational field

distributed all over space and proportional to the gravitational constant G [32]:
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After insertion of eq. (15) into eq. (11), we get [33]:

Ptotal(ω, t) = P1(ω, t) + P12(ω, t) + P2(ω, t), (16)

where (t′ − t = τ):

P1(ω, t) =
Gω

r1π

∫ ∞

−∞
dτ

sin[2ωr1 sin(ω0τ/2)]

sin(ω0τ/2)
cosωτ×

(
E2

1(ω
2
0r

2
1 cosω0τ − 1)2 − m4

1

2E2
1

)
, (17)

P2(ω, t) =
Gω

r2π

∫ ∞

−∞
dτ

sin[2ωr2 sin(ω0τ/2)]

sin(ω0τ/2)
cosωτ×

(
E2

2(ω
2
0r

2
2 cosω0τ − 1)2 − m4

2

2E2
2

)
, (18)

P12(ω, t) =
4Gω

π

∫ ∞

−∞
dτ

sinω[r21 + r22 + 2r1r2 cos(ω0τ)]
1/2

[r21 + r22 + 2r1r2 cos(ω0τ)]1/2
cosωτ×

(
E1E2(ω

2
0r1r2 cosω0τ + 1)2 − m2

1m
2
2

2E1E2

)
. (19)

1.4 The quantum energy loss of the binary

Using the following relations

ω0τ = φ+ 2πl, φ ∈ (−π, π), l = 0, ±1, ±2, ... (20)

l=∞∑
l=−∞

cos 2πl
ω

ω0
=

∞∑
l=−∞

ω0δ(ω − ω0l), (21)

we get for Pi(ω, t), with ω being restricted to positive:

Pi(ω, t) =
∞∑
l=1

δ(ω − ω0l)Pil(ω, t). (22)

Using the definition of the Bessel function J2l(z)

J2l(z) =
1

2π

∫ π

−π
dφ cos

(
z sin

φ

2

)
cos lφ, (23)

from which the derivatives and their integrals follow, we get for P1l and P2l the following for-

mulae:

Pil =
2Gω

ri

(
(E2

i (v
2
i − 1)− m4

i

2E2
i

) ∫ 2vil

0
dx J2l(x)+

5



4E2
i (v

2
i − 1)v2i J

′
2l(2vil) + 4E2

i v
4
i J

′′′
2l (2vil)

)
, i = 1, 2. (24)

Using r2 = r1 + ϵ, where ϵ is supposed to be small in comparison with radii r1 and r2, we

obtain

[r21 + r22 + 2r1r2 cosφ]
1/2 ≈ 2a cos

(
φ

2

)
, (25)

with

a = r1

(
1 +

ϵ

2r1

)
. (26)

So, instead of eq. (19) we get:

P12(ω, t) =
2Gω

aπ

∫ ∞

−∞
dτ

sin[2ωa cos(ω0τ/2)]

cos(ω0τ)/2]
cosωτ×

(
E1E2(ω

2
0r1r2 cosω0τ + 1)2 − m2

1m
2
2

2E1E2

)
. (27)

Now, we can approach the evaluation of the energy-loss formula for the binary from the

power spectral formulae (24) and (27). The energy loss is defined by the relation

−dU
dt

=

∫
P (ω)dω =∫

dω
∑
i,l

δ(ω − ω0l)Pil +

∫
P12(ω)dω = − d

dt
(U1 + U2 + U12). (28)

From [34] we have Kapteyn’s formula

∞∑
l=1

J2l(2lv)

l2
=
v2

2
. (29)

After differentiating the last relation with respect to v, we have

∞∑
l=1

lJ ′′′
2l (2lv) = 0. (30)

From [34] we learn other Kapteyn’s formulae:

∞∑
l=1

2lJ ′
2l(2lv) =

v

(1− v2)2
, (31)

and

∞∑
l=1

l

∫ 2lv

0
J2l(x)dx =

v3

3(1− v2)3
. (32)

So, after application of eqs. (30), (31) and (32) to eqs. (24) and (28), we get:
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−dUi

dt
=

Gm2
i v

3
i ω0

3ri(1− v2i )
3
[13v2i − 15]. (33)

Instead of using Kapteyn’s formulae for the interference term, we will perform a direct

evaluation of the energy loss of the interference term by the ω-integration in (27) [35]. So, after

some elementary modification in the ω-integral, we get:

−dU12

dt
=

∫ ∞

0
P (ω)dω =

A

∫ ∞

−∞
dτ

∫ ∞

−∞
dωωe−iωτ sin[2ωa cosω0τ ]

[
B(C cosω0τ + 1)2 −D

cos(ω0τ/2)

]
, (34)

with

A =
G

aπ
, B = E1E2, C = v1v2, D =

m2
1m

2
2

2E1E2
. (35)

Using the definition of the δ-function and its derivative, we have, instead of eq. (34), with

v = aω0:

−dU12

dt
= Aω0π

∫ ∞

−∞
dx

[B(C cosx+ 1)2 −D]

cos(x/2)
×

[
δ′(x− 2v cos(x/2))− δ′(x+ 2v cos(x/2))

]
. (36)

According to the Schwinger article [36], we express the delta-fuction as follows:

δ(x± 2v cos(x/2)) =
∞∑
n=0

(±2v cos(x/2))n

n!

(
d

dx

)n

δ(x). (37)

Then

δ′(x± 2v cos(x/2)) =
∞∑
n=0

(±2v cos(x/2))n

n!

(
d

dx

)n+1

δ(x) = (38)

and it means that

[δ′(x+ 2v cos(x/2))− δ′(x− 2v cos(x/2))]

cos(x/2)
=

(−2)
∞∑
n=1

(2v)2n−1 (cos(x/2))2(n−1)

(2n− 1)!

(
d

dx

)2n

δ(x) (39)

Now, we can write eq. (36) in tge following form after some elmentary operations

−dU12

dt
= Aω0π

∫ ∞

−∞
dx
(
B(C cosx+ 1)2 −D

)
×

(−2)
∞∑
n=1

(2v)2n−1 (cos(x/2))2(n−1)

(2n− 1)!

(
d

dx

)2n

δ(x), (40)

where
(
B(C cosx+ 1)2 −D

)
can be written as follows:
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(
B(C cosx+ 1)2 −D

)
=

4BC2(cos4(x/2) + [4CB − 4BC2](cos2(x/2) + [BC2 − 2CB +B −D]. (41)

After application of the per partes method, we get from eq. (40) the following mathematical

object:

−dU12

dt
= (−2)A[4BC2]ω0π

∫ ∞

−∞
dx δ(x)

∞∑
n=1

(
d

dx

)2n

(2v)2n−1 (cos(x/2))
2n+2

(2n− 1)!
−

2A[4CB − 4BC2]ω0π

∫ ∞

−∞
dx δ(x)

∞∑
n=1

(
d

dx

)2n

(2v)2n−1 (cos(x/2))
2n

(2n− 1)!
−

2A[BC2 − 2CB +B −D]ω0π

∫ ∞

−∞
dx δ(x)

∞∑
n=1

(
d

dx

)2n

(2v)2n−1 (cos(x/2))
2(n−1)

(2n− 1)!
. (42)

We get after some elementary operations
∫
δf(x) = f(0)

J1 =
∞∑
n=1

(
d

dx

)2n

(2v)2n−1 (cos(x/2))
2n+2

(2n− 1)!
|x=0 =

∞∑
n=0

f(n)v2n = F (v2), (43)

J2 =
∞∑
n=1

(
d

dx

)2n

(2v)2n−1 (cos(x/2))
2n

(2n− 1)!
|x=0 =

∞∑
n=0

g(n)v2n = G(v2) (44)

and

J3 =
∞∑
n=1

(
d

dx

)2n

(2v)2n−1 (cos(x/2))
2(n−1)

(2n− 1)!
|x=0 =

∞∑
n=0

h(n)v2n = H(v2) (45)

where f, g, h, F,G,H are functions vhich must be determined

So we get instead of eq. (41) the following final form

−dU12

dt
= (−2)A[4BC2]ω0πG(v

2)− 2A[4CB − 4BC2]ω0πF (v
2)−

2A[−2CB +BC2 +B −D]ω0πH(v2) (46)

Let us remark that we can use simple approximation in eq. (41) as follows: (cos(x/2))2n+2 ≈
(cos(x/2))2 , (cos(x/2))2n ≈ (cos(x/2))2 , (cos(x/2))2(n−1) ≈ (cos(x/2))2. Then, after using the

well-known formula

(
d

dx

)2n

cos2(x/2) =
1

2
cos(x+ πn) (47)

and

1

2
cos(x+ πn)|x=0 =

1

2
(−1)n. (47)
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So, instead of eq. (46) se have:

−dU12

dt
= Aω0π

{
2BC +BC2 +B −D

} ∞∑
n=1

(2v)2n−1(−1)n

(2n− 1)!
(48)

2 Energy shift of H-atom electrons due to the black hole thermal
bath

We here determine the electromagnetic shift of energy levels of H-atom electrons by calculating

an electron coupling to the black hole thermal bath. Energy shift of electrons in H-atom is

determined in the framework of non-relativistic quantum mechanics.

The Gibbons-Hawking effect is the statement that a temperature can be associated to each

solution of the Einstein field equations that contains a causal horizon. It is named after Gary

Gibbons and Stephen William Hawking.

Schwarzschild spacetime contains an event horizon and so can be associated with tempera-

ture. In the case of Schwarzschild spacetime this is the temperature T of a black hole of mass

M , satisfying T/M .

De Sitter space which contains an event horizon has the temperature T proportional to the

Hubble parameter H. We consider here the influence of the heat bath of the Gibbons-Hawking

photons on the energy shift of H-atom electrons.

The considered problem is not in the scientific isolation, because some analogical problems

are solved in the scientific respected journals. At present time it is a general conviction that there

is an important analogy between black hole and the hydrogen atom. The similarity between

black hole and the hydrogen atom was considered for instance by Corda [37], who discussed the

precise model of Hawking radiation from the tunnelling mechanism. In this article an elegant

expression of the probability of emission is given in terms of the black hole quantum levels. So,

the system composed of Hawking radiation and black hole quasi-normal modes introduced by

Corda [38] is somewhat similar to the semiclassical Bohr model of the structure of a hydrogen

atom.

The time dependent Schrödinger equation was derived for the system composed by Hawking

radiation and black hole quasi-normal modes [39]. In this model, the physical state and the

correspondent wave function are written in terms of an unitary evolution matrix instead of a

density matrix. Thus, the final state is a pure quantum state instead of a mixed one and it means

that there is no information loss. Black hole can be well defined as the quantum mechanical

systems, having ordered, discrete quantum spectra, which respect ’t Hooft’s assumption that

Schrödinger equations can be used universally for all dynamics in the universe.

Thermal photons by Gibbons and Hawking form so called blackbody, which has the dis-

tribution law of photons derived in 1900 by Planck [40, 41, 42]. The derivation was based on

the investigation of the statistics of the system of oscillators inside of the blackbody. Later

Einstein in 1917 [43] derived the Planck formula from the Bohr model of atom where electrons

have the discrete energies and the energy of the emitted photons are given by the Bohr formula
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h̄ω = Ei − Ef , Ei, Ef are the initial and final energies of electrons.

Now, let us calculate the modified Coulomb potential due to blackbody. The starting point

of the determination of the energy shift in the H-atom is the potential V0(x), which is generated

by nucleus of the H-atom. The potential at point V0(x+ δx), evidently is [44, 45]:

V0(x+ δx) =

{
1 + δx∇+

1

2
(δx∇)2 + ...

}
V0(x). (1)

If we average the last equation in space, we can eliminate so called the effective potential in

the form

V (x) =

{
1 +

1

6
(δx)2T∆+ ...

}
V0(x), (2)

where (δx)2T is the average value of te square coordinate shift caused by the thermal photon

fluctuations. The potential shift follows from eq. (2):

δV (x) =
1

6
(δx)2T∆V0(x). (3)

The corresponding shift of the energy levels is given by the standard quantum mechanical

formula [44]

δEn =
1

6
(δx)2T (ψn∆V0ψn). (4)

In case of the Coulomb potential, which is the case of the H-atom, we have

V0 = − e2

4π|x|
. (5)

Then for the H-atom we can write

δEn =
2π

3
(δx)2T

e2

4π
|ψn(0)|2, (6)

where we used the following equation for the Coulomb potential

∆
1

|x|
= −4πδ(x). (7)

Motion of electron in electric field is evidently described by elementary equation

δẍ =
e

m
ET , (8)

which can be transformed by the Fourier transformation into the folowing equation

|δxTω|2 =
1

2

(
e2

m2ω4

)
E2

Tω, (9)

where the index ω concerns the Fourier component of above functions.

On the basis of the Bethe idea [46] of the influence of vacuum fluctuations on the energy

shift of electron, the following elementary relations was used by Welton [45], Akhiezer et al. [44]

and Berestetzkii et al. [47]:
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1

2
E2

ω =
h̄ω

2
(10)

and in case of the thermal bath of the blackbody, the last equation is of the following form [48]:

E2
Tω = ϱ(ω) =

(
h̄ω3

π2c3

)
1

e
h̄ω
kT − 1

, (11)

because the Planck law in (11) was written as

ϱ(ω) = G(ω) < Eω >=

(
ω2

π2c3

)
h̄ω

e
h̄ω
kT − 1

, (12)

where the term

< Eω >=
h̄ω

e
h̄ω
kT − 1

(13)

is the average energy of photons in the blackbody and

G(ω) =
ω2

π2c3
(14)

is the number of electromagnetic modes in the interval ω, ω + dω.

Then,

(δxTω)
2 =

1

2

(
e2

m2ω4

)(
h̄ω3

π2c3

)
1

e
h̄ω
kT − 1

, (15)

where (δxTω)
2 involves the number of frequences in the interval (ω, ω + dω).

So, after some integration, we get

(δx)2T =

∫ ω2

ω1

1

2

(
e2

m2ω4

)(
h̄ω3

π2c3

)
dω

e
h̄ω
kT − 1

=
1

2

(
e2

m2

)(
h̄

π2c3

)
F (ω2 − ω1), (16)

where F (ω) is the primitive function of the omega-integral

J =
1

ω

1

e
h̄ω
kT − 1

, (17)

which cannot be calculated by the elementary integral methods and it is not involved in the

tables of integrals.

Frequencies ω1 and ω2 will be determined with regard to the existence of the fluctuation field

of thermal photons. It was determined in case of the Lamb shift [47; 44] by means of the physical

analysis of the interaction of the Coulombic atom with the surrounding fluctuation field. We

suppose here that the Bethe and Welton arguments are valid and so we take the frequencies in

the Bethe-Welton form. In other words, electron cannot respond to the fluctuating field if the

frequency which is much less than the atom binding energy given by the Rydberg constant [49]

ERydberg = α2mc2/2. So, the lower frequency limit is

ω1 = ERydberg/h̄ =
α2mc2

2h̄
, (18)
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where α ≈ 1/137 is so called the fine structure constant.

The specific form of the second frequency follows from the elementary argument, that we

expect the effective cutoff, since we must neglect the relativistic effect in our non-relativistic

theory. So, we write

ω2 =
mc2

h̄
. (19)

If we take the thermal function of the form of the geometric series

1

e
h̄ω
kT − 1

= q(1 + q2 + q3 + .....); q = e−
h̄ω
kT , (20)

∫ ω2

ω1

q(1 + q2 + q3 + .....)
1

ω
dω = ln |ω|+

∞∑
k=1

(− h̄ω
kT )

k

k!k
+ ....; q = e−

h̄ω
kT (21)

and the first thermal contribution is

Thermal contribution = ln
ω2

ω1
− h̄

kT
(ω2 − ω1), (22)

Then, with eq. (6)

δEn ≈ 2π

3

(
e2

m2

)(
h̄

π2c3

)(
ln
ω2

ω1
− h̄

kT
(ω2 − ω1)

)
|ψn(0)|2, (23)

where according to Sokolov et al., [50]

|ψn(0)|2 =
1

πn2a20
(24)

with

a0 =
h̄2

me2
. (25)

Let us only remark that the numerical form of eq. (23) has deep experimental astrophysical

meaning.

Serge Haroche [51] and his research group in the Paris microwave laboratory used a small

cavity for the long life-time of photon quantum experiments performed with the Rydberg atoms.

We considered here the thermal gas corresponding to the Gibbons-Hawking theory of space-time

of black hole (at temperature T) as the preamble for new experiments for the determination of

the energy shift of H-atom electrons interacting with the Gibbons-Hawkingon thermal gas. It

is not excluded, that the observations performed by the well educated astro-experts will be the

Nobelian ones.
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3 Velocity of sound in the black hole photon gas

With regard ti the previous section, black hole can be comsidered as the black body and it

means we can determine the velocity of sound in the Gibbons Hawking black hole thermal bath.

So, we determine the velocity of sound in the blackbody gas of photons. Derivation is based

on the thermodynamic theory of the photon gas and the Einstein relation between energy and

mass. The spectral form for the n-dimensional blackbody is not derived.

In order to understand the the derivation of speed of sound in gas and in the relic photon

sea, we start with the derivation of the speed of sound in the real elastic rod.

Let A be the cross-section of the element Adx of a rod, where dx is the linear infinitesimal

length on the abscissa x. The φ(x, t) let be deflection of the element Adx at point x at time t.

The shift of he element Adx at point x+ dx is evidently

φ+
∂φ

∂x
dx. (1)

The relative prolongation is evidently ∂φ(x, t)/∂x . The differential equation of motion of

the rod can be derived by the following obligate way. We suppose that the force tension F (x, t)

acting on the element Adx of the rod is given by the Hook law:

F (x, t) = EA
∂φ

∂x
, (2)

where E is the Young modulus of elasticity. We easily derive that

F (x+ dx)− F (x) ≈ EA
∂2φ

∂x2
dx (3)

The mass of the element Adx is ϱAdx, where ϱ is the mass density of the rod and the

dynamical equilibrium is expressed by the Newton law of force:

ϱAdxφtt = EAφxxdx (4)

or,

φtt − v2φxx = 0, (5)

where

v =

(
E

ϱ

)1/2

(6)

is the velocity of sound in the rod.

The complete solution of eq. (5) includes the initial and boundary conditions. We suppose

that the velocity law (6) involving modulus of elasticity and mass density is valid also for gas

intercalated in the rigid cylinder tube. According to the definition of the Young modulus of

elasticity where (∆L/L) is the relative prolongation of a rod, we have as an analogue for the

tube of gas ∆V/V , F → ∆p, where V is the volume of a gas and p is pressure of a gas. Then,

the modulus of elasticity is defined as the analogue of eq. (2). Or,

13



E = − dp

dV
V. (7)

The process of the sound spreading in ideal gas is the adiabatic thermodynamic process with

no heat exchange. We use it later as a model of the sound spreading in the gas of blackbody

photons. Such process is described by the thermodynamical equation

pV κ = const, (8)

where κ is the Poisson constant defined as κ = cp/cv, with cp, cv being the specific heat under

constant pressure and under constant volume.

After differentiation of eq. (8) we get the following equation

dpV κ + κV κ−1dV = 0, (9)

or,

dp

dV
= −κ p

V
. (10)

After inserting of eq. (10) into eq. (7), we get from eq. (6) for the velocity of sound in gas

the so called Newton-Laplace formula:

v =

√
κ
p

ϱ
, (11)

where ϱ is the mass density of gas.

The density of the equilibrium radiation is given by the Stefan-Boltzmann formula

u = aT 4, ; a = 7, 5657.10−16 J

K4m3
. (12)

.

Then, with regard to the thermodynamic definition of the specific heat

cv =

(
∂u

∂T

)
V
= 4aT 3. (13)

Similarly, with regard to the general thermodynamic theory

cp = cv +

[(
∂u

∂V

)
T
+ p

](
∂V

∂T

)
p
= cv, (14)

because
(
∂V
∂T

)
T
= 0 for photon gas and in such a way, κ = 1 for photon gas. According to the

theory of relativity, there is simple equivalence between mass and energy. Namely, m = E/c2.

At the same time, there is relation between pressure and the internal energy of the blackbody

gas following from the electromagnetic theory of light p = u/3. So, in our case

ϱ = u/c2 =
aT 4

c2
; p =

u

3
. (15)
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So, after insertion of formulas in equation (14) in to eq. (11), we get the final formula for

the velocity of sound in three photon sea of the blackbody is as follows:

v = c

√
κ

3
=
c

3

√
3, (16)

which is the result derived by Partovi [52] using the QED theory applied to the photon gas. No

energy signal can move with velocity greater than the speed of light. And we correctly derived

v/c < 1.

So, we have seen in this section, that using the classical thermodynamical model of sound in

the classical gas we can easily derive some properties of the black body gas, namely the velocity

of sound in it and in the relic photon sea. It is not excluded that the relic sound can be detected

by the special microphones of Bell laboratories. Let us still remark that if we use van der Waals

equation of state, or, the Kamerlingh Onnes virial equation of state, the obtained results will

be modified with regard to the basic results.

Our derivation of the light velocity in the blackbody photon gas was based on the classical

thermodynamical model with the adiabatic process (δQ = 0), controlling the spreading of sound

in the gas. The problem was not solved by Einstein, because only QED, elaborated many years

later was able to give motivation for the formulation of such problem. In other words, Einstein

was not motivated for such activity. Partovi [52] derived additional radiation corrections to

the Planck distribution formula and the additional correction to the speed of sound in the relic

photon sea. His formula is of the form:

vsound =

[
1− 88π2α2

2025

(
T

Te

)4
]
c√
3
, (17)

where α is the fine structure constant and Te = 5.9 G Kelvin. We see that our formula is the

first approximation in the Partovi expression.

There is rigorous statistical theory of transport of sound energy in gas based on the Boltz-

mann equation [53]. After application of Boltzmann equation to the photon gas, or, relic photon

gas we can expect the rigorous results with regard to fact that the cross-section of the photon-

photon interaction is very small. Namely, [47]:

σγγ = 4, 7α4
(
c

ω

)2

; h̄ω ≪ mc2, (18)

and

σγγ =
973

10125π
α2r2e

(
h̄ω

mc2

)6

; h̄ω ≫ mc2, (19)

where re = e2/mc2 = 2, 818 × 10−13 cm is the classical radius of electron and α = e2/h̄c is the

fine structure constant with numerical value 1/α = 137, 04.

No doubt, the solution of the Boltzmann equation gives the existence of sound waves in the

statistical system of particles.
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4 Summary and perspectives

We have derived the spectral density of gravitons and the total quantum loss of energy of

the black hole binary. The energy loss is caused by the emission of gravitons during the motion

of the two black hole binary binary around each other under their gravitational interaction. The

energy-loss formulae of the production of gravitons are derived here by the Schwinger method.

Because the general relativity and theory of gravity do not necessarily contain the last valid

words to be written about the nature of gravity and it is not, of course, a quantum theory

[21], they cannot give the answer on the production of gravitons and the quantum energy loss,

respectively. So, this article is the original text that discusses the quantum energy loss caused

by the production of gravitons by the black hole binary system. It is evident that the production

of gravitons by the binary system forms a specific physical situation, where a general relativity

can be seriously confronted with the source theory of gravity.

This article is an extended version of an older article by the present author [33], in which only

the spectral formulae were derived. Here we have derived the quantum energy-loss formulae,

with no specific assumption concerning the strength of the gravitational field. We hope that

future astrophysical observations will confirm the quantum version of the energy loss of the

binary black hole.

In the next part of the chapter, the electromagnetic shift of energy levels of H-atom electrons

was determined by calculating an electron coupling to the Gibbons-Hawking ectromagnetic

field thermal bath of the black hole. Energy shift of electrons in H-atom is determined in the

framework of nonrelativistic quantum mechanics.

In the last we have determined the velocity of sound in the blackbody gas of photons inside

of black hole. Derivation was based on the thermodynamic theory of the photon gas and the

Einstein relation between energy and mass. The spectral form for the n-dimensional blackbody

was not here considered. With regard to the Russell philosophy of mathematics, there is no

possibility to prove the dimensionality of space, or, space-time, by means of pure mathematics,

because the statements of mathematics are non-existential. The existence of the external world

cannot be also proved by pure mathematics. However, if there is an axiomatic system related

adequately to the external world and reflecting correctly the external world, then, it is possible

to do many predictions on the external world by pure logic. This is the substance of exact

sciences. We know for instance that the success of special theory of relativity and quantum

mechanics is based on the adequate axiomatic system and on logic. The text is based mainly

on the author articles published in the international journals of physics [33], [54], [55].

There is the fundamental problem concerning of the maximal mass of the black hole. We do

not solve this problem here but, let us inform on the possible solution of the problem. The theory

of spece time with maximal acceleration constant was derived by author [56]. In this theory the

maximal accelaration constant is the analogue of the maximal velocity in spcial theory relativity.

The theory with the existence of the maximal acceleration, after confirmation, determine the

black hole mass where the mass of the black hole is restricted by maximal acceleration of a body
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falling in the gravity field of black hole.
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